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3D cell culture models replicate tissue complexity and aim to study cellular
interactions and responses in a more physiologically relevant environment
compared to traditional 2D cultures. However, the spherical structure of
these models makes it difficult to extract meaningful data, necessitating
advanced techniques for proper analysis. In silico simulations enhance research
by predicting cellular behaviors and therapeutic responses, providing a
powerful tool to complement experimental approaches. Despite their potential,
these simulations often require advanced computational skills and significant
resources, which creates a barrier for many researchers. To address these
challenges, we developed an accessible pipeline using open-source software
to facilitate virtual tissue simulations. Our approach employs the Cellular
Potts Model, a versatile framework for simulating cellular behaviors in tissues.
The simulations are constructed from real world 3D image stacks of cancer
spheroids, ensuring that the virtual models are rooted in experimental data. By
introducing a new metric for parameter optimization, we enable the creation
of realistic simulations without requiring extensive computational expertise. This
pipeline benefits researchers wanting to incorporate computational biology into
their methods, even if they do not possess extensive expertise in this area.
By reducing the technical barriers associated with advanced computational
modeling, our pipeline enables more researchers to utilize these powerful tools.
Our approach aims to foster a broader use of in silico methods in disease
research, contributing to a deeper understanding of disease biology and the
refinement of therapeutic interventions.

KEYWORDS

spheroids, 3D cell culture, Cellular Potts model, computational biology, in silico
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1 Introduction

3D cell culture models are increasingly recognized for their ability to mimic
tissue complexity in terms of structure and function in vivo, offering transformative
possibilities for biomedical research and therapeutic development (Fontoura et al., 2020;
Roberto de Barros et al., 2023; Rodrigues et al., 2024). However, despite their potential,
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the phenotypic quantitative 3D image analysis from spheroid
wholemount microscopy data sets remains a significant challenge,
as accurate visualization and characterization of cells throughout
these structures are hampered by technical and analytical
limitations (Tang et al., 2023). There is also a growing interest
in complementing these experiments with in silico simulations
to enhance research efficiency and outcomes, including aspects
like cost-effectiveness, speed, predictive power, and the ability
to integrate diverse data sources. These computational models
provide a powerful tool for exploring cellular behavior and
interactions within 3D environments without the constraints of
traditional experimental techniques (Jean-Quartier et al., 2018;
Berghoff et al., 2020; Cortesi et al., 2021).

In silico simulations of tumor spheroids have become an
important tool in cancer research, offering complementary
capabilities to traditional experimental methods for studying tumor
growth and treatment response. By integrating complex biological
simulations of tumor dynamics under various conditions, these
computational models provide insights often difficult to obtain
through in vitro or in vivo studies alone. By accurately capturing
the interactions between cell proliferation, nutrient diffusion, and
the tumor microenvironment, in silico models can predict tumor
behavior and assess the response to therapeutic interventions
and their effectiveness (Kam et al., 2012; Amereh et al., 2023;
Hickey et al., 2024). These studies, which utilize in silico modeling
of cancer spheroids, highlight the critical role of in silico simulation
in advancing our understanding of cancer biology and the
development of personalized medicine strategies. Cell-based
computational models include lattice and off-lattice methods, each
with distinct advantages and limitations. Lattice methods, such
as Lattice-Gas Cellular Automata (LGCA), Cellular Automata
(CA), and Cellular Potts Model (CPM), vary in resolution
and computational efficiency, with CPM offering the highest
morphological detail. Off-lattice methods, including Center-
Based Models (CBM), Subcellular Element Models (SEM), and
Boundary-Based Models (Vertex and Front Tracking), provide
higher resolution and flexibility for simulating detailed cell shapes
and interactions but are more complex and computationally
intensive (Metzcar et al., 2019). Therefore, these simulations
are challenging to implement and typically require access to
computing clusters or high-performance PCs. Moreover, they
demand specialized skills in bioinformatics or coding-expertise
that may not be readily available in every laboratory. Consequently,
not all research facilities have the immediate computational power
or specialized knowledge to leverage these advanced technologies.

To facilitate the generation of virtual tissue simulations, we have
developed a new pipeline, which relies exclusively on open-source
software and requires minimal coding skills. The process starts with
obtaining 3D image stacks of optically cleared cancer spheroids
via confocal microscopy, followed by 3D image segmentation at
the single-cell level. The segmentation result is then imported
into CompuCell3D (CC3D) (Graner and Glazier, 1992; Glazier
and Graner, 1993), a simulation environment for virtual tissue
modeling based on the CPM. To steer the simulation towards
more realistic results, we defined a new metric based on the
statistical distribution of morphological features and used it during
parameter optimization to evaluate simulation outcomes. One
specific use of this pipeline was already demonstrated by using

simulated cancer spheroids as input to machine learning approach
to generate synthetic images as training data for image segmentation
algorithms (Bruch et al., 2024).

2 Materials and methods

2.1 Cell culture

For the generation of mono-culture spheroids, the colorectal
adenocarcinoma cell line HT-29 (ATCC) was cultured as previously
described (Nürnberg et al., 2020). Briefly, cells were cultured in
McCoy’s 5 A medium (Capricorn) supplemented with 10% fetal
bovine serum (FBS, Capricorn) and 1% penicillin/streptomycin
(Sigma-Aldrich). For spheroid generation, cells were detached using
trypsin/EDTA and seeded onto 96-well ultra-low attachment (ULA)
U-bottom plates (Corning) at a concentration of 500 cells per well.
Spheroids formed by a self-driven mechanism over 3 days. Cells
were maintained in a humidified incubator at 37°C and 5% CO2,
repeatedly authenticated by phenotypic analysis, and regularly tested
for mycoplasma.

2.2 Immunofluorescence and optical
clearing

Spheroids were fixed and fluorescently labeled as previously
reported (Nürnberg et al., 2020). If not stated otherwise, all
steps were carried out at room temperature (RT) under gentle
agitation of samples. Briefly, spheroids were transferred into
200 μL PCR tubes, washed twice with phosphate-buffered saline
(PBS), and subsequently fixed with 4% paraformaldehyde (PFA,
Carl Roth) for 1 h at 37°C, followed by washing twice with
PBS containing 1% FBS, for 5 min each and permeabilization in
2% Triton X-100 diluted in PBS for 5–10 min. Then, spheroids
were quenched with 0.5 M glycine (Carl Roth) in PBS for
1 h at 37°C and subsequently incubated in penetration buffer
(0.2% Triton X-100, 0.3 M glycine, 20% dimethyl sulfoxide (DMSO,
all Carl Roth) in PBS) for 30 min. Samples were then washed twice
with PBS/1% FBS, followed by incubation in blocking buffer
(0.2% Triton X-100, 1% bovine serum albumin (BSA, Carl
Roth), 10% DMSO in PBS) for 2 h at 37°C. After blocking,
samples were incubated with primary antibody overnight (ON)
at 37°C with gentle shaking. Primary anti-KI67 antibody (Merck,
rabbit polyclonal antibody) was diluted 1:300 in antibody buffer
(0.2% Tween 20, 10 μg/mL heparin (both Sigma-Aldrich),
1% BSA, 5% DMSO in PBS). Following primary antibody
incubation, samples were washed 5 times for 5 min each in washing
buffer (0.2% Tween 20, 10 μg/mL heparin, 1% BSA) and stained
with membrane dye, secondary antibody, and nuclear dye ON at
37°C with gentle shaking and protected from light. Corresponding
secondary antibody and dyes were diluted in antibody buffer with
the following concentrations: donkey anti-rabbit AlexaFluor488,
1:800 (Invitrogen); DAPI, 1:1,000 (Sigma-Aldrich); SiR-actin,
1:1,000 (Spirochrome). Samples were washed subsequently 5 times
for 5 min in washing buffer with gentle shaking followed by sample
immersion in FUnGI clearing agent (50% glycerol (vol/vol), 2.5 M
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fructose, 2.5 M urea, 10.6 mM Tris Base, 1 mM EDTA) for several
hours until sample transparency was sufficient (Rios et al., 2019).

2.3 Microscopy

All images were acquired with a Leica TCS SP8 confocal
microscope (Leica Microsystems CMS, Mannheim) equipped with
an HC PL APO 20x/0.75 IMM CORR objective, and 405 nm,
488 nm, and 633 nm lasers. Image stacks were acquired at a
resolution of 1024 × 1024 pixels, with a z-step size of 2 µm (voxel size
xyz: 0.5682 × 0.5682 × 2.0 µm3), and a line average of two. Settings
for laser intensity and gain were chosen in a sample-dependent
manner such that overexposure of pixels was avoided.

2.4 Image processing and segmentation

All image stacks were pre-processed in FIJI by applying a
manual background correction, which involves increasing the
minimum gray value of an image in an image-dependent manner,
and 3D Gaussian smoothing (σ = 0.4 px). Segmentation of the
cell membrane staining was performed with Cellpose 2.0 and a
custommodel based on the pre-trained cyto2 model (Stringer et al.,
2021; Pachitariu and Stringer, 2022). The nuclear channel was
included in the training process of the membrane segmentation
to improve results. Model training was performed as human-in-
the-loop training by applying the pre-trained cyto2 model to a
single-plane image of the spheroid, followed by manual correction
of label masks. The training was then performed based on the
corrected label masks with a learning rate of 0.1, a weight decay
of 10−5, and 300 epochs (Cellpose default settings), and the trained
model was applied to the next single-plane image. After processing
20 single-plane images, the quality of the membrane segmentation
reached a level where no further major manual adaptations were
necessary. The trained segmentation model was then applied to
entire image stacks of optically cleared HT-29 spheroids with a flow
threshold of 0.4, a cell probability threshold of 2.0, and a stitch
threshold of 0.45 (Supplementary Figure S1). Segmentation quality
was assessed via detection and segmentation accuracy measured as
described in Matula et al., 2015. The outcome of the segmentation
process is a new image, referred to as a label mask, where each
individual cell is represented by a unique identifier label.

2.5 Feature extraction and statistical
analysis

A custom-made Python script was developed for
feature extraction and quantitative analysis of 3D label
masks. It utilizes the NumPy and scikit-image libraries
(van der Walt et al., 2014; Harris et al., 2020).

2.5.1 Pre-processing of label masks
To reduce remaining segmentation errors, small labels were

eliminated by removing objects with a volume smaller than 5 voxels,
followed by closing and opening operations. Labels present in only
one or two planes were merged with adjacent labels, provided these

adjacent labels also spanned only one or two planes, as they likely
originated from segmentation errors. In cases where adjacent labels
did not meet this criterion, the small labels were removed from the
image to minimize residual segmentation errors.

To ensure an isotropic voxel size, which is necessary for
CC3D simulations, image upsampling (with nearest-neighbor
interpolation) was applied in the z-direction to match the x-y
resolution.The data presented in this manuscript is derived from an
original image stack with a size of 517 × 517 × 136 voxel (xyz), which
was upsampled to a final resolution of 517 × 517 × 479 voxels (xyz).

2.5.2 Morphological feature extraction
The following morphological properties of individual cells were

extracted using the regionprops function from the scikit-image
library: volume, minor and major axis length, and eccentricity.
Additionally, the surface area was approximated via the sum of
border voxels, as well as the volume-to-surface area (V/A) ratio and
the sphericity of cells.These morphological features are later used to
calculate the deviation of the simulation from the real-world images,
and to determine model parameters that minimize this deviation.

2.6 Simulation and parameter optimization

Biophysical simulations were carried out with CC3D
(version 4.3.2, revision 0). This advanced simulation environment
for modeling of complex biological phenomena through biophysical
principles is based on the Cellular Potts Model (CPM). In the CPM
approach, each pixel (2D) or voxel (3D) is assigned to a specific cell
or to the extracellular medium. Then, the total free energy of the
system is expressed as a Hamiltonian function H, and the Monte
Carlo algorithm is used to evolve the initial cellular configuration
into its thermodynamic equilibrium (Graner and Glazier, 1992;
Glazier and Graner, 1993; Swat et al., 2012). The Hamiltonian can
incorporate various biophysical interactions such as cell adhesion,
volume constraints, and surface tension according to the differential
adhesion hypothesis (DAH) (Stringer et al., 2021). In this way
CC3D can be used to simulate dynamic cellular processes over
time, making it particularly well-suited for studying developmental
biology, tissue engineering, and cancer research.

2.6.1 Transfer of segmented label mask to CC3D
Usually, simulations based on the CPM are initialized with

an artificial configuration, such as stacked cubes. From there,
a sophisticated model and numerous steps in the Monte Carlo
simulation are required to converge to a biologically realistic
configuration. For this reason, in this work, real-world 3D confocal
image stacks and the corresponding image segmentation are used as
the initial configuration in the simulation. By starting the simulation
from a realistic configuration, also less sophisticated models can
lead to realistic short-term dynamics of the system, with less
computational effort.

For the transition from real image data to an in silico simulation
with CC3D, a custom Python script was used to generate the
necessary Potts Initial File (PIF), which defines the starting
configuration of the simulation. Starting from the pre-processed
label image, the PIF consists of one line for every voxel that is
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occupied by a cell, using the following syntax:

cell_ID celltype x1 x2 y1 y2 z1 z2

Here, cell_ID is the unique identifier for a cell and corresponds
to the label ID assigned during image segmentation, and celltype is
a string that corresponds to a cell type. In the present work, we only
deal with a single cell type. In general, cell types are defined in the.
xml file of the simulation.The remaining elements represent a range
of coordinates in x-, y-, and z-directions, encompassing the voxels
occupied by a cell with a given cell ID and type. In the CC3D syntax,
x1, y1, and z1, along with x2, y2, and z2, represent the coordinates
of the corners of a bounding box that defines the spatial boundaries
of a cell, with the indices 1 and 2 indicating the opposing corners in
each plane. Since each cell, in our case, needs to be represented by
individual voxels rather than a bounding box, x1 and x2, as well as
the corresponding y and z coordinates, are identical, so each line in
the file represents a single voxel.

2.6.2 CC3D simulation
Initial simulations were generated using CC3D’s simulation

wizard (implemented in Twedit++). A detailed list of selected
properties and plugins can be found in Supplementary Table S2. For
a detailed explanation of the software, we recommend referring to
the CC3D documentation (Swat et al., 2012).

Cell types were specified as defined during PIF file generation,
as well as an additional cell type termed “Wall,” which serves as a
barrier between cells and the border of the lattice to prevent cells
from sticking to the boundaries.

The central component of the CPM is the systemHamiltonianH
(Equation 1), whichmodels the overall free energy of the cell cluster.
Here, we consider the adhesion energy between adjacent cells and
the surface free energy of cells in contact with the surrounding
medium. Additionally, the Hamiltonian includes penalty terms to
account for any deviation of cell i’s volume Vi and surface area Ai
from their respective target values:

H =
N cells

∑
i=1

λV (V i −V
(target)
i )

2
+

N cells

∑
i=1

λA (Ai −A
(target)
i )

2

+
N cells

∑
i=1,j=1

J (c−c) A(c−c)i,j +
N cells

∑
i=1

J (c−m) A(c−m)i (1)

In this context, λV and λA represent penalty parameters that
dictate the intensity of the volume and area constraints, respectively.
The term 𝐴i,j(c-c) denotes the contact area between cell i and
cell j, while Ai

(c-m) refers to the contact area of cell i with
the surrounding medium. Additionally, J(𝑐-𝑐) and J(c-m) are the
corresponding surface tension parameters. Individual target values
for volume V i

(target) and area Ai
(target) were specified for each cell.

At the start of the simulation, each cell is set to be already at its
target volume and surface, except for cells smaller than 15% of
the average volume or larger than the average plus two standard
deviations. For these cells, a set of target volumes and surfaces
is randomly assigned, sampled directly from cells that fall within
the specified range of properly segmented cells. A scatter matrix
plot illustrating extracted morphological features for both correctly
segmented cells and those assigned a new volume and surface area
can be found in Supplementary Figure S3.

All simulations were carried out on a workstation equipped with
a 16-core processor, 128 GB of RAM, and an 8 GB GPU.

2.6.3 Simulation output
Several output quantities were monitored during the simulation

to track progression and morphological changes over time.
In addition to the average cell volume and surface area, the
current simulation state was exported and saved as a. tiff file
at defined Monte Carlo Steps (MCS) for further processing and
analysis. Furthermore, custom functions were implemented to
track and export morphological features of each simulated cell
at defined intervals for subsequent analyses. Multiple similarity
parameters were calculated and exported at defined intervals to
assess cellular morphology changes over time. In more detail,
for each morphological parameter, the first Wasserstein distance
W (Equation 2; Ramdas et al., 2015) between the frequency
distributions at the start and a particular MCS is calculated, as
well as the Intersection over Union (IoU, Equation 3) of a cell at
a particular MCS compared with its starting position, averaged
over all cells:

Wk = (
1
n

n

∑
i=1
‖X(i) −Y (i)‖

2)
1
2

(2)

Here, X(i) and Y (i) are the ordered values of the morphological
feature k at the start and a particular MCS.

The IoU measures spatial overlap and is defined as the
intersection of two cell volumes Ai and Bi, divided by the volume
of their union:

IoU i =
|Ai⋂Bi|

|Ai⋃Bi|
(3)

In our context, Ai is the volume of a cell i at the start of the
simulation, andBi is the volume of the same cell at a particularMCS.

2.6.4 Parameter optimization
To achieve realistic simulation results, an optimization of model

parameters had to be carried out. These parameters are the contact
energy between cells and the medium (JCell-Medium), contact energy
between neighboring cells (JCell-Cell), and the energy constraints
λVolume and λSurface, which act as penalty parameters in case of
deviations from the specified target cell volume and surface area.
Since the target volume and surface area of cells were taken from
the real-world image, these parameters were not included in the
optimization. Parameter optimizations involved scanning different
combinations of the mentioned parameters and were performed
on a small image patch with a size of 125 × 125 × 178 pixels
(xyz) to reduce computation time. For this, the preceding steps
of the pipeline were conducted as described above. Additionally,
incomplete cells at the edges of the image, caused by image
cropping, were manually removed after image segmentation before
generating the PIF file. After setting up the basic simulation, the
parameters shown in Table 1 were selected to be altered between
individual scans.

The remaining parameters were kept at constant values and
can be found in Supplementary Table S2. The overall goal of the
parameter optimization was to identify model parameters that
maintain the overall shape of the distributions of morphological
features across MCSs, while preventing cell fragmentation and
ensuring sufficient variation in the cellular shape from its initial
form. An attempt to condense these goals into a target function for
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TABLE 1 Parameters included in parameter optimization scans.

Parameter Values

JCell−Medium 10.0/55.0/100.0 J/pix2

JCell−Cell 2.0/4.0/6.0/8.0/10.0 J/pix2

λVolume 0.001/2.0/4.0/6.0/8.0/10.0 J/pix6

λSurf ace 0.001/2.0/4.0/6.0/8.0/10.0 J/pix4

parameter optimization is a metricWIP (Wasserstein-IoU product),
which combines the mean Wasserstein distances between the start
and end of the simulation and the mean IoU between cells:

WIP = ( 1
NFeatures

NFeatures

∑
k=1

Wk) ∙(
1

NCells

NCells

∑
i=1

IoU i) (4)

Here, NFeatures represents the total number of the morphological
features, k is the index for a specific feature, NCells denotes the total
number of cells, and i is the index for a specific cell.

The first factor of WIP (Equation 4), the mean Wasserstein
distance, ensures that cells do not significantly deviate from
their original morphological features. However, solely relying on
the Wasserstein distance can lead to parameter sets with high
volume/area penalty parameters (λVolume and λSurface) being favored,
since in this case, the cells are frozen due to high energy constraints.
The second factor, the mean IoU, is used to ensure that cells, while
maintaining the similarity of the ensemble, still exhibit a certain
degree of shape variability at the level of individual cells. Otherwise,
static simulations would be favored.

3 Results

3.1 Segmentation of optically cleared
HT-29

High-resolution confocal microscopy on optically cleared
spheroid samples revealed detailed morphological characteristics
of HT-29 cancer spheroids at the cellular level. The use of optical
clearing during fluorescence labeling allowed for high-quality 3D
image stacks throughout the entire sample, mitigating significant
signal loss toward the center due to light scattering. This approach
enabled the acquisition of detailed single optical sections from a
3D confocal image stack, providing comprehensive insights into
the cellular shape and distribution of fluorescence signals across
the spheroids (Figure 1A). Since downstream analyses require high-
quality fluorescence images of both cell nuclei and membrane,
DAPI was used to label cell nuclei, and cell membranes were
visualized using SiR-Actin, marking the F-actin cortex underneath
the cell membrane. Subsequently, 20 randomly selected single
optical sections from acquired image stacks were used for training
a custom Cellpose 2.0 model to segment cell boundaries across
the sample (Figure 1B). This specific number of sections was
selected to establish a balanced approach between time investment
in training and the accuracy of the segmentation. In total, the

time needed for training the model and manually correcting 20
single optical sections was 3 h. However, deploying this trained
model using the 3D functionality of the Cellpose software led
to imprecise membrane segmentation. Therefore, the model was
instead utilized in stitching mode, which performs slice-wise 2D
segmentation initially. In a subsequent step, it merges overlapping
regions between adjacent labels in the z-direction to determine
whether a label corresponds to the same cell or a different one.
Despite achieving substantially better results, minor segmentation
errors were still present and accepted in the label masks to balance
time investment in the training process and segmentation accuracy
(Figure 1C). The overall segmentation quality was assessed using
the detection (DET) and segmentation (SEG) scores against two
manually segmented ground truth sets, resulting in scores of 0.73
and 0.46, respectively (Supplementary Figure S1).

The trained model was applied to entire image stacks
of spheroids to segment cell boundaries and generate label
masks on a single-cell level (Figure 1B, right panel). Cell
labels were post-processed, as described in Section 2.5, to filter
out segmentation errors and to generate the configuration
file for the CC3D simulation. All label masks were analyzed
further to extract morphological features, such as cell volume,
surface area, major and minor axis length, eccentricity,
and sphericity.

3.2 Generation of whole spheroid
simulations from real image data

The virtual tissue simulation environment CC3D was then
used to simulate an entire spheroid based on previously acquired
real-world image data of HT-29 spheroids, serving as the basis
of the cellular layout in a lattice with the original image stack
dimensions (Figure 2, MCS0). Figure 3 shows a simulation that was
conducted using optimized model parameters (Section 3.3). Visual
examination of different stages during the simulation revealed that
with increasing simulation progress, the cells gradually lost their
initial irregular shapes and converged into a less cluttered and more
harmonious configuration. The cell boundaries are initially jagged
and complex but smooth out over time, and the shape of the cells
becomes more regular and rounded, thereby reducing the boundary
complexity (Figure 2, lower row).

3.3 Parameter optimization based on the
distribution of cellular morphological
features

Since the default parameters of CC3D appeared to be unsuitable
for maintaining cellular morphology, a parameter optimization
was conducted to adjust model parameters that affect cellular
morphology towardsmore realistic simulation outcomes.The results
were ranked according to the metric WIP (Equation 4), which
ensures that individual cells undergo shape changes during the
simulation while the overall feature distribution remains stable.
Parameter optimizations were performed on a small, manually
segmented subset of a larger image stack. The results indicated
that the optimal performance, as measured by the lowest value
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FIGURE 1
Optical clearing enhances 3D microscopy of HT-29 spheroids for membrane segmentation. Spheroids of HT29 cells were generated by seeding 500
cells/well onto ULA multi-well plates and then cultured for 3 days. Following PFA fixation, fluorescence labeling with DAPI and SiR-actin, and optical
clearing, samples were imaged with wholemount confocal microscopy (A) Raw real-world images of a representative spheroid showing DAPI (left) and
SiR-actin signals of a single optical section through the central portion (middle) or a maximum-z projection of the entire spheroid (right) (B) Cell
boundaries (left) and label masks of cells from the optical section shown in A (middle), and 3D labels of the entire segmented spheroid (right) after
Cellpose training. The number of sections used for training was chosen to balance the time investment required and acceptance of minor
segmentation errors (C) Detail of segmentation from B depicting cell boundaries over the raw image (left), cell labels (middle), and translucent cell
labels over the raw image (right) Segmentation errors are indicated by asterisks. Scale bars: 50 µm (A,B), 20 µm (C).

of the WIP metric, was achieved under specific conditions: a
low surface constraint (𝜆A) of 0.001 J/pix4 and a larger volume
constraint (𝜆V) of 10.0 J/pix6 (Figure 3). Analyzing the calculated
Wasserstein distances (WDs) for various morphological features
showed that an elevated volume constraint resulted in a highly
consistent distribution of cellular volumes between the start and
end of a simulation. To a lesser degree, a similar consistency was

observed regarding the distributions of cell surface area, the volume-
to-surface area ratio (V/A), and the lengths of the major and
minor axes across the simulated spheroid. Despite the parameter
set achieving the lowest metric WIP, it is important to note that
the shape descriptors—sphericity and eccentricity—exhibited larger
WDs than those obtained from simulations where WIP was large
(Figure 3B).This is reflected in the simulated cells displaying a more
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FIGURE 2
Generation of virtual 3D simulations from real-world image data of HT-29 spheroids. Label masks of segmented HT-29 spheroids were used to create
the starting configuration of cells for a CC3D simulation (MCS 0). Figure shows the label and boundaries of individual cells in 2D (upper and middle
panels) and 3D label masks (lower panels) at distinct time points during the simulation. Number of MCS is indicated in the upper right corners of upper
panels and applies also all corresponding panels in the same column. Parameters were set as follows: λV = 10.0 J/pix6, λA = 0.001 J/pix4, J(c-c) =
2.0 J/pix2, J(c-m) = 55.0 J/pix2. Scale bars: 75 µm.

rounded shape and less morphological change over the course of
the simulation (Figure 3A, lower panel), as compared to the overall
smoothing of the surface and shape changes observed for smaller
values of WIP (Figure 3A, upper panel).

4 Discussion

We have generated a new pipeline to facilitate in silico
simulations in 3D cell culture research. This pipeline uses solely
open-source software and requires minimal coding expertise.
The process begins with acquiring 3D image stacks of optically
cleared cancer spheroids through confocal microscopy, followed
by segmentation of the entire spheroid at a single-cell level using
Cellpose 2.0.The resulting labelmasks are then transferred toCC3D,
a simulation environment for virtual tissue simulations.

4.1 Whole mount segmentation of HT-29
spheroids

The initial phase of setting up an in silico simulation of HT-29
spheroids involved segmenting themembranes of all cells within the
spheroid.The segmentation model used in this research was trained
on a limited number of optical sections to balance time expenditure
and segmentation accuracy. Despite achieving good segmentation
results for single optical sections, some errors persisted, particularly

at the tops and bottoms of cells.This was mostly due to the difficulty
in distinguishing between individual cells in these regions, evenwith
manual segmentation. To address this issue, we suggest adjusting the
microscope parameters during image acquisition by increasing the
resolution and reducing the step size.This is especially important for
3D segmentation in stitchingmode, asmissing information between
single optical planes can substantially affect the process.

4.2 Generation of virtual tissue simulations
from real-world image data

Using the results of image segmentation as a starting point for
in silico simulations allows for the setup of initial configurations
that closely resemble the real in vitro system, thus bypassing the
often time-consuming and complex process of manually developing
and validating a simulationmodel that starts from artificial building
blocks and develops into a real cell configuration. Furthermore, this
method can be further developed to simulate biological systems by
incorporating additional biological processes. For example, in many
in vitro studies using spheroid models, a fundamental interest is
the proliferation rate in 3D cell cultures, which often differs from
traditional 2D cell culture models.

The present method includes only the morphological
characteristics of cells and does not incorporate additional biological
phenomena. However, it can be easily extended. For instance, many
experiments involve visualizing proliferation markers, such as KI67,
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FIGURE 3
Model parameter optimization. Different combinations of values for volume constraint λV, surface constraint λA, and the contact energies J(c-c), and
J(c-m) were tested on a small subset of manually segmented cells of an HT-29 spheroid and analyzed for minimization of the metric WIP (Equation 4).
(A) Depicts exemplary 3D projections of simulated cells at distinct MCS for a simulation with parameters resulting in the minimum (upper panel) and
maximum (lower panel) value of m. (B) Shows violin plots of the morphological feature distributions at the simulation start and end of the simulations,
with the smallest (green) and largest (magenta) values for the metric WIP. Dashed lines correspond to the distribution’s median and the first and third
quartiles. The respective WD between the start and end of a simulation is shown above each plot. Scale bar: 50 µm. Parameters: WIP min: λV =
10.0 J/pix6, λA = 0.001 J/pix4, J(c-c) = 2.0 J/pix2, J(c-m) = 55.0 J/pix2; WIP max: λV = 0.001 J/pix6, λA = 10.0 J/pix4, J(c-c) = 10.0 J/pix2, J(c-m) = 10.0 J/pix2).

at distinct time points during cultivation. Tomodel cell proliferation,
researchers can perform additional segmentation of KI67-positive
cells or use statistical methods to cluster cells by their KI67 signal
intensity. This approach allows for incorporating additional cell
types into the simulation, enabling themodeling of cell proliferation

by implementing chemical nutrient fields and using the ratio of
proliferating cells as an optimization parameter.

Furthermore, the software used in this pipeline is open-
source and can be run on modern workstations. However, as
the number of the simulated voxels or the complexity of the
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model increases, which was already substantial in this study
(478 × 464 × 479 voxel), computational limits are quickly
reached. This necessitates the use of more powerful computing
resources or alternative, computationally more efficient models,
such as vertex-based models (Osborne et al., 2017). In our case,
whole spheroid simulations required a computation time of
62 h for 5000 MCS. Furthermore, one has to be aware of the
limitations of the Cellular Potts Model. The model’s lattice-
based structure can introduce slight inaccuracies, such as lattice
artifacts and anisotropy, which can affect the depiction of
cellular movements and interactions. Moreover, the connection
between the parameters that dictate the dynamics of the
CPM and the biological and physical properties they represent
can be challenging to understand. Additionally, the indirect
determination of parameters through the model’s Hamiltonian
makes it challenging to calibrate them to match realistic
biological properties precisely (Voss-Böhme, 2012; Scianna and
Preziosi, 2016).

4.3 Parameter optimization

For parameter optimization, performed on a small, manually
segmented subsection of a spheroid, we focused on the metric WIP
that measures the consistency of the distribution of morphological
characteristics of cells during the simulation with the in vitro
experiment, whilst enforcing sufficient dynamic changes during the
simulation. By comparing feature distributions at the start of the
simulation, identical to the segmentation result, and at the end of
the simulation, the mean WD ensured a comparable distribution
of features throughout the simulation. The average IoU prevented
the optimization of simulation parameters toward static or “frozen”
cells. In our case, the focus was on the statistical similarity of feature
distributions, making the minimization of this metric our primary
goal. However, this focus led to visible differences in the appearance
of cells, particularly in the border regions of the spheroid. This
suggests that the model does not adequately reflect the necessary
contact energies tomaintain the specific shapes of cells in peripheral
regions. This outcome is not surprising, as it is well known that cells
in a 3D aggregate exhibit different biological behavior depending on
their location. For example, proliferating cells tend to concentrate
toward the border region due to a higher nutrient supply than
cells in the spheroid center. To better reflect this behavior in silico
simulations, a potential solution is the introduction of additional cell
types into the simulation, each with its own set of model parameters.

In conclusion, the presented pipeline offers a robust and
accessible approach for simulating 3D cellular aggregates, which
can be performed on a single workstation using exclusively open-
source software. This method requires limited coding skills, making
it accessible to a broader range of researchers.The primary input for
the method is real-world image data, allowing for straightforward
implementation and analysis. The model can be further enhanced
by incorporating more detailed biological information, such as
additional cell types identified via specific markers like KI67 for
proliferation, spatial factors such as a cell’s distance from the surface,
and implementation of chemical nutrient fields. If image data from
two distinct time points of spheroid cultivation are available, the
simulation can be compared with the experimentally observed

dynamics.Then, themodel parameters can be optimized to align the
simulationmore closely with the observed dynamics ofmulticellular
spheroids over time. By integrating temporal data, MCSs can be
converted into time units, providing a deeper understanding of
growth patterns and cellular interactions. This temporal dimension
adds another layer of capability to the pipeline, allowing for more
precise modeling of developmental processes and the impact of
environmental conditions or therapeutic interventions on spheroid
behavior. Overall, this flexibility ensures that the method can be
adapted to reflect various biological processes more accurately,
enhancing the relevance and applicability of in silico simulations in
biological research.
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