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RBPs: an RNA editor’s choice

Ivo Fierro-Monti*†

European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome
Trust Genome Campus, Cambridgeshire, United Kingdom

RNA-binding proteins (RBPs) play a key role in gene expression and post-
transcriptional RNA regulation. As integral components of ribonucleoprotein
complexes, RBPs are susceptible to genomic and RNA Editing derived amino
acid substitutions, impacting functional interactions. This article explores the
prevalent RNA Editing of RBPs, unravelling the complex interplay between RBPs
and RNA Editing events. Emphasis is placed on their influence on single amino
acid variants (SAAVs) and implications for disease development. The role of
Proteogenomics in identifying SAAVs is briefly discussed, offering insights into
the RBP landscape. RNA Editing within RBPs emerges as a promising target
for precision medicine, reshaping our understanding of genetic and epigenetic
variations in health and disease.
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1 The ubiquitous role of RBPs in gene expression
regulation

RNA-binding proteins (RBPs) are integral to gene expression regulation. Defined by
their ability to bind RNA, many of them through modular RNA-binding domains (RBDs),
they also contain conserved structural motifs enhancing RNA specificity and functional
versatility. About 14%–32% of human protein-coding genes encode RBPs (Baltimore and
Huang, 1970; Lunde et al., 2007; Cook et al., 2011; Mallam et al., 2019; Piovesan et al., 2019;
Caudron-Herger et al., 2021). RBPs can be classified based on four interaction categories:
RNA motif-dependent, RNA structure-dependent, RNA modification-dependent, and
RNA guide-based interactions (Liu et al., 2020). These interactions form ribonucleoprotein
(RNP) complexes, modulated by RNA through riboregulation, where RNA controls protein
function by direct, specific binding.

Dysregulated RBPs are linked to diseases such as cardiovascular and peripheral
vascular diseases, diabetes, cancer, neurodegenerative diseases, and autoimmune disorders
(Gebauer et al., 2021; Kelaini et al., 2021; Hashimoto and Kishimoto, 2022; Liu and
Cao, 2023; Naskar et al., 2023; Sanya et al., 2023). RBPs recognise and interact with
numerous transcripts via RBDs, forming regulatory networks essential for controlling
protein expression and maintaining cellular homeostasis. Acting as intermediaries,
RBPs integrate genetic, epigenetic, transcriptional, post-transcriptional, translational,
and environmental cues, leading to variations in protein expression among individuals
(Glisovic et al., 2008) (Supplementary Figure S1A). Understanding the role of RBPs in these
processes is crucial for elucidatingmechanisms underlying phenotypic diversity and disease
susceptibility.

Adenosine to Inosine (A-to-I) RNA Editing (RE) is predominantly mediated by double-
stranded RNA-binding proteins (dsRBPs) with Adenosine Deaminase Acting on double-
stranded (ds)RNA (ADAR) enzymatic activity, catalysing the hydrolytic deamination
of adenine at the C6 position (Figure 1C). The most prevalent RE event involves the
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conversion of A-to-I, with less frequent changes such as cytosine-
to-uracil (C-to-U), due to APOBEC1, acting exclusively on single
stranded RNA (Bass et al., 1997; Blanc and Davidson, 2010).
Specifically, enzymatic activity of ADAR1 and ADAR2, but not
ADAR3, are central to this process (Savva et al., 2012), recognising
“type A” stem-loop structures via dsRNA binding domains (Ryter
and Schultz, 1998), with additional specificity derived from
sequence-specific structural features within the dsRNA duplex.
Recent studies show that editing-dependent functions of ADAR1
protect dsRNA from dsRNA-sensing molecules causing translation
shut down (Chung et al., 2018) and inhibiting innate immunity
and the interferon-mediated response. Deficiency in these ADAR1
functions due to 11 mutations affect either the catalytic domain or
RNA binding (RB) loops (Wright and Vissel, 2012) and underlie
the pathogenesis of autoinflammatory diseases, such as the type I
interferonopathies Aicardi-Goutières syndrome.

Unconventional RBPs lacking canonical RBDs, often exhibit
context-dependent RB, suggesting influence by cellular conditions
or RNA structural features (Sternburg and Karginov, 2020;
Van Nostrand et al., 2020; Gebauer et al., 2021; Ray et al., 2023;
Sanya et al., 2023). Interacting through non-canonical domains
including protein-protein interaction interfaces, enzymatic cores,
intrinsically disordered regions (IDRs), these RBPs challenge
conventional RNP complex understanding (Garcia-Moreno et al.,
2018). RNA-driven interaction mechanisms leading to the
formation of RNPs are frequent. This supports the idea that RNA-
protein interactions can take place in the absence of classical
RBDs in RBPs, emphasising RNA’s regulatory roles as scaffolds, in
protein-networks driven cellular processes, or in RNP remodelling
mediated by modifications (Lee and Lykke-Andersen, 2013;
Garcia-Moreno et al., 2018). The expanding RBP repertoire within
the human proteome suggests broader functional interplays
and demands a precise and comprehensive catalogue, requiring
experimental and computational efforts (Jin et al., 2023).

RBPs enhance network interactions by controlling transcription
through regulatory RNAs. Like transcription factors (TFs),
RBPs are associated with genome hotspots, particularly gene
promoters, influencing transcriptional output (Xiao et al., 2019).
Additionally, RBPs mediate post-transcriptional control of gene
expression, including splicing, transport, modification, translation,
and degradation, often involving novel RBPs like PRRC2B,
with an essential role in translation required for cell cycle
progression (Jiang et al., 2023). Leaky scanning, where ribosomes
bypass upstream Open Reading Frames (uORFs) which slow
down the translation of the main ORF, is also regulated by
PRRC2 proteins. These RBPs bind translation initiation factors
and preinitiation complexes, facilitating translation initiation
on mRNAs with uORFs (Bohlen et al., 2023). Many mRNAs
with uORFs promote translation reinitiation and bypass uORF-
mediated suppression mediated by RBPs such as Drosophila
Nocte. Nocte RBP is critical for Drosophila eye development, with
disruptions leading to developmental defects and neurological
disorders (Zhang et al., 2024).

RBPs undergo multifaceted modifications influenced by
RE and genomic variants. Alterations affect expression levels,
generating distinct isoforms and amino acid (AA) sequence
modifications with significant implications, including post-
translational modifications (PTMs), altered protein-protein

interactions, and subcellular localisation changes (Gebauer et al.,
2021) (Figure 2B). While most editing targets untranslated regions
(Hundley and BASS, 2010; Ellingford et al., 2022), highlighting the
potential changes occurring within coding regions is required, as
genomic and RE missense substitutions can have pathogenic effects,
supporting the exploration of underlying mechanisms.

This manuscript explores the connection between RBPs, post-
transcriptional RE, and resulting Single Amino Acid Variants,
SAAVs, influencing health and disease. Sections examine the
RBP landscape, emphasising physiological recoding, RE, disease
implications, and the evolving field of proteogenomics, offering a
holistic perspective and insights from cutting-edge omics studies.

2 Genomic and RNA editing effects:
exploring the human RNA encoding
RBP editome

SAAVs in the proteome arise from the interplay of genomic
and nonsynonymous RE missense events (Chen et al., 2020;
Petrosino et al., 2021). While distinct, these mechanisms converge,
influencing RBPs and impacting phenotypic outcomes (Figure 1A).

In contrast to genomic missense mutations, RE events
are sporadic within transcripts encoding small ORFs and
even rarer in the broader protein-encoding transcriptome
(Picardi et al., 2017), constituting approximately less than 1% of
nonsynonymous RE events (Figure 1B). This distinction lies in the
preservation of the DNA sequence encoding the target transcripts
during RE, in contrast to missense mutations (Bass, 2002), as
depicted in Figure 1C.

The protein-coding transcriptome undergoing RE, documented
in the REDIportal database (Mansi et al., 2021), includes diverse
human RNA sequencing samples fromGenotype-Tissue Expression
(GTEx) and provides insights into RE prevalence. Beyond
REDIportal, other databases (Kiran and Baranov, 2010; Ramaswami
and Li, 2014; Mallam et al., 2019; Niu et al., 2019) have delineated
physiological and aberrant RE in coding transcripts.

The potential translation of these edits into SAAV events,
including missense mutations, at the protein level underscores their
significance.The best-studiedA-to-I editing substrates are the brain-
specific transcripts coding for glutamate receptor (GluR) channels.
AMPA-type (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate)
glutamate receptors (AMPARs) are critical for fast excitatory
transmission in the central nervous system. A key regulatory step
involves RE of the GluA2 subunit transcript by the dsRBP ADAR2
(Lin and Chen, 2019). This editing event recodes glutamine to
an arginine codon, altering the encoded AA within the AMPAR
heterotetrameric channel pore region. This event is essential for
proper AMPAR function, as unedited GluA2 subunits containing
glutamine allow calcium influx, while edited subunits with arginine
are calcium impermeable. Notably, nearly complete editing occurs
at this specific site, highlighting its critical role. Disruption of this
editing process, leading to unedited GluA2 subunits, can result in
pathological calcium influx, potentially contributing to seizures and
neuronal cell death (Lin and Chen, 2019).

High-throughput techniques, relying on UV-crosslinking,
affinity purification, size-exclusion chromatography, and mass
spectrometry (MS)-based proteomics, have identified RBPs,
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FIGURE 1
(A) SAAVs arise from genomic and RE substitutions, affecting protein sequences and structures differing from their corresponding wild-type
counterparts. (B) The table describes the total number of human RE sites extracted from the RediPortal database. The total number of sites (2,572,054)
present in non-protein coding genomic locations including 5′UTR (6,775), Intron (1,936,801), 3′UTR (85,169), Intergenic (516,714), and non-coding
(nc)RNA (26,595) largely surpasses the number of nonsynonymous sites positioned in exons (4,405). (C) On the left side of the panel,
Adenosine-to-Inosine substitution is catalysed by ADAR hydrolytic deamination activity at the C6 position of adenine. On the right side, a schematic
representation of the differences between a genomic missense substitution and an RE-derived single AA substitution. Genomic missense single
nucleotide substitution (C-to-G) or an RE event (A-to-I) with no genomic substitution, are both leading to a SAAV, represented as a Lysine-to-Arginine
substitution. With no genomic substitution and in the absence of RNA editing, no SAAV but a Lysine is produced (far right side).
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FIGURE 2
(A) Effect of genomic substitution or RNA recoding on Riboregulation. Either genomic substituted derived transcripts or recoded RNAs present in
coding or non-coding RNAs may have implications for Riboregulation. A diagram showing a non-coding transcript with a dsRNA region, the recoded
or genomic substituted derived transcript and its possible effect on the RNA - RBP interaction. (B) After translation, a recoded or genomic substituted
derived RBP encoding transcript is represented, as well as the possible effects. (C) Cascade of potential effects propagated by SAAVs (derived from
genomic or RNA editing substitutions) or by RNA editing recoding events in non-coding regions.
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expanding the RBPome, a term encompassing the entire
repertoire of RBPs (Sommer et al., 1991; Nechay and Kleiner,
2020; Gebauer et al., 2021). As methodologies evolve, elusive
proteins with weak crosslinking or low expression become
accessible. The surge in RBPs leads to diverse studies and
databases (RBPbase (Gebauer et al., 2021), Mallam et al.’s
database (Mallam et al., 2019), RBP2go (Caudron-Herger et al.,
2021), EuRBPdb (Liao et al., 2020), RBPDB (Cook et al., 2011),
RNAcompete (Ray et al., 2009; Van Nostrand et al., 2020)),
highlighting the evolving RBP landscape.

A human superset of 2,650 RBPs, identified in at least two
RNA interaction capture (RIC) studies, combined with curated
lists from Gene Ontology (The Gene Ontology, 2019), RBPDB, and
RNAcompete, serves as the comprehensive RBPbase resource -
“humanRBPs-2021 RBPANNO000000078.1” - consisting of 3,470
RBPs, and here designated “humanRBPs-2021.” This comprehensive
RBPbase resource (Resource 2) assists as a powerful tool to
pinpoint RBPs implicated in genetic diseases (Gebauer et al.,
2021) and it was selected as a basis for the analysis of RE
events in RBPs, as it represents a combination identified in
multiple high-throughput studies and a set of well-known and
defined RBPs.

Leveraging editing events from REDIportal - a rich repository
of human physiological RE events - reveals a substantial
“human coding editome” defined by a pooled editing level
exceeding 1% (2,414 editable proteins, Resource 1), where
around one-fifth represents potentially recoded RBPs with
RE events propagated to their AA sequences (hypergeometric
test, p 6.6e-7, corrected for multiple testing), a previously
unappreciated protein class target within the human protein-
coding editome (Supplementary Figure S2A). This suggests
a mechanism where RBP-encoding RNA undergo editing,
propagating SAAVs diversifying the proteome, and impacting
their function, localisation, and interactions (Eisenberg, 2021).
Approximately 12% of the human protein-encoding genome,
editable RBPs devoid of known RBDs, may engage with RNA
through unconventional means, emphasising the importance
of considering editable RNA-determined interactions in
RNP formation (Beckmann et al., 2016). Approximately 3.4%,
comparably lesser RBPs with RBD-Pfam domains are frequently
editable, suggesting a higher functional diversity beyond RB.
Statistical tests indicate a significant enrichment of gene ontology
term “Ribosome” and protein classes such as “Ribosomal protein”
and “translational protein” among editable RBPs (p < 0.05,
corrected for multiple testing), hinting at a potential link to
translational control (Supplementary Figure S2B).

3 Implications of RNA editing in
disease and development

RE primarily occurs in non-coding regions, with intronic
transcripts more frequently modified than intergenic counterparts
(Figure 1B). A-to-I conversion by ADAR, marks dsRNA as
“self,” preventing unsuitable immune responses (Lamers et al.,
2019). ADAR safeguards against autoimmunity by suppressing
pathways associated with cellular long dsRNA sensors, including
antiviral RIG-I-like receptors, MDA5-MAVS pathway, Protein

Kinase activated by RNA (PKR), and OAS-RNAses (Quinones-
Valdez et al., 2019). ADAR-interacting RBPs regulate A-to-I
editing (Reich and Bass, 2019). Without ADARs, long dsRNAs
may be mistaken for viral dsRNA, eliciting abnormal immune
responses (Shtrichman et al., 2012).

RE plays key roles in various biological processes, including
embryonic development (Shtrichman et al., 2012), neuron
generation (Greger et al., 2003), and somatic cell reprogramming
(Guallar et al., 2020). The phenomenon of RNA recoding can be
transient during early development, with varying tissue-specific
levels of RE. Single-cell RNA sequencing analyses established
dynamic changes in ADAR expression and stage-specific RE
during early embryogenesis (Qiu et al., 2016). Spatiotemporal
expression patterns of ADAR1 and ADAR2 examined during the
development of mouse forebrain disclosed a broad distribution
in most regions, with their precise colocalisation in neurons, and
uncovered that editing for specific ADAR mRNA targets precede
high levels of expression maintained into adulthood (Jacobs et al.,
2009). Based on RNA sequencing, the transcriptional profiles of
cloned and fertilised bovine embryos were compared. Cloned
embryos were shown to lack RE sites, which may have resulted
from a decreased ADAR expression. Consequently, the authors
concluded that cloned embryo development may be affected by
decreased ADAR expression and incomplete RE, and their analysis
provided newdata for furthermechanistic studies of somatic nuclear
reprogramming (Zhang et al., 2020).

Dysregulation of RE can trigger immune responses by forming
dsRNA duplexes, potentially leading to autoimmune disorders
like psoriasis, rheumatoid arthritis, systemic lupus erythematosus,
and multiple sclerosis (Li et al., 2022). The human brain and
cardiovascular tissues exhibit a high prevalence of RE events
(Ma et al., 2021; Mann et al., 2023), with 30% of recoded transcripts
encoding RBPs (“humanRBPs-2021”) such as COPA, PUM2, PDC7,
SON, RHOA, RRNAD1, SRP9, PPIL3, FLNA, TSEN2, and NOP14,
linking RE of RBPs to cardiovascular diseases (Chen et al., 2020).

Non-coding miRNA recoding affects miRNA binding and
translation control, with dysregulated expression of recoded
ncRNAs being a feature of cancer cells and the malignant
microenvironment (Liu et al., 2014; Torsin et al., 2021). Large-
scale analysis of A-to-I and C-to-U editing in human miRNAs
across 13 tissues revealed hypo-editing of miRNA and
downregulation of ADAR2 in glioblastoma samples (Paz-
Yaacov et al., 2015). In osteosarcoma, up-regulated editing
sites in the 3′UTR abolish miRNA binding, increasing the
expression of EMP2 and several oncogenes, highlighting miRNA
editing’s role in oncogenesis (Ge et al., 2023). A study of
melanoma patients treated with immunotherapy found 34%
of RE sites in the 3′UTR targeted miRNAs, and 66% in
coding regions were non-synonymous mutations leading to AA
substitutions (Lu et al., 2024).

4 Significance of proteogenomics in
uncovering SAAVs and assessing
alterations in the recoded proteome

Proteogenomics integrates DNA/RNA sequencing with MS-
based proteomics to reveal frequently recoded human proteins,
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including ubiquitously expressed RBPs (Gabay et al., 2022;
Levitsky et al., 2023). This approach enhances understanding of
genomic and RE missense substitutions, and identifies unannotated
non-canonical variants, driver genes, and novel therapeutic
targets across cancers (Li et al., 2023; Liao et al., 2023; Wang et al.,
2023). Advances in omics technologies, supported by AI-
assisted bioinformatic tools, improve the identification of SAAVs
and sequence alignment at RNA and protein levels (De Paoli-
Iseppi et al., 2021; Dai and Shen, 2022). Deep learning models
predict protein structures and assess missense substitutions’
pathogenicity, enhancing protein stability predictions based on
SAAV data (Biswas and Chakrabarti, 2020; Alquraishi, 2021; Hagg
and Kirschner, 2023; Jagota et al., 2023).

MS-based proteomics datasets show enrichment of A-
to-I nonsynonymous RE events at PTM sites, such as
acetylation, methylation, sumoylation, and ubiquitination,
affecting protein functions like degradation and subcellular
localisation (Li et al., 2022). Changes in PTMs within RBPs,
identified through proteogenomics, may alter RNP complexes
and interactomes (Figure 2B). Proteogenomics pinpoints SAAVs,
while subsequent proteomics explores changes within the
recoded proteome including PTMs and interconnected networks.
These advancements deepen our understanding of genetic and
epigenetic variations, enabling biomarker discovery and advancing
precision medicine.

5 RNA editing, RBPs, and disease: a
complex frontier

The complex relationship between RE and its impact on RBPs in
disease development deserves comprehensive exploration.

RE is primarily catalysed by dsRBP ADAR1 (and ADAR2), and
SAAVs stemming from genomic missense mutations are associated
with rare genetic pigmentation disorders and autoimmune diseases,
such as Dyschromatosis symmetrica hereditaria and Aicardi-
Goutières syndrome (Wright and Vissel, 2012). In addition, recent
data from REDIportal reports A-to-I editing of the human dsRBP
ADAR transcript, yielding potential SAAVs within the human
ADAR protein (Supplementary Figure S1B). Drosophila ADAR2
transcript likewise undergoes RE (Keegan et al., 2005), where serine
is substituted by glycine near the deaminase active site. The level
of this Adar S-to-G self-editing is low in embryos and increases
to 40% in adult flies. The edited ADAR G isoform is less active
than the genome-encoded ADAR S isoform, both in vivo and
in vitro (Keegan et al., 2023).

Elevated A-to-I editing levels, mediated by ADAR1 and
ADAR2 enzymes, significantly impact cancer (Zipeto et al., 2016;
Jiang et al., 2019). ADAR1, a “double-edged sword”, promotes
leukemic stem cell proliferation by influencing let-7 microRNA
biogenesis and activating the JAK2 signalling pathway, highlighting
its potential as a therapeutic target in leukaemia (Zhang and
Slack, 2016). It also hyperedits cell-cycle regulatory and tumour
suppressor mRNA, further promoting leukaemia development
(Zhang and Slack, 2016). Conversely, reduced A-to-I editing,
often involving ADAR2 downregulation, inhibits astrocytoma
migration and proliferation (Cenci et al., 2008). This tumour-
suppressive role also extends to oesophageal squamous cell

carcinoma, where ADAR2 editing of IGFBP7 mRNA disrupts
tumorigenic pathways.

5.1 Editing of RNA, RNA-RBP interactions
and membrane-less organelles

Riboregulation signifies a paradigm shift in our understanding
of RNA-RBP interactions, with RNA emerging as a regulator
of RBP function (Hentze et al., 2018). This concept challenges
the traditional view of RBPs as primary regulators of RNA,
emphasising their reciprocal interplay. Examples include metabolic
enzymes (Huppertz et al., 2022), dsRNA-binding biosensor proteins
like PKR (Gal-Ben-Ari et al., 2018), and antiviral receptors
such as PRR and MDA5 (Quinones-Valdez et al., 2019). RE,
especially targeting non-coding region transcripts, or RBP-
recoded variants can modulate RNA-RBP interactions, either
amplifying or diminishing their regulatory effects (Figures 2A, B).
A report surveyed the binding preferences of 150 RBPs to RE
events, focusing on A-to-I editing in two human cell lines. It
was deduced that changes in RE could alter RNA secondary
structures, affecting RBP-binding preferences and influencing post-
transcriptional processes like RNA splicing, structure formation,
and decay (Hu et al., 2022).

RBPs possess IDRs (Huai et al., 2022), making them vulnerable
to changes induced by genomic missense or RNA RE variants.
These alterations can affect RBPs’ ability to undergo liquid-
liquid phase separation (LLPS), crucial for forming dynamic
RNP networks or membrane-less organelles (MLOs) like nucleoli,
stress granules, P-bodies, and nuclear speckles. LLPS is essential
for various cellular processes, including transcription, translation,
and signal transduction (Tsang et al., 2020; Li et al., 2023; Dai
and Yang, 2024). For example, nuclear speckles regulate gene
expression by storing and modifying pre-mRNA splicing factors
(Hofmann et al., 2021; King et al., 2024).

SON, an RBP, localises to nuclear speckles, which regulate gene
expression by storing and modifying pre-mRNA splicing factors
(Supplementary Figure S1B) (Kim et al., 2019; Ilik et al., 2020). SON
acts as an mRNA splicing cofactor, facilitating the efficient splicing
of numerous cell-cycle and DNA-repair transcripts. REDIportal has
catalogued forty RE events in transcripts encoding SON RBP, with
a notable increase of over 10% in bladder urothelial carcinoma
compared to healthy tissue (Gabay et al., 2022). Of these forty
substitutions, nineteen are within IDRs, some potentially having
pathogenic implications.

Cross-referencing healthy editable RBPs from the RBPbase
“humanRBPs-2021” with an MLO dataset (5,282 genes)
reveals that approximately two-thirds of these RBPs may
inhabit MLOs (p 1.2e-80) (documented in MLOsMetaDB -
http://mlos.leloir.org.ar) (Supplementary Figure S2C). Disrupted
LLPS is linked to various pathological conditions, including
cancer, viral infections, and neurodegenerative disorders
(Huai et al., 2022). Recoded RBPs within MLOs can remodel
interactomes through PTMs and protein-protein interactions,
influencing LLPS dynamics. For instance, multiple PTMs of
FUS, such as serine and threonine phosphorylation and arginine
methylation, significantly impact its aggregation and LLPS
properties (Qamar et al., 2018).
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5.2 Additional examples of prevalent
recoded RBPs COPA, FLNA, and FLNB
uncovered in recent proteogenomic
analyses

The recoded COPA RBP (Supplementary Figure S1B) at
position I164V within a WD40 repeat affects protein interactions
and is highly expressed in diseases like bladder urothelial carcinoma,
breast cancer, and liver adenocarcinoma (Slotkin and Nishikura,
2013; Lundin et al., 2020; Gabay et al., 2022). COPA is involved
in transporting dilysine-tagged proteins from the endoplasmic
reticulum (ER) to the Golgi apparatus. Its recoding may cause
ER stress, contributing to unfolded protein responses seen in
various diseases, including cancer, neurodegeneration, diabetes,
and inflammatory disorders.

Recoding of the FLNA RBP (Supplementary Figure S1B),
specifically glutamine to arginine exchange, regulates angiogenesis
in tumours. Hyper-editing reduces angiogenesis, while
hypo-editing enhances it, potentially by altering VEGFR2
turnover. This modification also influences tumour metastasis
through extracellular matrix interactions, highlighting
FLNA editing’s role in angiogenesis, tumour growth, and
metastasis (Jain et al., 2022).

FLNB RBP (Supplementary Figure S1B) recoding, specifically
the M2293V edit, appears to suppress the growth- and
invasion-inhibiting functions of the protein by affecting its
nuclear localisation, thereby diminishing its EMT-suppressive
role. This recoding likely disrupts FLNB RBP function by
interfering with binding partners, impacting both its function and
localisation (Levitsky et al., 2023).

5.3 Frequent RBP-derived neoantigens
identified via immunopeptidomics

In a noteworthy study involving cancer patients, the integration
of whole exome sequencing (WES), RNA sequencing (RNA-
seq), and MS-based Immunopeptidomics revealed predominant
RNA-derived neoantigens originating from coding regions, with
approximately one-third of protein-coding genes exhibiting
missense substitutions correlating with the RBPbase database
“humanRBPs-2021.” Immunopeptidomics-driven identification
of tumour neoantigens holds promise for personalised anti-
cancer vaccines, making far-reaching changes in treatment
strategies based on individual genomic and proteomic landscapes
(Tretter et al., 2023; Zhang and Bassani-Sternberg, 2023).

5.4 Role of RE in disease and therapeutic
potential

Genetic variants linked to RE, i.e., edQTL analyses,
underscore the role of RNA secondary structure in
dictating RE levels at specific sites, impacting complex
traits and diseases by modulating the stability and levels of
crucial RNA molecules (Park et al., 2021). mRNA editing’s
involvement in various diseases, such as glioblastomas,
inflammatory and autoimmune disorders, and its positive

correlation with somatic point mutation burden in
cancer, including the development of a novel metric, RE
load, underscores its significance (Paz-Yaacov et al., 2015;
Paul et al., 2017; Baker et al., 2022).

The impact of cellular stress-induced hyper-editing extends
beyond cancer to cardiovascular diseases, highlighting mRNA
recoding’s role in diverse pathologies (Mann et al., 2023). These
collective findings expand our understanding of the interplay of
genetic and epigenetic variations in health and disease, potentially
catalysing a paradigm shift in medicine. RE emerges as a
therapeutic target across a spectrum of diseases, showcasing its
versatility in modulating life-threatening pathologies (Khosravi and
Jantsch, 2021; Booth et al., 2023).

One potential RE therapeutic approach to rectifying G-to-A
nonsense mutations involves the utilisation of endogenous ADAR.
For instance, in scenarios involving a TAG stop codon disease
variant, a guide RNA can be engineered to complement the
mutated region, recruiting ADAR to edit the mRNA UAG stop
codon back to UGG. This corrective action effectively eradicates
the nonsense mutation, allowing mRNA translation to proceed
unimpeded. These transformative developments highlight the
profound influence of RE in shaping the landscape of genetic and
epigenetic variation, offering new avenues for precision medicine
tailored to individual patient’s unique genetic profiles (Pfeiffer and
Stafforst, 2023).

6 Concluding remarks

The relationship between RE, RBPs, and disease unveils
a significant area for research and therapeutic innovation.
Understanding this interplay will enhance our comprehension
of genetic and epigenetic variations underlying health
and disease.

Proteogenomics, by elucidating RE events and identifying
SAAVs in RBPs, serves as a potent tool for discovering disease
biomarkers and developing tailored diagnostics and treatments.
While the precise mechanisms of RE variants influencing
RBPs in disease remain unclear, further investigation will
clarify the complex interactions between edited and unedited
dsRNAs and RBPs.

Deciphering the impact of RBP RE variants on key RNAs
in disease mechanisms promises to provide biomarkers and
therapeutic insights. Actively researching these interactions is
crucial for understanding diseasemechanisms and developing novel
therapies.

RE emerges as a target for interventions across various life-
threatening conditions, extending beyond cancer to a broader
range of diseases. This highlights RE’s potential to advance
precisionmedicine and enable personalised treatments, significantly
transforming healthcare.
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