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Introduction: Gestational diabetes mellitus (GDM) is a global health concern
with significant short and long-term complications for both mother and baby.
Early prediction of GDM, particularly late-onset, is crucial for implementing
timely interventions to mitigate adverse outcomes. In this study, we conducted
a comprehensivemetabolomic analysis to explore potential biomarkers for early
GDM prediction.

Methods: Plasma samples were collected during the first trimester from
60 women: 20 with early-onset GDM, 20 with late-onset GDM, and
20 with normal glucose tolerance. Using advanced analytical techniques,
including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and
gas chromatography-mass spectrometry (GC-MS), we profiled over 150 lipid
species and central carbon metabolism intermediates.

Results: Significant metabolic alterations were observed in both early- and
late-onset GDM groups compared to healthy controls, with a specific focus
on glycerolipids, fatty acids, and glucose metabolism. Key findings revealed
a 4.0-fold increase in TG(44:0), TG(46:0), TG(46:1) with p-values <0.001 and
TG(46:2) with 4.7-fold increase and p-value <0.0001 as well as changes in
several phospholipids as PC(38:3), PC(40:4) with 1.4-fold increase, p < 0.001
and PE(34:1), PE(34:2) and PE(36:2) with 1.5-fold change, p < 0.001 in late-
onset GDM.

Discussion: Observed lipid changes highlight disruptions in energy metabolism
and inflammatory pathways. It is suggested that lipid profiles with distinct fatty
acid chain lengths and degrees of unsaturation can serve as early biomarkers of
GDM risk. These findings underline the importance of integrating metabolomic
insights with clinical data to develop predictive models for GDM. Such models
could enable early risk stratification, allowing for timely dietary, lifestyle, or
medical interventions aimed at optimizing glucose regulation and preventing
complications such as preeclampsia, macrosomia, and neonatal metabolic
disorders. By focusing on metabolic disruptions evident in the first trimester,
this approach addresses a critical window for improving maternal and fetal
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outcomes. Our study demonstrates the value of metabolomics in understanding
the metabolic perturbations associated with GDM. Future research is needed
to validate these biomarkers in larger cohorts and assess their integration into
clinical workflows for personalized pregnancy care.

KEYWORDS

gestational diabetes mellitus, pregnancy complications, biomarkers, metabolomics,
metabolism, mass spectrometry, metabolic phenotyping, diabetes prediction

Introduction

Gestational diabetes mellitus (GDM) defined as hyperglycemia
first recognised in pregnancy (World Health Organization, 1999)
is a complex condition and a growing health issue worldwide.
This definition includes undiagnosed pre-pregnancy hyperglycemia
and glucose intolerance with first onset during pregnancy, being
one of the most commonly diagnosed pregnancy complications.
According to a recent report by the International Diabetes
Federation (IDF) Atlas, gestational diabetes mellitus affects 2%
to as much as 40% of pregnancies worldwide, depending on
the diagnostic and screening criteria, which vary and remain
controversial. These discrepancies complicate the comparison and
interpretation of research findings (IDF Diabetes Atlas, 2021).
Recently, there has been a shift towards adopting the International
Association of Diabetes and Pregnancy Study Groups (IADPSG)
criteria (IDF Diabetes Atlas, 2021), which has led to an increase
in the reported incidence of GDM (IDF Diabetes Atlas, 2021;
Saeedi et al., 2021). GDM contributes to several short- and long-
term health consequences both for the mother (e.g., cesarean
section, preeclampsia, metabolic syndrome, cardiovascular disease)
(Damm, 2009; Song et al., 2018; Kramer et al., 2019; Yang and
Wu, 2022) and baby (e.g., macrosomia, neonatal hypoglycemia,
metabolic syndrome, cardiovascular disease, diabetes) (Bianco and
Josefson, 2019; Meek, 2023; Rodolaki et al., 2023; American
Diabetes Association Professional Practice Committee, 2024).
Therefore, identifying any glucose impairment, especially in early
pregnancy, can improve clinical outcomes (Sweeting et al., 2022).
It has been demonstrated that patients with gestational diabetes
discovered in early pregnancy represent a higher-risk subgroup
in terms of associated pregnancy complications (Bartha et al.,
2000; Bartha et al., 2003). Bartha et al. were among the first
to suggest the hypothesis that this group is mainly represented
by type 2 pregestational diabetes and to a lesser extent actual
pregnancy-induced glucose intolerance (Bartha et al., 2003). Key
epidemiological factors, including rising obesity rates, advanced
maternal rage and increased instances of undiagnosed pre-
pregnancy diabetes, identified during pregnancy are critical for
identifyingwomen at risk forGDM(AmericanDiabetes Association
Professional Practice Committee, 2024). With the global GDM
concern, it becomes crucial to raise the efforts for early detection
of glucose intolerance in pregnancy through studies focusing on the
development of new predictive models for improved and accurate
GDM diagnosis.

In such a premise, metabolomics offers excellent research
solutions for elucidating biochemical changes in human health
and disease. The global untargeted metabolomics complements

information derived from genomics, transcriptomics and
proteomics, supporting a system “omics” approach that might
impact our ability to understand pathological conditions including
pregnancy complications. Remarkable, disease-specific metabolic
signatures can be captured with the potential to drive new
developments in clinical biomarkers.

Our study aimed to look for differences at the metabolome level
in the first trimester of pregnancy to identify metabolic alterations
that could indicate impaired glucose tolerance associated with early
and late-onset GDM. Our clinical and research interests focus
on giving new insights and directions for the future development
of novel prognostic strategies for improved GDM recognition.
The graphic representation of the study design is illustrated in
Figure 1.

Materials and methods

Study population

This is a longitudinal prospective cohort study from the
Obstetrics and Gynecology department, La Paz University Hospital
in Madrid, carried out between December 2017 and June 2020.
The protocol of the study was approved by the local Ethics and
Research Committee from La Paz University Hospital in Madrid,
Spain. All eligible pregnant women without known diabetes, who
were older than 16 years of age and signed the informed consent
in their first trimester were invited to participate in the study.
Exclusion criteria were maternal age under 16 years, gestational age
>14 weeks, multiple pregnancies, known foetal defect at the time
of recruitment and pre-gestational diagnosis of Diabetes Mellitus.
Women with other medical co-morbidities were excluded from the
study. The recruitment took place in the Obstetrical clinics of La
Paz University Hospital and the control of the GDM pregnancies
was carried out in the Diabetes in Pregnancy unit. The healthy
control group had pregnancies followed up in Routine Obstetrical
clinics. For each participant enrolled a record of maternal and
gestational age at the time of recruitment, maternal characteristics
including height, weight, body mass index (BMI), family history
of diabetes, obstetrical record including previous history of GDM,
past medical history, glycemic test results and type of GDM
management including insulin or diet treatment, the course of
gestation (presence or absence of further pregnancy complications),
way of delivery, gestational age at birth, newborn`s weight, Apgar
score and umbilical artery pH at birth was taken. The diagnosis
of gestational diabetes mellitus was made based on a two-step
approach: screening by 1-h 50 g glucose challenge test (GCT) and
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FIGURE 1
The graphic representation of the study design from the selection of the studied cohort to the metabolomics analysis.

diagnostic 3-h oral glucose tolerance test (OGTT)with 100 g glucose
load for the GCT positive (glycaemia >140 mg/dL). The diagnostic
criteria of Carpenter and Coustan (1982) with two or more glucose
plasma levels higher than fasting glucose of 95 mg/dL, 1-h of
180 mg/dL, 2-h of 155 mg/dL, and 3-h glycaemia of 140 mg/dL were
applied for this study.

La Paz University Hospital has a strategy of first-trimester
screening for gestational diabetes mellitus in high-risk patients. The
high-risk group for GDM is determined by the presence of any of
the following risk factors: maternal age older than 35 years; maternal
pre-pregnancy BMI >30 kg/m2; GDM in previous pregnancy;
newborn from previous pregnancy with birth weight >4,500 g; first-
grade family history of diabetes mellitus. The high-risk patients
in this study were screened with CGT (O`Sullivan test) in their
first trimester according to the local protocol. The screen-positive
patients had a 3-h OGTT with 100 g glucose. The patients with
positive results according to CC criteria were included as early-onset
or first-trimester GDM. Patients who screened positive but who had

a negative diagnostic test in the early group had a 3-h OGTT at
24–28 weeks instead of GCT. Thus the overall prevalence of GDM
in the cohort of patients was 5%.

More than 700 women matched with the inclusion criteria were
examined and the control group of healthy pregnant normal glucose
tolerance women (C, n = 20), early-onset first-trimester GDM (I,
n = 20) and late-onset, first-trimester asymptomatic women that
developed GDM in second-trimester (II, n = 20) were selected to
perform metabolomics analysis. The groups were initially matched
for age, pre-gestational BMI and parity. Venous fasting blood was
drawn from each eligible patient in the first trimester (≤14 weeks’
gestation) into EDTA-containing tubes. Samples were stored at
−80°C until analysis.

Chemicals and reagents

Methanol (MeOH) MS grade was obtained from Sigma
Aldrich (Steinheim, Germany). Acetonitrile (ACN) MS grade
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(Fluka Chromassol, Spain), pyridine (Carlo Erba Reagents SAS,
France), 2-propanol (PrOH) (Fischer, Austria), ammonia (NH3,
28%) and glacial acetic acid (AcAc) were supplied by VWR
Chemicals (Pennsylvania, United States). Ethyl acetate (EtAc) and
formic acid (FA, 99.8%) were obtained from Honeywell (New
Jersey, United States). Heptane MS grade, C18:0 Methyl stearate,
N, O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS) obtained from Sigma Aldrich. A
mixture of alkanes standards (Supelco, United States), a mixture
of methyl acids and fatty acids (FAME C8–C22), O-methoxamine,
4-nitrobenzoic acid and tricosane were obtained from Sigma
Aldrich. Ultra-pure water was generated with a Milli-Q Plus 185
water purification system (Millipore S.A., Molsheim, France)).
SPLASH®Lipidomix®Mass Spec Standard, an internal standard
mixture containing 18:1 (d7) LPE, 15:0–18:1 (d7) PC, 15:0–18:1 (d7)
PE, 15:0–18:1 (d7)-15:0 TG, 18:1 (d7) Chol Ester, 18:1 (d7) LPC,
18:1 (d9) SM, 18:1 (d7) DG, 15:0–18:1 (d7)-PA, 15:0–18:1 (d7)-PG,
15:0–18:1 (d7)-PI, 15:0–18:1 (d7)-PS, 18:1 (d7)-MG and cholesterol
(d7) was obtained from Avanti®Polar Lipids, Inc. (Alabama, United
States), and was 20 times diluted (25 µL/500 µL) in MeOH before
analysis. The standard working solution was stored at −20°C.

Sample preparation

The plasma samples were randomized, thawed on ice
and thoroughly vortex-mixed. For lipid extraction 10 µL of
the internal standard mixture (SPLASH®Lipidomix®Mass
Spec Standard) was added to 10 µL of each plasma sample.
Protein precipitation and lipid extraction were performed
with 800 µL solvent mixture (EtAc:EtOH, 2:1), followed by
centrifugation (13,700 rpm, 10 min, 15°C). 250 μL of the
supernatant was transferred to chromatographic vials for LC-
MS/MS analysis (Konjevod et al., 2022).

Samples for GC-MS analysis were prepared as previously
described (Rey-Stolle et al., 2021). Briefly, proteins were
precipitated by mixing 1 volume of plasma with 3 volumes
of cold acetonitrile containing 4-nitrobenzoic acid (IS)
(1:3), followed by methoximation with O-methoxyamine
hydrochloride (15 mg/mL) in pyridine, and silylation with
N,O bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS). 100 μL of heptane containing
20 ppm of tricosane (IS) was added to each vial and vortex-mixed
before GC-MS analysis.

Blank and QC samples were prepared for each analytical
platform following specified quality assurance criteria (Dudzik et al.,
2018). A pool of plasma (QC) was prepared by mixing an equal
volume of all experimental samples, following the same metabolite
extraction protocols. All experimental samples were randomized
and QCs were injected at the beginning, every 5 samples, and at the
end of the batch. The blank samples were analyzed at the beginning
and the end of each analytical run.

LC-MS/MS analysis

The lipidomics analysis was performed on a 1260 Infinity
high-pressure liquid chromatography system equipped with a

degasser, a binary pump, and an autosampler, interfaced to a
6470 triple-quadrupole mass spectrometer (Agilent Technologies,
CA, United States) (Konjevod et al., 2022). 5 μL of the extracted
plasma samples were injected into a Gemini®C6-phenyl column
(3.5 µm, 2.1 mm × 15 cm, Phenomenex®), maintained at 60°C.
The mobile phase consisting of 1 mmol/L ammonium acetate
(NH4Ac) in 30:70 MeOH:H2O (phase A) and MeOH (phase
B), both containing 0.1% formic acid (v/v), with a flow rate of
0.6 mL/min and the gradient started at 0% B, increasing to 100%
B in 1 min, then held until 12 min. Starting conditions were
reached at 13 min, and 5 min of re-equilibration was applied. The
electrospray ionization (ESI) was operated in positive ion mode
and the following parameters: gas temperature: 250°C, gas flow
rate: 7 L/min, nebulizer pressure: 30 psi, sheath gas temperature:
350°C, sheath gas flow rate: 12 L/min, capillary voltage: 4000 V,
and nozzle voltage: 500 V. MS/MS data were acquired in dynamic
multiple reaction monitoring modes (dMRM) by using the most
abundant precursor and product ions of each compound. The list
of 156 targeted compounds with the acquisition parameters is
presented in Supplementary Table S1.

GC/Q-TOF-MS analysis

The analysis was performed with a GC system (7890B,
Agilent Technologies) coupled to an accurate mass Q-TOF mass
spectrometer (7250, Agilent Technologies). The derivatized samples
(1 μL) were injected (autosampler 7693, Agilent Technologies)
in split mode (ratio 1:12) into a deactivated glass-wool split
liner (Restek 20782) in a GC column DB5-MS (30 m length,
0.25 mm internal diameter, 0.25 μm film 95% dimethyl/5%
diphenylpolysiloxane) coupled to a pre-column (10 mJ & W
integrated with Agilent 122-5532G). The injector port was held at
250°C, and the helium carrier gas flow rate was set at 0.917 mL/min.
The temperature gradient was programmed as follows: the initial
oven temperature was set to 60°C (held for 1 min), with a ramping
rate of 10°C/min up to 325°C. The system was allowed to cool
down for 10 min before the next injection. The total analysis time
was 37.5 min per sample. The detector transfer line, the filament
source and the quadrupole temperature were set to 280, 200°C
and 150°C, respectively. MS detection was performed in electron
impact (EI) mode at −70 eV. The mass spectrometer was operated
in scan mode over a mass range of 40–600 m/z at a rate of
10 scan/s (Rey-Stolle et al., 2021).

Fatty Acid Methyl Esters (FAME) mix was analyzed at the
beginning of the analytical batch. This procedure was performed
to establish retention index markers across chromatograms,
ensuring accurate alignment and identification of metabolites using
Fiehn’s library.

Data processing

The acquired LC-MS data were reprocessed with the
MassHunter Qualitative Analysis and MassHunter Quantitative
Analysis software (Ver. B10.00, Agilent Technologies). The
MRM signal runs as well as pressure curves were visually
inspected to confirm homogeneity and reproducibility across
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the chromatograms. In the next step peaks of the targeted
compounds were integrated to determine the peak area size for
each analyzed metabolite. The representative MRM chromatogram
is presented in Supplementary Figure S1.

Spectral deconvolution (GC-MS) and annotation of metabolites
comparing the mass spectrum obtained with those of a compound
library (Fiehn GC-MS Metabolomics Retention Time Locked
(RTL) library and the NIST (National Institute of Standards and
Technology) mass spectra library (Ver. 2014) was performed
with Unknown Analysis tool (Ver. B.08.00. Agilent Technologies).
Alignment of drift (by retention time and mass) and data
filtering were performed with the Mass Profiler Professional
software (Ver. B.12.1, Agilent Technologies). Assignment of
the target ion and the qualifiers, entire batch pre-processing
and manual inspection of the acquired data including peak
area and RT integration was performed with MassHunter
Quantitative Analysis (Ver. B.10.00, Agilent Technologies). The
dataset was interrogated to remove system contaminants. The
data were evaluated for signal drift and corrected by applying
a quality control-based support vector regression algorithm
(QC-SVRC) (Kuligowski et al., 2015).

The metrics of the analysis quality were performed by the
application of the unsupervised Principal Component Analysis
(PCA) for QC sample prediction. Shewhart control charts were
used to plot acquired signals versus the sample acquisition and
the performance of internal standards was evaluated to overview
the analytical performance. The precision of the metabolite
measurements was calculated for QCs and expressed as relative
standard deviation (RSD), with a cut-off value of 20% and 30% for
LC-MS andGC-MSdata, respectively.The assessment of data quality
is presented in Supplementary Figure S2.

Statistical analysis

Statistical analyses for metabolomics data were performed
using Matlab R2015 (Mathworks) and GraphPad Prism 7
(GraphPad Software Inc., San Diego, CA). Statistical significance
was assessed by ANOVA or the Kruskal-Wallis tests according
to the normality of the variable distribution, with a post hoc
test for multiple comparisons. Differences were considered
statistically significant at a value of p < 0.05 (∗p < 0.05,∗∗p
< 0.01,∗∗∗p < 0.001). Multivariate calculations and plots were
performed in SIMCA-P + 16.0 (Umetrics, Umea, Sweden). A
combination of VIP-p (corr) (correlation coefficient combined
with VIP, Variable Influence on the Projection) based on the
OPLS-DA model was applied for specified interpretations with
the threshold value for variable selection set to VIP >1.0
and p (corr) > 0.4. MetaboAnalyst tool for metabolomic data
analysis, visualization, and functional interpretation was used
to test associations between variables and hierarchical heat map
clustering (Chong et al., 2019). For clinical data evaluation, a
Student’s t-test was applied. Stepwise forward logistic binary
multivariate regression was used to account for co-correlations
among clinical variables. The significance level was previously set at
95% (p < 0.05).

Results

Clinical data

The basic characteristics of the study population are
presented in Table 1. In the first-trimester GDM compared with
the control group, the mean maternal age, pre-gestational BMI,
pregnancy BMI and parity were higher and there was a high
proportion of caesarean delivery. Additionally, the GDM-related
groups (I and II) delivered earlier, but their neonates’ birth weights
did not vary. Glucose levels were significantly different in both
GDM-related groups with a p-value <0.05. In the logistic binary
stepwise forward regression model, the R2 value of 0.12 (p =
0.02) refers to the overall explanatory power of the model. When
pregestational BMI was included as an independent variable,
other parameters such as parity (p = 0.19), gestational BMI (p
= 0.45), and maternal age (p = 0.06) lost statistical significance,
indicating that their associations with maternal diabetes were
mediated by their correlation with BMI. This analysis underscores
pregestational BMI as the primary risk factor for maternal diabetes
in our cohort.

Metabolomics analysis

The lipidomics analysis considered 156 lipid species belonging
to the class of glycerophospholipids (68 compounds, including
26 lysoglycerophospholipids, 31 glycerophosphocholines, 11
glycerophosphoethanolamines), sphingolipids (29 compounds,
including 4 ceramides and 25 sphingomyelins), cholesteryl
esters (11 compounds) and glycerolipids (48 compounds,
including 8 diacylglycerols and 40 triacylglycerols). GC-MS-based
metabolomics analysis identified a total of 49 compounds mostly
belonging to the class of organic acids, fatty acids, carbohydrates,
amino acids and derivatives. Statistical analysis revealed significant
metabolic profile differences associated with glucose intolerance
in both in early-onset and late-onset GDM. Following univariate
and multivariate statistical analysis 70 metabolites were significantly
increased or decreased (p-value <0.05 or p (corr) > 0.4 and VIP
>1.0), in the specified comparison (C vs. I, control group compared
to early-onset GDM; C vs. II, control group compared to late-onset
GDM; I vs. II, the differences between early-onset and late-onset
GDM).The statistical significance andmetabolic changes associated
with underlying diabetes are detailed in Tables 2, 3 and Figures 3, 4.
Hexose levels were significantly elevated in both early-onset (p
< 0.001) and late-onset GDM (p < 0.01). Several lipid species
exhibited marked dysregulation, with the most notable changes
observed in diacylglycerols such asDG (32:0), DG (34:0), DG (34:1),
DG (36:1), and DG (36:2), as well as triacylglycerols, including
TG (52:5), TG (56:5), TG (60:8), and TG (60:10), which showed
1.5- to 2.4-fold increases (p < 0.001). In late-onset GDM, our
analysis revealed a 4.0-fold increase in TG (44:0), TG (46:0), and
TG (46:1) (p < 0.001), while TG (46:2) displayed a striking 4.7-
fold increase (p < 0.0001). Additionally, significant changes were
observed in glycerophospholipids, with PC (38:3) and PC (40:4)
showing a 1.4-fold increase (p < 0.001), and PE (34:1), PE (34:2),
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TABLE 1 The basal clinical characteristics of the cohort involved in this study.

Variable Control C Early-onset
GDM (I)

Late-onset
GDM (II)

p-value C vs. I p-value C vs. II p-value I vs. II

Maternal age (years) 33.5 ± 6.16 38.8 ± 5.37 34.9 ± 4.29 0.006 ns 0.016

Parity (number) 0.6 ± 0.88 1.35 ± 1.3 0.8 ± 0.83 0.04 ns ns

Pre-gestational BMI
(kg/m2)

23.9 ± 4.25 29.8 ± 6.12 25.2 ± 6.15 0.001 ns 0.025

Pregnancy BMI
(kg/m2)

28.3 ± 3.46 33.9 ± 6.43 29 ± 5.60 0.002 ns 0.015

Weight gain (kg) 11.7 ± 4.96 10.4 ± 5.34 10.1 ± 3.85 ns ns ns

Fasting glucose 1st
trim (mg/dL)

75.8 ± 5.63 93.9 ± 13.74 82.7 ± 9.79 <0.001 0.01 0.006

Basal glucose 2nd
trim (mg/dL)

76 ± 5.15 94.3 ± 14.04 85.5 (7.32) 0.001 <0.0001 ns

1 h glucose 1st trim
(GCT) (mg/dL)

110.7 ± 20 184.3 (30.6) 149.5 (16.4) <0.0001 <0.0001 0.001

Gestational age at
delivery (weeks)

39.5 ± 1.49 38.3 ± 1.72 37.5 ± 3.04 0.032 0.013 ns

Cesarean delivery, n
(%)

1 ± 5.26 7 ± 35 4 ± 20 0.017 ns ns

Birth weight (kg) 3,161.5 ± 436.07 3,106 ± 758.46 2,830.2 ± 714.35 ns ns ns

Presented data are mean ± SD; Results were considered significant when p < 0.05.

and PE (36:2) exhibiting 1.5-fold increases (p < 0.001), specifically
in late-onset GDM.

Figure 2 represents a specific metabolic signature associated
with glucose disturbance during pregnancy. The constructed
heatmap revealed considerable differences between healthy
pregnant women (C) and those with early-onset GDM (I), what
is even more important these differences could be noticed between
control and late-onset GDM (II). It could be seen the diabetes-
affected groups (I and II) are clustered together, and the metabolite
levels significantly differ from the control (C). Additionally, the
PLS-DA VIP projection algorithm ranked 25 metabolites to retain
the most contrasting metabolic patterns (Figure 2). Among these,
several glycerolipids species, including diacylglycerols (DG) and
triacylglycerols (TG), belong to the group ofmetabolites particularly
associated with observed pregnancy glucose disturbances. As
depicted in Figure 3 and detailed in Table 3 all reported DG and
TG were highly elevated, in both GDM-associated groups (I and
II). Moreover, in most cases, those changes were also statistically
significant, indicating their possible predictive proprieties. The
glucose levels measured in GC-MSwere statistically elevated in both
GDM-related groups (Figure 4). Other compounds like organic
hydroxy acids and fatty acids, with prominent changes under
impaired glucosemetabolism, are depicted in Figure 4. Interestingly,
the Shared and Unique Structures (SUS) plot presented in Figure 5,
based on two OPLS models (C vs. I and C vs. II), further emphasizes
the shared and distinct metabolic alterations, capturing consistent

relationships among variables. Metabolites consistently upregulated
in both groups (I and II) included diacylglycerols (e.g., DG (32:0),
DG (34:0), DG (34:1), DG (36:1), DG (36:2), DG (36:3), DG (36:4),
DG (38:5)), triacylglycerols (e.g., TG (48:1), TG (48:2), TG (50:0),
TG (50:1), TG (50:2), TG (50:3), TG (50:4), TG (52:1), TG (52:2),
TG (52:3), TG (52:4), TG (52:5), TG (52:6), TG (54:1), TG (54:2),
TG (56:4), TG (56:5), TG (56:6), TG (56:7), TG (56:8), TG (58:10),
TG (60:8), TG (60:10)), as well as phosphatidylcholines (PC(36:4),
PC(38:4)), phosphatidylethanolamines (PE (38:4), PE (40:6)),
sphingomyelins (SM (d18:0/18:0)), cholesteryl ester (CE (18:3)),
and hexose. These metabolites are visually represented as red dots.
Conversely, metabolites consistently downregulated in those both
groups, represented as navy blue dots, included L-alanine, glycine, 2-
methylalanine, urea, 2-butyne-1-4-diol, L-5-oxoproline, asparagine,
N-methylguanine, and PC(34:2e). Elevated levels of saturated and
unsaturated fatty acids, including palmitic acid, palmitoleic acid,
linoleic acid, oleic acid, and stearic acid, along with hydroxy acids
such as 2-hydroxybutyric acid, 3-hydroxybutyric acid, and glycerol
(yellow), combined with decreased levels of PC (34:1e), PC (36:2),
PC (36:2e), PC (40:7), PC (40:8), SM (d18:1/21:0), phenylalanine,
and p-cresol (green), are distinctive features of early-onset GDM.
Metabolites uniquely upregulated in group II (late-onset GDM),
represented by orange dots, include PC (30:0), PC (38:3), PC (40:4),
PE (34:1), PE (34:2), PE (36:2), PE (36:3), PE (36:4), PE (38:6), CE
(16:1), CE (14:0), CE (16:2), TG (44:0), TG (46:0), TG (46:1), TG
(46:2), TG (48:0), TG (48:3), and TG (51:0). In contrast, creatinine,

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1452312
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Dudzik et al. 10.3389/fmolb.2024.1452312

TABLE 2 The list of the metabolites found to be significant in GC-MS analysis.

Compound
name

p-value
ANOVA

p-value p (corr) and VIP Changes [%]

C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II

2-Hydroxybutyric
acid

ns ns ns ns 0.6 1.2 ns ns 0.5 1.5 +26 +4 −17

3-Hydroxybutyric
acid

ns ns ns ns 0.5 1.6 ns ns 0.7 2.5 +51 −10 −41

Glycerol ns ns ns ns 0.6 1.5 ns ns 0.6 1.8 +16 +3 −11

Urea ns ns ns ns 0.6 1.6 0.7 2 ns ns −21 −15 +8

2-butyne-1,4-diol ns ns ns ns 0.6 1.5 0.7 1.9 ns ns −21 −16 +6

p-cresol ns ns ns ns 0.5 1.1 ns ns ns ns −26 −11 +22

L-Proline ns ns ns ns 0.5 1.1 0.7 1.6 ns ns −12 −11 +2

L-5-Oxoproline 2.20E-04 8.41E-05 2.05E-03 ns 0.6 1 ns ns ns ns −21 −16 +6

Creatinine 4.59E-02 ns 1.35E-02 ns ns ns 0.6 2.3 ns ns −29 −62 −47

Glycine 2.42E-02 1.08E-02 3.29E-02 ns 0.6 1.4 0.6 1.3 ns ns −26 −21 +6

Asparagine 1.14E-03 4.16E-04 6.26E-03 ns 0.5 1.4 0.6 2.1 ns ns −43 −33 +18

L-Tryptophan ns ns ns ns 0.5 1 0.5 1.2 ns ns −12 −13 −1

L-serine 2.32E-02 3.50E-02 8.00E-03 ns ns ns ns ns ns ns −11 −12 −1

L-Phenylalanine ns 4.01E-02 ns ns 0.7 1 ns ns ns ns −12 −9 +4

2-Methylalanine 2.88E-02 ns 8.55E-03 ns ns ns 0.6 1.4 ns ns −17 −28 −13

N-Methylguanine 2.46E-02 2.46E-02 ns ns 0.5 1.8 ns ns ns ns −71 −44 +97

Palmitoleic acid ns ns ns ns 0.7 2.1 ns ns 0.7 2.8 +11 −3 −12

Palmitic acid ns ns ns ns 0.7 1.5 ns ns 0.8 2.1 +19 +2 −15

Linoleic acid ns ns ns ns 0.7 1.8 ns ns 0.7 2.2 +26 −6 −25

Oleic acid ns ns ns ns 0.7 2 ns ns 0.8 2.9 +26 −3 −23

Stearic acid ns ns ns ns 0.6 1 ns ns 0.6 1.2 +10 +6 −4

Hexose 2.49E-03 8.35E-04 1.23E-02 ns 0.5 1.2 0.5 1.2 ns ns +43 +31 −8

Percentage of the changes in the specified comparison. The sign indicates the direction of change in the diabetes-associated groups: group I, early-onset GDM or group II, late-onset GDM.

shown as fuchsia, was downregulated and appears to be associated
with late-onset GDM.

Discussion

There is no doubt that gestational diabetes is a major
obstetrical clinical problem carrying a significant health burden
for both the mother and the child. Growing evidence suggests
that GDM imposes a considerable risk of developing type 2
diabetes mellitus (T2DM) postpartum among other conditions

(Khan et al., 2019). Therefore, early recognition of GDM opens
a window for better management of affected women and their
babies (Adam et al., 2023). In most cases, GDM is the result of
impaired glucose tolerance due to pancreatic β-cell dysfunction and
shares the pathophysiological mechanisms withmetabolic disorders
associated with insulin resistance as metabolic syndrome, obesity
or T2DM (Plows et al., 2018). Several risk factors contribute
to the development of gestational insulin resistance, including
placental, hormonal, genetic, and epigenetic variables, alongside
an increase in visceral adipose tissue, changes in gut microbiota,
and the coexistence of overweight or obesity (Kampmann et al.,
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TABLE 3 The list of the metabolites found to be significant in LC-MS/MS analysis.

Compound
name

p-value
ANOVA

p-value p (corr) and VIP Changes [%]

C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II

PC (34:2e) ns ns ns ns 0.6 1.2 0.5 1.0 ns ns −22 −16 +7

PC (38:3) 9.90E-03 ns 7.80E-03 ns ns ns 0.5 1.2 ns ns +23 +39 +13

PC (40:4) 3.11E-02 ns 2.61E-02 ns ns ns 0.5 1.0 ns ns +16 +32 +14

PC (40:7) 3.35E-02 2.85E-02 ns ns 0.5 1.1 ns ns 0.4 1.0 −19 −9 +13

PC(40:8) 2.60E-02 2.34E-02 ns ns 0.5 1.0 ns ns ns ns −18 −12 +8

PE (34:1) 1.41E-02 ns 1.13E-02 ns ns ns 0.6 1.2 0.5 1.7 +20 +46 +22

PE (34:2) 3.50E-02 ns 2.98E-02 ns ns ns 0.5 1.2 0.4 1.8 +24 +46 +18

PE (36:2) 3.68E-02 ns 3.19E-02 ns ns ns 0.5 1.2 0.4 1.5 +20 +37 +14

PE (36:3) 3.47E-02 ns 4.15E-02 4.15E-02 ns ns ns ns 0.6 2.2 +1 +29 +27

PE (36:4) 8.20E-03 ns 9.40E-03 3.15E-02 ns ns 0.6 1.2 0.4 2.2 +10 +42 +29

PE (40:6) 2.49E-02 ns 2.05E-02 ns ns ns 0.5 1.2 ns ns +24 +46 +18

SM (d18:0/18:0) 4.00E-03 2.98E-02 3.70E-03 ns 0.4 1.1 0.7 1.2 ns ns +31 +45 +10

Cer (d18:1/22:0) 1.35E-02 3.96E-02 ns 1.62E-02 ns ns ns ns 0.4 2.6 +30 −8 −29

CE (16:1) 1.61E-02 3.73E-02 2.15E-02 ns ns ns 0.6 1.2 ns ns +40 +48 +6

CE (18:3) 2.42E-02 ns 2.09E-02 ns 0.4 1.1 0.6 1.2 ns ns +30 +43 +10

CE (16:2) 9.50E-03 ns 7.70E-03 ns ns ns 0.6 1.4 0.5 1.3 +34 +56 +16

DG (36:2) 1.80E-03 3.20E-03 3.20E-03 ns 0.7 1.7 0.7 1.4 ns ns +59 +60 +1

DG (32:0) 1.80E-03 6.70E-03 3.20E-03 ns 0.6 2.0 0.7 1.8 ns ns +112 +144 +15

DG (34:0) 2.00E-03 5.80E-03 4.20E-03 ns 0.6 1.7 0.7 1.6 ns ns +76 +91 +8

DG (34:1) 9.00E-04 2.70E-03 1.90E-03 ns 0.7 2.1 0.8 1.8 ns ns +97 +107 +5

DG (36:1) 4.00E-04 8.00E-04 8.00E-04 ns 0.7 1.9 0.7 1.6 ns ns +76 +74 −1

DG (36:3) 2.08E-02 2.74E-02 4.78E-02 ns 0.7 1.7 0.4 1.1 ns ns +50 +45 −3

DG (38:5) 2.50E-03 5.30E-03 5.30E-03 ns 0.8 2.0 0.6 1.5 ns ns +73 +78 +3

TG (44:0) 2.03E-02 ns 1.59E-02 ns ns ns 0.6 2.3 0.5 3.0 +109 +295 +89

TG (46:0) 1.19E-02 ns 1.01E-02 ns ns ns 0.6 2.3 ns ns +154 +298 +57

TG (46:1) 2.16E-02 ns 1.78E-02 ns ns ns 0.6 2.1 ns ns +189 +291 +35

TG (46:2) 4.80E-03 ns 3.40E-03 ns ns ns 0.7 2.4 ns ns +188 +371 +64

TG (48:0) 7.90E-03 3.14E-02 9.20E-03 ns ns ns 0.6 2.0 ns ns +120 +168 +22

TG (48:1) 3.30E-03 3.22E-02 2.90E-03 ns 0.4 1.9 0.7 2.2 ns ns +134 +214 +35

TG (48:2) 4.70E-03 5.35E-02 3.80E-03 ns 0.4 1.6 0.7 2.1 ns ns +111 +199 +42

(Continued on the following page)
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TABLE 3 (Continued) The list of the metabolites found to be significant in LC-MS/MS analysis.

Compound
name

p-value
ANOVA

p-value p (corr) and VIP Changes [%]

C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II C vs. I C vs. II I vs. II

TG (48:3) 4.92E-02 ns 4.35E-02 ns ns ns 0.6 1.7 ns ns +71 +140 +40

TG (50:0) 2.80E-03 1.37E-02 3.70E-03 ns 0.4 1.7 0.7 1.7 ns ns +82 +98 +9

TG (50:1) 1.12E-02 2.86E-02 1.50E-02 ns 0.5 1.7 0.7 1.7 ns ns +83 +101 +10

TG (50:2) 4.10E-03 2.35E-02 4.50E-03 ns 0.5 1.6 0.7 1.7 ns ns +82 +98 +9

TG (50:3) 6.50E-03 3.60E-02 6.40E-03 ns 0.6 1.5 0.6 1.6 ns ns +64 +88 +15

TG (51:0) 9.50E-03 6.25E-02 8.40E-03 ns ns ns 0.7 2.1 0.4 1.8 +79 +157 +43

TG (52:1) 7.00E-04 1.70E-03 1.70E-03 ns 0.6 1.9 0.8 1.7 ns ns +74 +78 +2

TG (52:2) 6.00E-03 8.60E-03 8.60E-03 ns 0.6 1.5 0.6 1.3 ns ns +54 +55 +1

TG (52:3) 1.30E-02 1.80E-02 1.80E-02 ns 0.6 1.3 0.5 1.0 ns ns +34 +33 −1

TG (52:5) 8.80E-03 1.48E-02 1.48E-02 ns 0.7 1.8 0.5 1.5 ns ns +46 +96 +34

TG (52:6) 8.90E-03 ns 6.80E-03 ns 0.5 1.6 0.6 2.0 ns ns +93 +154 +31

TG (54:1) 5.00E-03 1.40E-02 8.20E-03 ns 0.5 1.6 0.6 1.5 ns ns +64 +71 +4

TG (54:2) 1.03E-02 3.27E-02 1.25E-02 ns 0.5 1.3 0.6 1.3 ns ns +44 +55 +8

TG (56:4) 1.86E-02 ns 2.03E-02 ns 0.5 1.3 0.6 1.4 ns ns +38 +51 +9

TG (56:5) 1.10E-03 3.80E-03 2.00E-03 ns 0.7 1.8 0.7 1.5 ns ns +49 +56 +5

TG (56:6) 1.17E-02 1.44E-02 1.44E-02 ns 0.8 1.4 0.5 1.0 ns ns +32 +32 0

TG (60:10) 1.88E-02 2.40E-02 4.68E-02 ns 0.7 1.9 0.4 1.2 ns ns +79 +60 −11

TG (60:8) 1.80E-03 3.30E-03 3.30E-03 ns 0.8 2.5 0.6 1.9 ns ns +125 +142 +7

Percentage of the changes in the specified comparison. The sign indicates the direction of change in the diabetes-associated groups: group I, early-onset GDM or group II, late-onset GDM.

2019). Understanding the metabolic disturbances underlying GDM
holds promise for advancing our knowledge of its pathophysiology
and developing targeted interventions to mitigate its adverse
effects on maternal and fetal health. This insight is crucial for
identifying women at risk of metabolic complications, enabling
tailored prevention and personalized treatment strategies.

In our study, we look into the metabolic profile of pregnant
women in the first trimester of pregnancy. The value of our research
design was that we were able to select a group of asymptomatic
in the first trimester individuals who had GDM diagnosed in
later pregnancy (late-onset GDM). Our study offers a glimpse into
molecular mechanisms of disease and enables the identification
of compounds that could serve as novel players for early GDM
prediction.

Advanced maternal age is recognized as a contributing factor
to the development of gestational diabetes mellitus. Our study
population consists of controls and women who were diagnosed
with GDM in the first trimester (early onset) or a group diagnosed
with GDM in the second trimester (late onset). Since we initially
cross-matched the control group and the 2nd-trimester GDMgroup

for maternal age, a potential association between maternal age
and risk for GDM could only be looked for in the comparison
between first-trimester GDM group and controls on one hand
and 1st-trimester GDM and 2nd-trimester GDM on the other. We
found statistical differences in both aforementioned comparisons
that confirm the increased risk for GDM with maternal age. This
finding is in line with a comprehensive systemic review and meta-
analysis presented by Li et al. (2020) which involves the data on
127,275,067 participants and demonstrates a clear linear association
between maternal age and the risk for GDM. In our study group,
the parity was also a significantly different variable when controls
were compared to 1st-trimesterGDM.Thecontrol grouphad a lower
parity than the 1st-trimester GDM group.There were no statistically
significant differences between controls and 2nd-trimester GDM
or between 1st- and 2nd-trimester GDM. The literature review
shows little or no impact of parity on subsequent non-insulin
dependent diabetes mellitus (NIDDM) which would be the case
of the women with newly diagnosed or 1st-trimester GDM in our
group. It is known that most women with sufficient pancreatic β-
cell population tolerate well pregnancy-related insulin resistance.
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FIGURE 2
The heatmap and dendrogram show the metabolic differences and a clear cluster formation between control (C) and groups associated with diabetes
(I and II). Only metabolites which were significantly associated with diabetes are presented. Each coloured cell on the map corresponds to an average
of the relative metabolite abundance in the specified group (blue, the lowest; red the highest). The top 25 discriminative metabolites based on the
PLS-DA VIP projection are highlighted. Rows: metabolites; Columns: experimental groups (C, green; I, bright red, II dark red). Hierarchical clustering
based on Euclidean distances and Ward clustering algorithm.

However, according to Peters et al., previous GDM increases close to
threefold the risk of NIDDM (Peters et al., 1996) and our data on the
history of previous GDM in parous women is based on self-reported
information which could have a certain bias. The differences in
parity appear to align, to some extent, with variations in maternal
age and pre-gestational BMI, both of which are well-established risk
factors for GDM. A high pre-gestational BMI not only elevates the
risk of hypertensive disorders during pregnancy but also contributes
to GDM by exacerbating physiological pregnancy-induced insulin
resistance. As noted earlier, the control and second-trimester GDM

groups were matched for pre-gestational BMI. Thus, comparisons
between the first-trimester GDM group and the controls, as well
as between the first- and second-trimester GDM groups, revealed
statistically significant differences. Interestingly the median birth
weight in our study was not elevated and differences in the newborn
birth weight are neither significant between controls and GDM-
related groups (I and II). Therefore we could not associate high
triglyceride levels observed in our study, with increased newborn
birth weight, macrosomia or large for gestational age as was
concluded by other authors (Vrijkotte et al., 2011; Whyte et al.,
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FIGURE 3
Scatter plots of the relative abundances for the group of glycerolipids representing observed changes between control (C) and diabetic groups (I,
early-onset GDM and II, late-onset GDM). mean ± SD; P-values∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

2013; Zhu et al., 2022). This could be associated with the sample
size and proper pregnancy management. Maternal lipid metabolism
undergoes significant adaptations during pregnancy to meet the
increased energy demands of the developing fetus and to ensure
proper fetal development (Soma-Pillay et al., 2016). There is no
doubt that we should still deepen our understanding of the complex
interplay between lipid metabolism and other pathophysiological
mechanisms, such as insulin resistance or placental dysfunction.
The rise in triglyceride levels is a result of increased synthesis
by the liver and reduced enzymatic activity of lipoprotein lipase,
leading to decreased catabolism of adipose tissue (Soma-Pillay et al.,
2016). Increased triglycerides were correlated with impaired glucose
metabolism in muscle tissue and inhibited insulin signalling
pathways, leading to insulin resistance (Yaribeygi et al., 2019).
Insulin promotes TG storage by driving the differentiation of pre-
adipocytes into mature adipocytes enhancing lipogenesis through
ADD-1/SREBP-1c which regulates genes for fatty acid synthesis and
lipogenesis in adipocytes and the liver facilitating glucose transport
for conversion into triglycerides and inhibiting lipolysis to prevent
triglyceride breakdown (Kahn and Flier, 2000; Yaribeygi et al., 2019).

Our findings in alterations in TG levels in the early stages of GDM-
affected pregnancies are in line with a vast literature that reported
the association between high TG during pregnancy and increased
risk of GDM (Li et al., 2014; Furse et al., 2019; Zhu et al., 2020).
Hou et al. in a case-control study of 100 GDM and 100 normal
glucose tolerance women defined the lipidomic signature in plasma
across pregnancy, and proposed new lipid biomarkers for GDM
prediction. The authors conclude that particularly diacylglycerols
and triacylglycerols were upregulated across three trimesters of
pregnancy, and demonstrated good performance in the prediction
of GDM in the first and the second trimesters (Hou et al., 2023).
Our data support those findings, making this evidence stronger.
Moreover, Hu et al. in a largemeta-analysis investigated the outcome
of 292 studies, comprising 97,880 pregnant women (28,232 GDM
and 69,648 controls) and also concluded that womenwithGDMhad
significantly higher TG levels that occurred in the first trimester and
persisted afterwards (Hu et al., 2021).

Several studies indicate that high levels of sphingolipids,
including ceramides and sphingosine-1-phosphate are correlated
with pregnancy complications including gestational diabetes
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FIGURE 4
Scatter plots of the relative abundances for selected metabolites representing observed changes between control (C) and diabetic groups (I,
early-onset GDM and II, late-onset GDM). The red asterisk indicates the significance according to multivariate analysis. mean ± SD; P-values∗p <
0.05,∗∗p < 0.01,∗∗∗p < 0.001.

FIGURE 5
The SUS plot is based on two OPLS models (C vs. I and C vs. II). The coordinates of each variable are their correlation coefficients to the predictive
components derived from each model. The position of the variables on the plot reflects their relationships to the responses of specified models. The
X-axis is the predictive component of early-onset GDM, and the Y-axis is the predictive component associated with late-onset GDM. Panel (A). SUS plot
for LC-MS/MS data. Panel (B). SUS plot for GC-MS data. Red dots–metabolites upregulated in both groups (I and II); Orange dots, represent metabolites
upregulated, specific for group II; Yellow dots, metabolites upregulated, specific for group I; Navy blue dots, metabolites downregulated in both groups
(I and II); fuchsia colour dot, downregulated in group II; green dots, metabolites downregulated in early-onset GDM women (I).

(Fakhr et al., 2021; Enthoven et al., 2023; Hou et al., 2023). Those
bioactive compounds have been implicated in the regulation of
insulin signalling pathways. Ceramides represent a major subclass
of sphingolipids that interfere with insulin signalling by inhibiting
Akt phosphorylation and promoting serine phosphorylation of

insulin receptor substrate-1 (IRS-1) (Kanety et al., 1996). Ceramide
triggers β-cell apoptosis by enhancing the permeability of the
mitochondrial membrane, leading to the activation of the intrinsic
apoptosis pathway that, significantly contributes to the pathogenesis
of diabetes (Galadari et al., 2013; Hammad and Lopes-Virella,
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2023). The results of our study are in line with the literature and
indicate elevated levels of Cer(d18:1/22:0) in the group of late-
onset GDM, whereas the level of SM(d18:0/18:0) increased in both
GDM-related groups.

We also found the relationship between plasma
levels of glycerophospholipids such as phosphatidycholines
and phosphatidylethanolamines and GDM. Dysregulated
glycerophospholipid metabolism has been linked to inflammation
which is recognized as a key feature of diabetes. Many of those
compounds can serve as precursors for pro-inflammatory lipid
mediators that can activate inflammatory signalling pathways and
promote the production of inflammatory cytokines, contributing
to insulin resistance. According to the literature disrupted
glycerophospholipidmetabolism is common inGDM (Dudzik et al.,
2014; Liu et al., 2016; Zhan et al., 2021), however, due to the diversity
of glycerophospholipids structures further research is needed to
elucidate the specific role in GDM molecular mechanisms.

Our data confirm the significance of fatty acids in the
pathophysiology ofGDMwhich is consistentwith our first data from
the study performed in GDM plasma from the second trimester
of pregnancy (Dudzik et al., 2014; Dudzik et al., 2017) and others
(Chen et al., 2010; Scholtens et al., 2014; Enquobahrie et al., 2015).
All reported fatty acids including saturated palmitic acid (C16:0),
stearic acid (C18:0) and unsaturated linoleic acid (ω-6, C18:2),
palmitoleic acid (ω-7, C16:1), oleic acid (ω-9, C18:1)were elevated in
the group of early-onset GDM, however, this trendwas not observed
in late-onset GDM. Several studies confirm that the circulation
of maternal free fatty acids (FFAs) plays an important role in
the pathophysiology of GDM due to their involvement in various
metabolic processes. Elevated levels of FFAs in pregnancy inhibit
total body glucose uptake and oxidation. Chronic exposure to high
levels of FFAs can impair pancreatic β-cell function leading to
reduced insulin secretion and insulin resistance (Sivan et al., 1998;
Sun et al., 2022). Meta-analysis and original data presented by Sun
et al. indicate that GDM women are characterized by a particular
circulating saturated FA profile with altered levels of palmitic acid
and lower levels of very-long-chain FA. The results demonstrated
that palmitic acid has a strong positive correlation with GDM both
in the early and second trimesters of pregnancy (Sun et al., 2022).
Other studies conducted by Ogundipe et al. have shown that GDM
has a unique fatty acid profile with elevated levels of omega 6 fatty
acids compared to omega 3 an abnormal pattern of sequential n-6
metabolism (Ogundipe et al., 2020).

Special attention should be also placed onhydroxy acids, namely,
2-hydroxybutyric acid (2-HB) and 3-hydroxybutyric acid (3-HB). Its
specific role in the pathological process that leads to GDM has not
been extensively studied so far however, there are several potential
mechanisms through which those compounds may contribute to
this condition. Gall et al. postulated that 2-HB, an organic acid
derived from 2-ketobutyric acid, could be an early indicator for both
insulin resistance (IR) and impaired glucose regulation (Gall et al.,
2010). Elevated 2-HB is strongly linked to impairment of β-cells
function and may reflect disruptions in metabolic pathways, such as
increased fatty acid oxidation, ketogenesis and oxidative stresswhich
are common features of insulin resistance state andGDM (Gall et al.,
2010; Sousa et al., 2021). Moreover, 2-HB has been implicated in
chronic low-grade inflammation which is a hallmark feature of
obesity and amajor risk factor for GDM (Sousa et al., 2021).The role

of the ketone body as 3-hydroxybutyric acid in the pathophysiology
of GDM remains an area of active investigation. High 3-HB levels
observed in GDM may reflect metabolic dysregulation including
increased lipolysis and ketogenesis, which contribute to alterations
in energy metabolism and glucose homeostasis. 3-HB is produced
during fatty acid oxidation and serves as an alternative energy
substrate (Qi et al., 2022).This compoundwas found to be associated
with GDM reported in many metabolomics studies (White et al.,
2017; Lu et al., 2021; McMichael et al., 2021; Sikorski et al., 2022).
What is more interesting, hydroxybutyric acid has been connected
with gut microbiota-derived metabolites showing significantly
higher levels in women with GDM (Singh et al., 2023; Ye et al.,
2023). Growing evidence suggests that ketone bodies may serve
as immunomodulators to attenuate pathological inflammation
(Qi et al., 2022). A very recent study by Neudorf et al. postulates
that it is plausible that 3-HB could mitigate inflammatory signalling
pathways implicated in diabetes (Neudorf et al., 2024). Considering
the potential of β-HB and the intriguing literature data we believe
this compound is worthy of particular attention. In our study, we
observed that higher levels of both 2-HB and 3-HB were associated
with early-onset GDM, although not significant in late-onset GDM.
The results are consistent with our first data where we identified a
panel of plasma metabolites implicated in GDM pathophysiology
(Dudzik et al., 2014; Dudzik et al., 2017; Burzynska-Pedziwiatr et al.,
2023), however, those studieswere performed on the plasma samples
from the second trimester, different cohort and diagnosis of GDM
were based on different criteria. Nevertheless, in both cases, the
observed changes were associated with glucose impairment and
diagnosed GDM.

It is worth mentioning that our study identified other
metabolites like p-cresol, 2-butyne-1,4-diol or tryptophan (Trp)
linked to the intestinal microbiota. There is limited evidence
linking those compounds to GDM, but their possible association
with inflammation suggests that they may play a role in the
molecular background of GDM. The essential amino acid
L-tryptophan is particularly important in pregnancy due to
the high demand for maternal protein synthesis and fetal
growth and development (Badawy, 2015). Our findings from
present and previous experiments show a reduced level of
tryptophan in GDM (Dudzik et al., 2014), which is in line
with other studies (Leitner et al., 2017; Özdemir et al., 2023).
This decrease may be attributed to increased degradation or
altered utilization of Trp in GDM. The recent systematic review
by van Zundert et al. indicates that decreased Trp levels in
maternal blood in the second and third trimester of pregnancy
was associated with several pregnancy complications including
gestational diabetes (van Zundert et al., 2022).

We found that changes observed in amino acid profile are not
entirely consistent across studies, most likely due to differences in
the trimesters of pregnancy at which the study was performed and
the criteria for GDM definition. In our study, glycine, serine and
proline levels were lower in the GDM group which is consistent
with findings reported in previous studies performed in the
first and the second trimester of pregnancy (Zhao et al., 2019;
Lu et al., 2021).Nevertheless, other studies report that first-trimester,
early-onset GDM was associated with higher concentrations of
glycine and proline compared to the control group (Razo-
Azamar et al., 2023).
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Our study point also an association between significant
depletion in creatinine levels and late-onset GDM. The results are
concordant with the other findings (Chen et al., 2023) and literature
describing a positive correlation between lower serum creatinine
and abnormal glucose metabolism (Harita et al., 2009; Bao et al.,
2018). Finally, our study confirmed high glucose levels observed
both in the early- and late-onset GDM group.

Conclusion

The metabolomics approach provides a powerful tool for
understanding the metabolic changes associated with gestational
diabetes mellitus (GDM). It offers a snapshot of the phenotypic state
at the time of sampling, allowing for hypothesis generation and
translational insights that can serve both researchers and clinicians
in better understanding disease mechanisms and enabling earlier
recognition of impaired glucose tolerance during pregnancy. Our
study indicates several molecules providing biomarker candidates,
especially for late-onset GDM prediction. Although several studies
have been performed so far, no metabolite-based prediction factor
for late-onset GDM exists, therefore, more effort is required
to elucidate the molecular landscape of GDM. Nevertheless, we
recognise some limitations in our study. The relatively small
sample size and single-centre design may limit the significance
of the findings. Expanding the study to larger, multi-centre
cohorts with greater ethnic and geographic diversity would
enhance the robustness of the identified metabolic patterns. Future
research should address the limitations of inter-individual variability
resulting from genetics, diet, and environmental factors.
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Glossary
AcAc Glacial Acetic Acid

ACN Acetonitrile

ADD1 Adipocyte Determination and Differentiation-

Dependent Factor 1

BSTFA N,O bis(trimethylsilyl)trifluoroacetamide

dMRM dynamic Multiple Reaction Monitoring Mode

EI Electron Impact

ESI Electrospray Ionization

EtAc Ethyl Acetate

FA Formic Acid

GC/Q-TOF-MS Gas Chromatography-Quadrupole-Time of Flight Mass

Spectrometry

IRS-1 Insulin Receptor Substrate-1

IR Insulin Resistance

IS Internal Standard

LC-MS/MS Liquid Chromatography-Tandem Mass Spectrometry

MeOH Methanol

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

NIDDM Non-Insulin Dependent Diabetes Mellitus

NIST National Institute of Standards and Technology

OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis

PCA Principal Component Analysis

PrOH 2-propanol

QC-SVRC Quality Control based Support Vector Regression

RSD Relative Standard Deviation

RT Retention Time

RTL Retention Time Locked

SREBP Sterol Regulatory Element Binding Protein

SUS Shared and Unique Structures Plot Analysis

TMCS 1% trimethylchlorosilane

VIP Variable Influence on the Projection
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