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Inositol 1,4,5-Trisphosphate Receptor-Interacting Protein-Like 1 (ITPRIPL1), a
single-pass type I membrane protein located in the membrane, functions as
an inhibitory ligand of CD3ε. Recent studies have shown that its expression
suppresses T cells activation and promote tumor immune evasion. Despite
increasing evidence suggesting that ITPRIPL1 plays a significant role in tumor
growth, no systematic pan-cancer analysis of ITPRIPL1 has been conducted
to date. This study utilized datasets curated from The Cancer Genome
Atlas, Genotype Tissue-Expression, and Human Protein Atlas to investigate
the relationship between ITPRIPL1 expression and clinical outcomes, immune
infiltration, and drug sensitivity across 33 cancer types. We employed multiple
methods to assess its prognostic value in pan-cancer, such as univariate
Cox regression, survival analysis, and ROC curve analysis and explored the
relationship between ITPRIPL1 and tumor mutation burden (TMB), tumor
microsatellite instability (MSI), CNV, DNA methylation, immune-related genes,
immune cell infiltration, and drug sensitivity to reveal its immunological role.
The mRNA expression levels of the ITPRIPL1 gene vary significantly across
multiple types of cancer and significantly reduced in breast cancer. Conversely,
high ITPRIPL1 expression was associated with a better prognosis in BRCA.
Furthermore, the expression of ITPRIPL1 highly correlates with the presence of
tumor-infiltrating immune cells and immune checkpoint genes across various
types of cancers. Additionally, ITPRIPL1 expression was associated with TMB in
6 cancer types and with MSI in 13 cancer types. High expression of ITPRIPL1
serves as a protective factor in certain cancer types, correlating with longer
overall survival in BRCA. Our study further confirms that ITPRIPL1 participates
in regulating immune infiltration and affecting the prognosis of patients in pan-
cancer. These findings underscore the promising potential of ITPRIPL1 as a
therapeutic target for human cancer.
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1 Introduction

Cancer is a globally public health issue and a notable
impediment to prolonging life expectancy due to the escalating
incidence of newly identified cases (Sung et al., 2021; Pizzato et al.,
2022; Bray et al., 2024). As of now, there is still no definitive
method to achieve a complete cure for it. The emergence of
immune checkpoint blockade has sparked a paradigm shift in
cancer treatment, fundamentally altering the landscape of clinical
oncology and signifying a significant departure from traditional
methods (Sanmamed and Chen, 2018; Muthukutty et al., 2023).
However, while several immune checkpoint blockers, such as PD-
1 and PD-L1 antagonists, have been successfully applied, they
only offer effective treatment for a small subset of patients with
cancer (Wang et al., 2022; Javed et al., 2024). Resistance or limited
responsiveness to immunotherapy persists in the treatment of
the majority of patients with cancer (Bai et al., 2020; Said and
Ibrahim, 2023). It is worth noting that the dysfunction of T
cells can significantly impact the effectiveness of immunotherapy,
underscoring the profound significance of identifying regulatory
molecules associated with this process (Xia et al., 2019; Zhang et al.,
2020; Zheng et al., 2021; Oliveira and Wu, 2023).

Inositol 1,4,5-triphosphate receptor-interacting protein-like 1
(ITPRIPL1), a single-pass transmembrane protein, functions as a
natural ligand of CD3ε, leading to the reduction of T cell activity
and fostering tumor growth (Deng et al., 2024). Recent studies have
found that ITPRIPL1 is commonly observed in tumors with low
expression of PD-L1 and the expression of this gene can inhibit
T cells in the tumor microenvironment (TME), while antibodies
targeting this gene can suppress tumor growth and promote T
cell infiltration (Deng et al., 2023; Deng et al., 2024). These findings
indicate that ITPRIPL1 holds promise as a new therapeutic target.
However, research on ITPRIPL1, particularly exploring its potential
roles in various human cancer types using multi-omics data, is
currently inadequate. A comprehensive analysis of its functional
roles across multiple malignant tumors using pan-cancer analysis is
imperative.

In this study, we employed utilized a range of bioinformatics
methodologies to perform a comprehensive pan-cancer analysis of
ITPRIPL1 from various perspectives. Multiple databases, including
The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA)
and Genotype-Tissue Expression (GTEx) were used to explore the
mRNA expression levels of ITPRIPL1 in tumor and normal tissues
(Weinstein et al., 2013; Carithers et al., 2015; GTEx Consortium,
2020; Sjöstedt et al., 2020). We employed the Gene Set Cancer
Analysis (GSCA) database to analyze the potential associations
between ITPRIPL1 expression and Genomic alterations and DNA
methylation across 33 types of cancer (Liu et al., 2023). We also did
univariate Cox regression analysis and survival analysis, receiver
operating characteristic (ROC) curve analysis, Immune infiltration
analysis, and Drug sensitivity analysis. Furthermore, we computed
the correlation of ITPRIPL1 expressionwith tumormutation burden
(TMB), microsatellite instability (MSI), and immune-related genes.
Based on all these results, we unveiled a correlation between
ITPRIPL1 expression and immune response, suggesting its potential
as a promising prognostic biomarker across various cancers. Our
research endeavors to offer further elucidation on the significance
of ITPRIPL1 across different cancer types.

2 Materials and methods

2.1 ITPRIPL1 expression analysis

The bulk RNA-seq data of all 33 cancer types in TCGA
and normal samples were obtained from the UCSC Xena
(http://xena.ucsc.edu/), HPA (https://www.proteinatlas.org/)
and GTEx (http://commonfund.nih.gov/GTEx/) projects
(Weinstein et al., 2013; Carithers et al., 2015; Goldman et al.,
2020; GTEx Consortium, 2020; Sjöstedt et al., 2020). The mRNA
expression levels of ITPRIPL1 in pan-cancer and different tissues
were analyzed. And we calculated the differential expression of
ITPRIPL1 based on clinical stage.

2.2 Methylation and CNV analysis

GSCA(https://guolab.wchscu.cn/GSCA/#/) is an integrated
bioinformatics analysis platform (Liu et al., 2023). We selected the
“Mutation” module to analysis CNVs and methylation of ITPRIPL1
and correlation with mRNA expression levels for all cancers. The
“CNV & Expression” module calculates the Spearman correlation
between RSEM-normalized mRNA expression and CNV data
from the TCGA database, with p-values adjusted by FDR. The
“Differential Methylation” module provides analysis between tumor
and normal sample groups using Illumina HumanMethylation
450k level 3 data from the TCGA database, selecting 14 cancer
types with over 10 paired samples, filtering the most negatively
correlated methylation sites with gene expression, and estimating
p-values by t-test adjusted by FDR. The “Methylation & Expression”
module analyzes the correlation between methylation levels and
mRNA expression using RSEM-normalized mRNA and Illumina
Methylation 450k level 3 data from the TCGA database, merging
data by TCGA barcode, filtering for the most negatively correlated
methylation sites, and performing Spearman correlation with
p-values adjusted by FDR.

2.3 Univariate cox regression and survival
analysis

Univariate Cox regression was employed to analysis the
statistical significance of overall survival (OS), disease-specific
survival (DSS), disease-free interval (DFI), and progression-
free interval (PFI) between high and low ITPRIPL1 expression
groups across 33 cancer types, with statistical significance set at
P < 0.05 (Liu et al., 2018). Furthermore, Kaplan-Meier survival
analysis was used to investigate the prognostic value of ITPRIPL1
with 33 cancer types in TCGA. ITPRIPL1 expression level above
the median are considered high expression, while those below are
considered low expression. The “survminer” (version 0.4.9) and
“survival” (version 3.5.7) packages were used for bioinformatics
analysis based on the R language.

2.4 ROC curve analysis

We conducted ROC curve analysis and evaluated the diagnostic
value of the ITPRIPL1 gene, using the “pROC” package (version
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1.18.5), where an AUC value greater than 0.7 was considered helpful
for disease screening (Robin et al., 2011).

2.5 Immune infiltration analysis

To comprehensively delineate the tumor microenvironment
and immune landscape of various cancers, the CIBERSORT,
MCPcounter, and ssGSEA methods were employed to examine
the relationship between ITPRIPL1 expression and the infiltration
abundance of various immune cells in various cancers (Becht et al.,
2016; Chen et al., 2018; Yi et al., 2020). For each patient,
the estimation of stromal and immune cells in malignant
tumors using expression data (ESTIMATE) method was used
to calculate the stromal score, immune score and estimate
score to infer tumor purity using the R package “estimate”
(version 1.0.13) (Yoshihara et al., 2013).

2.6 Correlation of ITPRIPL1 expression with
tumor mutation burden, tumor
microsatellite instability and
immune-related genes

MSI refers to the results of changes in the length of
microsatellite sequences caused by insertions or deletions
mutations during DNA replication (Yang et al., 2019; Li et al.,
2020). The MSI analysis utilized the “MSIsensor10k” dataset
within the “BiocOncoTK” package (version 1.22.2), and Spearman’s
method was employed to compute the correlation with the
ITPRIPL1 gene. The “TCGAmutations” package (version 0.3.0)
was used to download mutation data containing all samples
from TCGA and the TMB of samples was calculated using the
“tmb” function from the “maftools” package (version 2.18.0).
Correlation analysis between the expression of ITPRIPL1 and
TMB was performed using Spearman’s method. We conducted an
expression correlation analysis between ITPRIPL1 and immune-
related genes using the Spearman’s method, including genes
encoding major histocompatibility complex (MHC), Mismatch
Repair (MMR), immune checkpoints, chemokines, and chemokine
receptor proteins.

2.7 Drug sensitivity analysis

We selected the “Drug” module to analysis the correlation
between ITPRIPL1 gene expression and drug sensitivity across
all cancers (Liu et al., 2023). Pearson correlation analysis was
performed to get the correlation between ITPRIPL1 expression
and drug IC50, using data collected from the Genomics of Drug
Sensitivity in Cancer (GDSC) and the Genomics of Therapeutics
Response Portal (CTRP) (Basu et al., 2013; Yang et al., 2013).

2.8 Statistical analysis

All gene expression data were normalized using log2
transformation. The comparison between normal tissue and cancer

tissuewas conducted using two sets ofWilcoxon tests, with statistical
significance indicated by P < 0.05. Spearman’s test was employed for
correlation analysis between variables, with P < 0.05 considered
significant. All statistical analyses were performed using R software
(version 4.3.1).

3 Results

3.1 ITPRIPL1 expression in various human
normal and tumor tissues

RNA-seq datasets downloaded from HPA, TCGA and GTEx
databases were employed to explore ITPRIPL1 expression in
various human normal and tumor tissues. As depicted in
Figures 1A, D, the tissue exhibiting the highest ITPRIPL1 expression
was the testis. The consensus transcript expression levels of
the ITPRIPL1 gene across 50 tissues are summarized based
on transcriptomics data from HPA and GTEx (Figure 1D).
Through analysis of TCGA data, we showed the expression
levels of the ITPRIPL1 gene from a pan-cancer perspective and
found statistically significant differences in expression levels
between tumor tissues and correspond normal tissues across
13 common malignancies (Figure 1B). The mRNA expression
levels of the ITPRIPL1 gene was significantly increased in
cholangiocarcinoma (CHOL), esophageal carcinoma (ESCA),
glioblastoma multiforme (GBM), kidney renal clear cell carcinoma
(KIRC), kidney renal papillary cell carcinoma (KIRP), liver
hepatocellular carcinoma (LIHC), lung squamous cell carcinoma
(LUSC), pheochromocytoma and paraganglioma (PCPG), stomach
adenocarcinoma (STAD) and reduced in breast cancer (BRCA),
kidney chromophobe (KICH), prostate adenocarcinoma (PRAD),
pancreatic adenocarcinoma (PAAD).

Expanding our analysis, we enriched the pool of normal
samples by integrating data from the GTEx database. This
meticulous approach unveiled statistically significant differences
in expression across 12 cancer types (Figure 1C). The mRNA
expression levels of the ITPRIPL1 gene were found to be elevated
in CHOL, diffuse large B-cell lymphoma (DLBC), GBM, KIRC,
acute myeloid leukemia (LAML), lower grade glioma (LGG),
skin cutaneous melanoma (SKCM), STAD, uterine carcinosarcoma
(UCS), while reduced in BRCA, PRAD and Testicular Germ Cell
Tumors (TGCT).

Furthermore, using the “TCGAbiolinks” package (version
2.30.4), we retrieved clinical stages and other clinical data
of all patients from The TCGA database. We observed the
mRNA expression levels of ITPRIPL1 varied significantly across
clinicopathological stages in mesothelioma (MESO), LIHC, SKCM,
thyroid carcinoma (THCA), and TGCT (Figure 1E) (P < 0.05).
However, in other tumors, there was no significant difference
observed (P > 0.05) (Figure 1E).In MESO, we observed that
the mRNA expression levels of ITPRIPL1 gradually increased
from stage I to stage IV, suggesting its potential role in tumor
progression. Data from SKCM showed that ITPRIPL1 expression
was lower in early stages (I and II) but higher in stages IV.
Finally, in TGCT, ITPRIPL1 expression was lower in stages
II but higher in stages IV. However, in other tumor types,
we did not observe significant differences in ITPRIPL1 mRNA
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FIGURE 1
The differential expression of ITPRIPL1 in pan-cancer and healthy tissues: (A) Distribution of ITPRIPL1 expression from the GTEx database. (B) Analysis
of ITPRIPL1 expression in tumor and normal tissues curated from the TCGA database. (C) Analysis of ITPRIPL1 expression in tumor and normal tissues in
the TCGA and GTEx databases. (D) Analysis of ITPRIPL1 expression in the HPA and GTEx databases. (E) ITPRIPL1 expression levels across different
stages in pan-cancer. (ns: p > 0.05, ∗ : P ≤ 0.05, ∗ ∗ : P ≤ 0.01, ∗ ∗ ∗ : P ≤ 0.001, ∗ ∗ ∗ ∗ : P ≤ 0.0001.). BRCA (Breast Cancer), UCEC (Uterine Corpus
Endometrial Carcinoma), KIRC (Kidney Renal Clear Cell Carcinoma), HNSC (Head and Neck Squamous Cell Carcinoma), LUAD (Lung Adenocarcinoma),
LGG (Low Grade Glioma), THCA (Thyroid Cancer), LUSC (Lung Squamous Cell Carcinoma), PRAD (Prostate Adenocarcinoma), SKCM (Cutaneous
Melanoma), COAD (Colorectal Adenocarcinoma), OV (Ovarian Cancer), STAD (Stomach Adenocarcinoma), BLCA (Bladder Urothelial Carcinoma), LIHC
(Liver Hepatocellular Carcinoma), CESC (Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma), KIRP (Kidney Renal Papillary Cell
Carcinoma), SARC (Sarcoma), ESCA (Esophageal Carcinoma), PCPG (Pheochromocytoma and Paraganglioma), PAAD (Pancreatic Adenocarcinoma),
GBM (Glioblastoma Multiforme), READ (Rectal Adenocarcinoma), LAML (Acute Myeloid Leukemia), TGCT (Testicular Germ Cell Tumor), THYM
(Thymoma), MESO (Malignant Mesothelioma), UVM (Uveal Melanoma), ACC (Adrenocortical Carcinoma), KICH (Kidney Chromophobe), USC (Uterine
Carcinosarcoma), DLBC (Diffuse Large B-cell Lymphoma), CHOL (Cholangiocarcinoma).

expression levels across different clinicopathological stages (P
> 0.05). These results suggest that ITPRIPL1 expression levels,
which vary significantly across different clinicopathological stages
in certain cancer types, may serve as a new biomarker for
diagnosis and staging specific cancers.

3.2 Methylation and CNV profile of
ITPRIPL1 in pan-cancer

We utilized the GSCA database to examine the correlation
between ITPRIPL1 expression levels and CNV and methylation in
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pan-cancer. Of all the statistically significant results, the highest
correlation was found in PAAD at 0.24, followed by sarcoma
(SARC) and SKCM, both at 0.22 (Figure 2A). Conversely, the
correlations were not significant in patients with MESO, PRAD,
adrenocortical carcinoma (ACC), KIRP, DLBC, LAML, GBM,
LUSC, THCA, lung adenocarcinoma (LUAD), thymoma (THYM),
rectum adenocarcinoma (READ), uveal melanoma (UVM), KIRC,
CHOL, colon adenocarcinoma (COAD), PCPG, KICH, ESCA,
LGG, TGCT, cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), and UCS (Figure 2A). We also employed
the GSCA database to explore the methylation and its correlation
with ITPRIPL1 expression. The “Differential Methylation” module
was selected for conducting differential methylation analysis
between tumor and normal sample groups. Among all the analyzed
cancer types, only KIRC showed a downward trend, while others
exhibited an upward trend (Figure 2B). And we found that
DNA methylation levels were significantly correlated with mRNA
expression in most tumor types (Figure 2C). The DNA methylation
levels exhibited significant correlations with mRNA expression
levels across various cancer types and the top three tumors
with the most significant correlations were CHOL (Spearman’s
correlation = −0.77), PRAD (Spearman’s correlation = −0.77), and
SKCM (Spearman’s correlation = −0.78), showing a robust negative
correlation close to −0.8 with significant statistical significance (P
< 0.05).

3.3 Prognostic value of ITPRIPL1 in
pan-cancer

Univariate cox regression analysis was utilized to explore
the association between OS, DSS, DFI and PFI and the mRNA
expression levels of ITPRIPL1 in pan-cancer. High expression of
ITPRIPL1 was strongly associated with shorter OS in ACC (OS:
HR = 2.763, P = 0.002), KICH (OS: HR = 5.414, P = 0.003),
LGG (OS: HR = 1.646, P = 0.000) and SARC (OS: HR = 1.435,
P = 0.000), but was a protective factor for BRCA (OS: HR =
0.742, P = 0.010), head and neck squamous cell carcinoma (HNSC)
(OS: HR = 0.804, P = 0.007) and THYM (OS: HR = 0.334, P
= 0.007) (Figure 3A). ITPRIPL1 was also a high-risk gene for
DFI, DSS and PFI in SARC, a risk factor for DSS and PFI in
ACC, KICH and LGG and a risk factor for PFI in UCEC, but
it was a protective factor for DFI in ESCA and for DSS and PFI
in BRCA, HNSC (Supplementary Figures S1, 2, 3). In conclusion,
these results indicated that high expression of ITPRIPL1 was highly
associated with poor prognosis in ACC, KICH, LGG, and SARC.
Furthermore, Kaplan-Meier survival analysis showed that high
expression of ITPRIPL1 had longer survival times with in BRCA
and LUAD (Figure 3B). In contrast, high ITPRIPL1 expression
levels predicted poor prognosis in LGG and SARC (Figure 3B).
Interestingly, these results indicated that ITPRIPL1 expression levels
are strongly correlated with prognosis in some cancers like LGG.
We performed ROC analysis and calculated the AUC values of the
ITPRIPL1 gene, plotting the ROC curves for the three cancers with
high accuracy (AUC >0.7), specifically: BRCA (AUC = 0.961,CI
0.942–0.976), KICH (AUC = 0.716,CI 0.6–0.811), and PRAD (AUC
= 0.857,CI 0.799–0.907) (Figure 3C).

3.4 Correlation between ITPRIPL1
expression and immune infiltrating level
and immune-related genes in pan-cancer

Using the CIBERSORT, MCPcounter, and ssGSEA algorithms,
we explored the relationship between ITPRIPL1 expression and
the infiltration levels of different immune cells in the 33 cancer
types. In the CIBERSORT analysis results, we observed that the
expression level of ITPRIPL1 is positively correlated with activated
memory CD4+ T cells in PAAD (Spearman r = 0.486, P = 6.341E-
12), regulatory T cells (Tregs) in THYM (Spearman r = 0.530, P =
5.664E-10), and Macrophage (M1) in ACC (Spearman r = 0.499, P
= 2.896E-06) and negatively associated with activated NK cells in
CHOL (Spearman r = −0.451, P = 0.006) and activated dendritic
cells in MESO (Spearman r = −0.455, P = 1.080E-05) (Figure 4A).
By employing the MCPcounter algorithm, we observed that the
expression level of ITPRIPL1 shows a strong positive correlation
with T cells in LIHC, as well as with T cells, CD8+ T cells, and
cytotoxic lymphocytes in PAAD, with Spearman r values greater
than 0.7 and P-values less than 0.001 from the MCPcounter analysis
results and negative correlations with a Spearman r value less than
−0.4were not observed (Figure 4B). To evaluate the infiltration levels
of different immune cells, the ssGSEA algorithm was employed. The
expression level of ITPRIPL1 is strongly positively correlated with
various immune cells, including activated CD8+ T cells, CD56bright
natural killer cells, effector memory CD8+ T cells, natural killer
cells, T follicular helper cells, type 1 T helper cells, and myeloid-
derived suppressor cells (MDSCs) across multiple types of cancer,
particularly in PAAD with P < 0.001 and Spearman r value greater
than 0.7 for all (Figure 4C). The results indicate that ITPRIPL1
might be crucial in controlling immune cell infiltration in some
cancer types. Given the significant influence of immune checkpoint-
related genes on immune cell infiltration and immunotherapy, we
explored the potential role of ITPRIPL1 in immunotherapy by
examining its expression levels in relation to immune checkpoint-
related genes and other key associated genes in human cancers.
Our results showed that ITPRIPL1 expression was associated with
most genes in ACC, BRCA, KICH, LIHC, LUAD, PAAD, PRAD,
THCA, and DLBC with P < 0.001(Figure 4D). We found strong
positive correlations between ITPRIPL1 expression and three types
of ESTIMATE in LUAD, PAAD, LIHC, BRCA, CHOL, KIRC,
THCA, KICH, ACC, and PCPG, whereas negative correlations were
observed in LAML, SARC, UCS and GBM (Figure 4E).

3.5 Correlation analysis of ITPRIPL1 with
TMB and MSI in TCGA pan-cancer

In addition, we also calculated the TMB and MSI expression.
ITPRIPL1 expression showed a positive correlation with MSI
in patients with GBM, UCEC, and UCS, with P < 0.05. And
ITPRIPL1 expression exhibited a negative correlation with MSI
in patients with ACC, BLCA, BRCA, ESCA, KIRP, LIHC, LUAD,
PCPG, PRAD, and THYM, with P < 0.05 (Figure 4F). Additionally,
ITPRIPL1 expression was positively correlated with TMB in LGG
and negatively correlated with TMB in ESCA, PAAD, PRAD, THCA
and THYM with P < 0.05 (Figure 4F).
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FIGURE 2
Methylation and CNV Analysis. (A) The correlation between CNV and ITPRIPL1 mRNA expression was analyzed using the GSCA database. The highest
correlation was observed in PAAD at 0.24. The bubble plot depicts the correlation between ITPRIPL1 mRNA expression and CNV levels: blue bubbles
denote negative correlations, while red ones denote positive correlations, with intensity reflecting strength. Bubble size indicates FDR significance, and
a black outline signifies FDR ≤0.05. (B) This figure summarizes the differences in methylation between tumor and normal samples for ITPRIPL1 across
various cancers. (C) The correlation between methylation and ITPRIPL1 mRNA expression was analyzed using the GSCA database.

3.6 Correlations between ITPRIPL1 and
drugs

Using the GSCA online platform, we explored and presented the
correlation between ITPRIPL1 gene expression and sensitivities of
the top 30 drugs, utilizing data curated from the GDSC and CTRP
databases. The CTRP and GDSC data analysis revealed that apart
from 17-AAG, drug sensitivity and ITPRIPL1 gene expression were
negatively correlated for the remaining 59 drugs. (Figures 5A, B).

4 Discussion

There are many existing cancer treatments, among which
tumor immunotherapy is a promising anti-cancer strategy

(Peterson et al., 2022; Singh et al., 2024). However, due to the
significant variability in treatment efficacy among different patients,
identifying potential therapeutic targets to enhance treatment
effectiveness has been a focal point of interest (Kim et al., 2019;
Kudo, 2020). One recent study has identified the ITPRIPL1
gene as a potential new immune checkpoint that binds with
CD3ε, blocking T cell activation and facilitating immune
evasion by tumors (Deng et al., 2024). This study conducted a
comprehensive pan-cancer analysis of ITPRIPL1 expression by
integrating data from multiple databases, including TCGA, GTEx,
and HPA, through various bioinformatics analysis methods.

In this study, we analyzed public data from HPA, TCGA, and
GTEx and showed the expression of ITPRIPL1 in various human
normal and tumor tissues.ThemRNAexpression levels of ITPRIPL1
were significantly increased in CHOL, ESCA, GBM, KIRC, KIRP,
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FIGURE 3
(A) The relationship between ITPRIPL1 expression and overall survival (OS) in 33 cancer types was analyzed using univariate Cox regression analysis. (B)
Kaplan–Meier survival curve analysis of ITPRIPL1 in BRCA, LGG, LUAD, and SARC. (C) Employed the ROC curve analysis to evaluate the performance of
ITPRIPL1 in BRCA, KICH, and PRAD.

LIHC, LUSC, PCPG, and STAD, while reduced in BRCA, KICH,
PRAD, and PAAD. Expanding our analysis by integrating additional
normal samples from the GTEx database, we found that ITPRIPL1
mRNA expression levels were elevated in CHOL, DLBC, GBM,
KIRC, LAML, LGG, SKCM, STAD, and UCS, but reduced in BRCA,
PRAD, and TGCT. We observed that the ITPRIPL1 expression
varied significantly across MESO, LIHC, SKCM, THCA, and TGCT.
We examined the correlation between ITPRIPL1 expression levels
and CNV and methylation patterns in pan-cancer using the GSCA
database, finding the highest correlations in PAAD and BRCA,
with DNA methylation levels showing significant correlations with

mRNA expression across various cancer types, particularly in
CHOL, PRAD, SKCM, and BRCA. ITPRIPL1may play various roles
in cancer prognosis. Univariate Cox regression analysis revealed that
high ITPRIPL1mRNAexpression is strongly associatedwith shorter
OS in ACC, KICH, LGG, and SARC, but serves as a protective
factor in BRCA, HNSC, and THYM. Additionally, ITPRIPL1 is
a high-risk gene for DFI, DSS, and PFI in SARC, and a risk
factor for DSS and PFI in ACC, KICH, and LGG, while acting
as a protective factor for DFI in ESCA and for DSS and PFI in
BRCA and HNSC. Kaplan-Meier survival analysis indicated that
high ITPRIPL1 expression is associated with longer survival in
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FIGURE 4
(A) Using the CIBERSORT method to calculate the correlation between ITPRIPL1 mRNA expression and 22 types of immune cells across various
cancers. (∗ : P < 0.05, ∗ ∗ : P < 0.01). Using (B) MCPcounter and (C) ssGSEA methods to examine the relationship between ITPRIPL1 expression and the
infiltration abundance of various immune cells in various cancers. Drug Sensitivity Analysis. (D) Performed a Spearman correlation analysis between
ITPRIPL1 and immune-related genes, including those encoding major histocompatibility complex, mismatch repair, immune checkpoints, chemokines,
and chemokine receptors. (∗ : P < 0.05, ∗ ∗ : P < 0.01). (E) Using the ESTIMATE algorithm to assess the correlation of ITPRIPL1 expression with stroma
score, immune score and estimate score. (F) Radar maps showed the correlation between ITPRIPL1 expression with TMB and MSI in pan-cancer.

BRCA and LUAD, but predicts poor prognosis in LGG and SARC.
ROC analysis showed high accuracy (AUC >0.7) for ITPRIPL1 in
BRCA, KICH, and PRAD. The results from different analyses show
some consistency, particularly in the cancer types where ITPRIPL1
expression is either elevated or reduced and its impact on prognosis.

However, there are discrepancies, such as its dual role as a risk and
protective factor in different cancer types, indicating a complex,
context-dependent function of ITPRIPL1 in tumor biology.

TME is a complex ecosystem including diverse immune
cells, cancer cells, and other components and is critical for
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FIGURE 5
(A) This figure summarizes the correlation between gene expression and the sensitivity to the CTRP drugs (top 30) in pan-cancer. (B) This figure
summarizes the correlation between gene expression and the sensitivity to the GDSC drugs (top 30) in pan-cancer.

cancer proliferation, invasion, and metastasis (Giraldo et al., 2019;
Anderson and Simon, 2020; Neophytou et al., 2021). Given the
essential role of Immune cells is responsible for eliminating
tumor cells, with their infiltration density and activity shown to
predict responses to immune checkpoint blockers and serve as
independent prognostic markers for cancer patients (Goubet et al.,
2023; Huang et al., 2024; Ock et al., 2016). We employed the
CIBERSORT, MCPcounter, and ssGSEA algorithms to explore the
relationship between ITPRIPL1 expression and the infiltration levels
of different immune cells in the 33 cancer types. We observed
the ITPRIPL1 expression is strongly associated with activated
memory CD4+ T cells, CD8+ T cells, regulatory T cells (Tregs), M1
macrophages, NK cells and activated dendritic cells in some cancer
types. These findings suggest that ITPRIPL1 may play a significant
role in regulating immune cell infiltration in various cancer types.
Considering the impact of immune checkpoint-related genes on
immune cell infiltration and immunotherapy, we also conducted
relevant analysis. Our results showed that ITPRIPL1 expression is
associated with most genes in ACC, BRCA, KICH, LIHC, LUAD,
PAAD, PRAD, THCA, and DLBC, indicating its potential role
in immunotherapy. Using the ESTIMATE algorithm to assess the
stromal and immune score across 33 cancer types, we found that
ITPRIPL1 expression is strongly positively correlated with these
scores in LUAD, PAAD, LIHC, BRCA, CHOL, KIRC, THCA, KICH,
ACC, and PCPG, while negative correlations were observed in
LAML and GBM. Obviously, our results showed that ITPRIPL1 is
associated with responses to immunotherapy.

Recent research has reported that ITPRIPL1 is a promising
therapeutic target (Deng et al., 2023; Deng et al., 2024). The
extracellular domain of ITPRIPL1 binds to CD3ε on T cells,
significantly reducing calcium influx and ZAP70 phosphorylation,
thereby hindering initial T cell activation (Deng et al., 2024).
MSI and TMB are major biomarkers used to identify potential
benefit from immune checkpoint inhibitors for patients, which
are powerful predictors of tumor behavior and response to
immunotherapy (Li et al., 2020; Palmeri et al., 2022). Here,
we evaluated the correlation between ITPRIPL1 expression,

TMB, and MSI. We observed that ITPRIPL1 expression was
associated with TMB in 6 cancer types and with MSI in 13
cancer types.

In summary, our findings further confirmed that ITPRIPL1
holds promise as a prognostic biomarker across various cancers
and as a predictive indicator for immunotherapy. These results
contribute to our comprehension of the potential impact of
ITPRIPL1 on tumor immunity and its relevance to strategies for
immunotherapy. However, the study has limitations, such as the
reliance on public databases which may contain biases, and the
need for experimental validation to confirm the bioinformatics
predictions. Future research should focus on these aspects
to fully elucidate the role of ITPRIPL1 in cancer biology
and therapy.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordancewith the national legislation and
the institutional requirements.

Author contributions

WD: Conceptualization, Formal Analysis, Funding acquisition,
Investigation, Methodology, Project administration, Software,

Frontiers in Molecular Biosciences 09 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1452290
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Duan et al. 10.3389/fmolb.2024.1452290

Writing–original draft. WT: Formal Analysis, Methodology,
Software, Writing–original draft. ZL: Formal Analysis,
Writing–original draft. YL: Conceptualization, Investigation,
Resources, Supervision, Visualization, Writing–review and editing.
LX: Conceptualization, Resources, Supervision, Validation,
Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was
received for the research, authorship, and/or publication
of this article. This study was supported by Henan
province Science and Technology Research project
(232102310099).

Acknowledgments

We thank all authors listed in this manuscript and member of
our lab for their helpful suggestions.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.2024.
1452290/full#supplementary-material

References

Anderson, N.M., and Simon,M. C. (2020).The tumormicroenvironment.Curr. Biol.
30, R921–R925. doi:10.1016/j.cub.2020.06.081

Bai, R., Chen, N., Li, L., Du, N., Bai, L., Lv, Z., et al. (2020). Mechanisms of
cancer resistance to immunotherapy. Front. Oncol. 10, 1290. doi:10.3389/fonc.2020.
01290

Basu, A., Bodycombe, N. E., Cheah, J. H., Price, E. V., Liu, K., Schaefer, G.
I., et al. (2013). An interactive resource to identify cancer genetic and lineage
dependencies targeted by small molecules.Cell 154, 1151–1161. doi:10.1016/j.cell.2013.
08.003

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol. 17, 218. doi:10.1186/s13059-016-
1070-5

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I.,
et al. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 74, 229–263.
doi:10.3322/caac.21834

Carithers, L. J., Ardlie, K., Barcus, M., Branton, P. A., Britton, A., Buia, S. A., et al.
(2015). A novel approach to high-quality postmortem tissue procurement: the GTEx
project. Biopreserv Biobank 13, 311–319. doi:10.1089/bio.2015.0032

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711,
243–259. doi:10.1007/978-1-4939-7493-1_12

Deng, S., Shi, J., Sun, Y., Quan, Y., Shen, Z., Wang, Y., et al. (2023). Development of
a monoclonal antibody to ITPRIPL1 for immunohistochemical diagnosis of non-small
cell lung cancers: accuracy and correlation with CD8(+) T cell infiltration. Front. Cell
Dev. Biol. 11, 1297211. doi:10.3389/fcell.2023.1297211

Deng, S., Zhang, Y., Wang, H., Liang, W., Xie, L., Li, N., et al. (2024). ITPRIPL1
binds CD3ε to impede T cell activation and enable tumor immune evasion. Cell 187,
2305–2323 e33. doi:10.1016/j.cell.2024.03.019

Giraldo, N. A., Sanchez-Salas, R., Peske, J. D., Vano, Y., Becht, E., Petitprez, F.,
et al. (2019). The clinical role of the TME in solid cancer. Br. J. Cancer 120, 45–53.
doi:10.1038/s41416-018-0327-z

Goldman, M. J., Craft, B., Hastie, M., Repečka, K., McDade, F., Kamath, A., et al.
(2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nat.
Biotechnol. 38, 675–678. doi:10.1038/s41587-020-0546-8

Goubet, A. G., Rouanne, M., Derosa, L., Kroemer, G.A.-O., and Zitvogel, L.A.-O.
(2023). From mucosal infection to successful cancer immunotherapy. nature reviews
urology 20, 682–700. doi:10.1038/s41585-023-00784-5

GTEx Consortium (2020). The GTEx Consortium atlas of genetic regulatory effects
across human tissues. Science 369, 1318–1330. doi:10.1126/science.aaz1776

Huang, X., Nepovimova, E., Adam, V., Sivak, L., Heger, Z., Valko, M., et al.
(2024). Neutrophils in Cancer immunotherapy: friends or foes? Mol. Cancer 23, 107.
doi:10.1186/s12943-024-02004-z

Javed, S. A., Najmi, A., Ahsan, W., and Zoghebi, K. (2024). Targeting PD-1/PD-L-
1 immune checkpoint inhibition for cancer immunotherapy: success and challenges.
Front. Immunol. 15, 1383456. doi:10.3389/fimmu.2024.1383456

Kim, J. Y., Lee, K. H., Eisenhut, M., van der Vliet, H. J., Kronbichler, A., Jeong, G. H.,
et al. (2019). Efficacy of cancer immunotherapy: an umbrella review ofmeta-analyses of
randomized controlled trials. Cancers (Basel) 11, 1801. doi:10.3390/cancers11111801

Kudo, M. (2020). Limited impact of anti-PD-1/PD-L1 monotherapy for
hepatocellular carcinoma. Liver Cancer 9, 629–639. doi:10.1159/000512170

Li, K., Luo, H., Huang, L., Luo, H., and Zhu, X. (2020). Microsatellite instability: a
review of what the oncologist should know. Cancer Cell Int. 20, 16. doi:10.1186/s12935-
019-1091-8

Liu, C. J., Hu, F. F., Xie, G. Y., Miao, Y. R., Li, X. W., Zeng, Y., et al. (2023). GSCA:
an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and
immunogenomic levels. Brief. Bioinform 24, bbac558. doi:10.1093/bib/bbac558

Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A.
D., et al. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-
quality survival outcome analytics.Cell 173, 400–416 e11. doi:10.1016/j.cell.2018.02.052

Muthukutty, P., Woo, H. Y., Ragothaman, M., and Yoo, S. Y. (2023). Recent
advances in cancer immunotherapy delivery modalities. Pharmaceutics 15, 504.
doi:10.3390/pharmaceutics15020504

Neophytou, C. M., Panagi, M., Stylianopoulos, T., and Papageorgis, P. (2021). The
role of tumor microenvironment in cancer metastasis: molecular mechanisms and
therapeutic opportunities. Cancers (Basel) 13, 2053. doi:10.3390/cancers13092053

Ock, C. Y., Keam, B., Kim, S., Lee, J. S., Kim, M., Kim, T. M., et al. (2016). Pan-cancer
immunogenomic perspective on the tumor microenvironment based on PD-L1 and
CD8 T-cell infiltration. Clin. Cancer Res. 22, 2261–2270. doi:10.1158/1078-0432.CCR-
15-2834

Oliveira, G., and Wu, C. J. (2023). Dynamics and specificities of T cells in cancer
immunotherapy. Nat. Rev. Cancer 23, 295–316. doi:10.1038/s41568-023-00560-y

Palmeri, M., Mehnert, J., Silk, A. W., Jabbour, S. K., Ganesan, S., Popli, P., et al.
(2022). Real-world application of tumor mutational burden-high (TMB-high) and
microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers.
ESMO Open 7, 100336. doi:10.1016/j.esmoop.2021.100336

Peterson, C., Denlinger, N., and Yang, Y. (2022). Recent advances and challenges in
cancer immunotherapy. Cancers (Basel) 14, 3972. doi:10.3390/cancers14163972

Pizzato, M., Li, M., Vignat, J., Laversanne, M., Singh, D., La Vecchia, C., et al. (2022).
The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1452290
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1452290/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1452290/full#supplementary-material
https://doi.org/10.1016/j.cub.2020.06.081
https://doi.org/10.3389/fonc.2020.01290
https://doi.org/10.3389/fonc.2020.01290
https://doi.org/10.1016/j.cell.2013.08.003
https://doi.org/10.1016/j.cell.2013.08.003
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.3322/caac.21834
https://doi.org/10.1089/bio.2015.0032
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.3389/fcell.2023.1297211
https://doi.org/10.1016/j.cell.2024.03.019
https://doi.org/10.1038/s41416-018-0327-z
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1038/s41585-023-00784-5
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1186/s12943-024-02004-z
https://doi.org/10.3389/fimmu.2024.1383456
https://doi.org/10.3390/cancers11111801
https://doi.org/10.1159/000512170
https://doi.org/10.1186/s12935-019-1091-8
https://doi.org/10.1186/s12935-019-1091-8
https://doi.org/10.1093/bib/bbac558
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.3390/pharmaceutics15020504
https://doi.org/10.3390/cancers13092053
https://doi.org/10.1158/1078-0432.CCR-15-2834
https://doi.org/10.1158/1078-0432.CCR-15-2834
https://doi.org/10.1038/s41568-023-00560-y
https://doi.org/10.1016/j.esmoop.2021.100336
https://doi.org/10.3390/cancers14163972
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Duan et al. 10.3389/fmolb.2024.1452290

for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 10, 264–272.
doi:10.1016/S2213-8587(22)00035-3

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., et al. (2011).
pROC: an open-source package for R and S+ to analyze and compare ROC curves.BMC
Bioinforma. 12, 77. doi:10.1186/1471-2105-12-77

Said, S. S., and Ibrahim, W. N. (2023). Cancer resistance to immunotherapy:
comprehensive insights with future perspectives. Pharmaceutics 15, 1143.
doi:10.3390/pharmaceutics15041143

Sanmamed, M. F., and Chen, L. (2018). A paradigm shift in cancer immunotherapy:
from enhancement to normalization. Cell 175, 313–326. doi:10.1016/j.cell.2018.
09.035

Singh, M., Morris, V. K., Bandey, I. N., Hong, D. S., and Kopetz, S.
(2024). Advancements in combining targeted therapy and immunotherapy
for colorectal cancer. Trends Cancer 10, 598–609. doi:10.1016/j.trecan.2024.
05.001

Sjöstedt, E., Zhong, W., Fagerberg, L., Karlsson, M., Mitsios, N., Adori, C., et al.
(2020). An atlas of the protein-coding genes in the human, pig, andmouse brain. Science
367, eaay5947. doi:10.1126/science.aay5947

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249.
doi:10.3322/caac.21660

Wang, D. R., Wu, X. L., and Sun, Y. L. (2022). Therapeutic targets and biomarkers of
tumor immunotherapy: response versus non-response. Signal Transduct. TargetTher. 7,
331. doi:10.1038/s41392-022-01136-2

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott,
K., et al. (2013). The cancer Genome atlas pan-cancer analysis project. Nat. Genet. 45,
1113–1120. doi:10.1038/ng.2764

Xia, A., Zhang, Y., Xu, J., Yin, T., and Lu, X. J. (2019). T cell dysfunction
in cancer immunity and immunotherapy. Front. Immunol. 10, 1719.
doi:10.3389/fimmu.2019.01719

Yang, G., Zheng, R. Y., and Jin, Z. S. (2019). Correlations between microsatellite
instability and the biological behaviour of tumours. J. Cancer Res. Clin. Oncol. 145,
2891–2899. doi:10.1007/s00432-019-03053-4

Yang,W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot,H., Forbes, S., et al. (2013).
Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res. 41, D955–D961. doi:10.1093/nar/gks1111

Yi, M., Nissley, D. V., McCormick, F., and Stephens, R. M. (2020). ssGSEA score-
based Ras dependency indexes derived from gene expression data reveal potential
Ras addiction mechanisms with possible clinical implications. Sci. Rep. 10, 10258.
doi:10.1038/s41598-020-66986-8

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Zhang, Z., Liu, S., Zhang, B., Qiao, L., Zhang, Y., and Zhang, Y. (2020).
T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 8, 17.
doi:10.3389/fcell.2020.00017

Zheng, L., Qin, S., Si, W., Wang, A., Xing, B., Gao, R., et al. (2021). Pan-
cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474.
doi:10.1126/science.abe6474

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1452290
https://doi.org/10.1016/S2213-8587(22)00035-3
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3390/pharmaceutics15041143
https://doi.org/10.1016/j.cell.2018.09.035
https://doi.org/10.1016/j.cell.2018.09.035
https://doi.org/10.1016/j.trecan.2024.05.001
https://doi.org/10.1016/j.trecan.2024.05.001
https://doi.org/10.1126/science.aay5947
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41392-022-01136-2
https://doi.org/10.1038/ng.2764
https://doi.org/10.3389/fimmu.2019.01719
https://doi.org/10.1007/s00432-019-03053-4
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/s41598-020-66986-8
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fcell.2020.00017
https://doi.org/10.1126/science.abe6474
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences

	1 Introduction
	2 Materials and methods
	2.1 ITPRIPL1 expression analysis
	2.2 Methylation and CNV analysis
	2.3 Univariate cox regression and survival analysis
	2.4 ROC curve analysis
	2.5 Immune infiltration analysis
	2.6 Correlation of ITPRIPL1 expression with tumor mutation burden, tumor microsatellite instability and immune-related genes
	2.7 Drug sensitivity analysis
	2.8 Statistical analysis

	3 Results
	3.1 ITPRIPL1 expression in various human normal and tumor tissues
	3.2 Methylation and CNV profile of ITPRIPL1 in pan-cancer
	3.3 Prognostic value of ITPRIPL1 in pan-cancer
	3.4 Correlation between ITPRIPL1 expression and immune infiltrating level and immune-related genes in pan-cancer
	3.5 Correlation analysis of ITPRIPL1 with TMB and MSI in TCGA pan-cancer
	3.6 Correlations between ITPRIPL1 and drugs

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

