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Introduction: Long non-coding RNAs (lncRNAs) play crucial roles in genetic
markers, genome rearrangement, chromatin modifications, and other biological
processes. Increasing evidence suggests that lncRNA functions are closely
related to their subcellular localization. However, the distribution of lncRNAs in
different subcellular localizations is imbalanced. The number of lncRNAs located
in the nucleus is more than ten times that in the exosome.

Methods: In this study, we propose a new oversampling method to construct a
predictive dataset and develop a predictive model called LncSTPred. This model
improves the Adaboost algorithm for subcellular localization prediction using
3-mer, 3-RF sequence, and minimum free energy structure features.

Results and Discussion: By using our improved Adaboost algorithm, better
prediction accuracy for lncRNA subcellular localization was obtained. In
addition, we evaluated feature importance by using the F-score and analyzed the
influence of highly relevant features on lncRNAs. Our study shows that the ANA
featuresmay be a key factor for predicting lncRNA subcellular localization, which
correlates with the composition of stems and loops in the secondary structure
of lncRNAs.

KEYWORDS

lncRNA, subcellular localization, oversampling method, algorithm improvements,
model biological interpretation

1 Introduction

Messenger RNAs (mRNAs) encode proteins that underlie various organismal
phenomena, although they only represent about 2% of the total RNA. The remaining
98% consists of non-coding RNAs (ncRNAs), whose functions are still poorly understood
(Birney et al., 2007; Wang and Li, 2013). Studies suggest that ncRNAs, especially long
non-coding RNAs (lncRNAs) exceeding 200 base pairs in length, play vital roles in
regulating biological activities (Atianand et al., 2017; Batista and Chang, 2013). The
research on lncRNAs has expanded beyond their traditional biological functions to disease
studies, particularly in cancer development and diagnosis (Esguerra and Eliasson, 2014;
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Flynn and Chang, 2014; Kameswaran and Kaestner, 2014; Li et al.,
2014; Wang and Chang, 2011; Yan et al., 2015). Some lncRNAs
are considered biomarkers for carcinogenesis and show differential
expression between cancer and normal tissues (Harries, 2012;
Kitagawa et al., 2012). For instance, overexpression of H19 can
accelerate bladder and prostate cancer metastasis (Luo et al.,
2013; Zhu et al., 2014a; Zhu et al., 2014b), while AFAP1-AS1
is highly expressed in esophageal adenocarcinoma (Wu et al.,
2013), and Gas5 is underexpressed in breast cancer (Mourtada-
Maarabouni et al., 2009; Wu et al., 2013). Even the Oncotype Dx
genes has been used as a strong evidence for the risk classification
in NCCN clinical guidelines (Sparano et al., 2018).

Based on the relative abundance of lncRNAs (Derrien et al.,
2012), 17% of lncRNAs are enriched in the nucleus and 4%
in the cytoplasm, each with distinct functions. In the nucleus,
lncRNAs can act as molecular scaffolds (Clemson et al., 2009),
assist in alternative splicing (Gonzalez et al., 2015), regulate
chromatin remodeling (Jiang et al., 2015; Kugel andGoodrich, 2012;
Martens et al., 2004; Melé and Rinn, 2016; Saxena and Carninci,
2011), and modify DNA/RNA methylation (Yang et al., 2015). In
the cytoplasm, they can regulate translation, promote or inhibit
mRNA degradation (Gong and Maquat, 2011; Wilusz, 2016), and
affect gene expression by binding to miRNAs (Lauressergues et al.,
2015; Paraskevopoulou et al., 2013;Wang et al., 2010; K;Wang et al.,
2015; Winter et al., 2009). Therefore, studying the subcellular
localization and functions of lncRNAs is crucial (Bridges et al.,
2021; Miao et al., 2019). Although experimental methods like
lncRNA-FISH have been widely used, their utilization is
hindered by their time-consuming nature, high cost, and low
efficiency (L. Wang et al., 2015; Xiao et al., 2015). Consequently,
many researchers have directed their efforts toward developing
more reliable and efficient predictive models to address these
shortcomings.

In recent decades, several predictive models for lncRNA
subcellular localization have been proposed. For instance,
lncLocation incorporates sequential, physicochemical, and
structural features in its predictive model construction. It leverages
the SVM algorithm along with binomial distribution and iterative
feature selection techniques to create predictive models (Feng et al.,
2020). In iLoc-lncRNA 2.0, the predictive model is built using
8-mer features and the mRMR method, which results in 1407
features and subsequently submitted to the SVM algorithms for
model construction (Zhang et al., 2022). DeepLncLoc transforms
sequence information into a matrix using word2vec, then uses a
CNN to construct the DeepLncLoc model (Zeng et al., 2022).

In this paper, we presented the LncSTPred, an Adaboost-
based model for predicting and interpreting lncRNA subcellular
localization based on primary RNA sequences in the
RNALocate database. Our model supports five localization types
including nucleus, cytoplasm, cytosol, ribosome, and exosome,
accommodating both sequence and structure features. To solve
the imbalance of categories, we employed Borderline-SMOTE,
ADASYN, and UNCERTAIN WEIGHT on the training set.
We enhanced Adaboost using maximum likelihood estimation
and selected key features through the F-score. Subsequently, we
conducted bioinformatics analyses of sequence and structure
distributions of these features. An overview of the research process
is depicted in Figure 1.

2 Materials and methods

2.1 Collection and preprocessing of dataset

The data used in this study related to subcellular localization
of LncRNA in mammals, including Homo sapiens and Mus
musculus, andwere extracted from theRNALocate database (https://
www.rnalocate.org/download) (Cui et al., 2022). Researchers can
download all raw lncRNAs in the “Download and API” page.
Subsequently, we retained lncRNAs related to H. sapiens and M.
musculus, and excluded lncRNAs without sequence annotation
information and those with multiple subcellular localizations.
Redundant sequences were then removed using the CD-HIT
program (Huang et al., 2010; Li and Godzik, 2006) with a threshold
set at 80%. Subsequently, categories with sample sizes below 10 were
excluded, resulting in 1342 lncRNAs across five distinct categories.
These categories included 673 lncRNAs located in the nucleus,
407 in the cytoplasm, 152 associated with ribosomal localization,
94 within the cytosol, and 16 originating from exosomes, as
depicted in Table 1.

2.2 Nucleotide composition features

The nucleotide compositional features from lncRNA are
significant features used to characterize the biological function of
RNA and their species. Sequences are represented by Equation 1.
The traditional method of sequence feature extraction is K-
mer. Additionally, we aimed to extract sufficient information
from the sequences. Therefore, we used reading frame (RF)
features to further characterize the sequences, following the
methodology outlined by Rainey et al. (Rainey and Repka,
2013). For convenience of description, we defined the 3-RF
by Equation 2.

Sequence = {N1,N2,N3,N4,N5,…,NM‐4,NM‐3,NM‐2,NM‐1,NM} (1)

3−RFy1 = {[N1 ,N2,N3] , [N4,N5,N6]…,[NM−5,NM−4 ,NM−3] , [NM−2,NM−1,NM]}

3−RFy2 = {N1, [N2,N3,N4], [N5,N6,N7],…,[NM−4,NM−3,NM−2],NM−1,NM} (2)

3−RFy3 = {N1,N2, [N3,N4,N5] , [N6,N7,N8] ,…[,NM‐3 ,NM‐2,NM‐1] ,NM}

Where the sequence described a lncRNA with a length of
M base pairs. N i denoted the type of nucleotide at position
i. {N1, N2, N3, … , NK} was called k-mer, and there were 4k

combinations in total. 3−RFyx represented the combination of three
reading frames in different starting points. x = {1,2,3} represented
the first, second and third position respectively, y = {1,2, 3, 64} were
the 64 combinations of 3-mer respectively.

2.3 Minimum free energy

The formation of base pairs can reduce the energy of RNA
molecules and make the structure more stable. Therefore, based
on the core idea of the minimum free energy (MFE) and the
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FIGURE 1
The flowchart of predictive model construction.

TABLE 1 Number of lncRNA in each subcellular localization.

Subcellular localization Mammals Homo sapiens Li’s Dataset Zeng et al. (2022) Lin’s Dataset Su et al. (2018)

Nucleus 673 342 325 156

Cytoplasm 407 71 328 426

Cytosol 94 69 88

Ribosome 152 132 88 43

Exosome 16 16 28 30

Zuker algorithm, we defined the global minimum value of the
overall energy as Equation 3 (Zuker and Stiegler, 1981; Zuker and
Sankoff, 1984).

Eij = [Ei+1,j−1 + αij,min (Ei+k + βk),min (Ei+k,j−l + γk+l),

min (Ei+k,j +Ei,j−l + εk+j+i−l),δj−l]
(3)

Where, αij represents the stacking energywhen i and j are paired.
βk,γk,εk,andδk describe the energy of the bulge loop, interior loop,
multi-branched loop, and hairpin loop, respectively. In the actual
calculation, Zuker’s algorithm uses four free energy functions and
five dynamic programming matrices. The minimum free energy of
the RNA sequence is similar to the backtracking process of the
Nussinov base pair maximization algorithm.

2.4 Feature importance

The F-score is a simple and effective feature selection method
which measures the discriminative power of features across
categories (Xie et al., 2010). The F-score of the ith feature in a

multi-classification problem can be defined as Equation 4:

F(i) =
∑l

j=1
(x(j)i − xi)

2

∑l
j

1
nj−1
∑

nj
k=1(x
(j)
k,i − xi)

2 (4)

Where l denotes the total number of categories. nj represents the
number of samples in the jth class. The xi and x(j)i are the average
values of the ith feature across the entire dataset and the jth data
subset, respectively. x(j)k,i is the kth observation of the ith feature in
the jth class

2.5 Sample balance process

Machine learning algorithms generally assume that positive and
negative datasets are balanced.However, when the ratio of positive to
negative sets exceeds 1:3, the results will be affected. To address this
imbalance, two main approaches can be employed. One is adjusting
sample weights in the algorithm, such as using the class-weight
parameter in the XGBoost algorithm to balance different categories.
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FIGURE 2
Demonstration of sample distribution at various stages of the balancing process and predictive model results (A). The distribution of the original dataset
through K-means clustering. X-axis and Y-axis were projection of the data onto the first dimension of a reduced-dimensional space after using PCA
(Principal Component Analysis) (B) The distribution of the balanced dataset through K-means clustering. (C) The distribution of the predictive dataset
through K-means Clustering. (D) ROC curve of all categories and averaged cases.

Theother is oversampling theminority categories to equalize sample
numbers across categories. In this study, the ratio of nuclear to
ribosome samples exceeds 1:4, and the ratio of nuclear to exosome
samples is more than 1:40, making it challenging to find a suitable
class-weight to characterize this complex distribution.Therefore, we
constructed a predictive dataset using two oversampling methods,
Borderline-SMOTE (Han et al., 2005) and ADASYN (He et al.,
2008), for sample balancing. By focusing on borderline instances,
Borderline-SMOTE generally produces better classification results
compared to SMOTE, particularly when theminority class is at high
risk of misclassification. It also reduces the risk of overfitting by
concentrating on the most informative samples. ADASYN focuses
on the more difficult minority class samples. This targeted approach
ensures that the classifier is better trained on challenging examples,
improving its robustness and generalizability. Finally, we filtered
with the UNCERTAIN WEIGHT (Kendall et al., 2018) method.

2.6 Predictive model algorithm

The Boosting algorithm constructs high-accuracy classifiers by
combining several base classifiers, each with moderate accuracy.
Adaboost exemplifies this strategy and is known for its high accuracy
and ability to model complex split interfaces through nonlinear
combination. In the Adaboost algorithm, each base classifier

generates a predicted classification result and a self-correction
factor to estimate the reliability of the classification (Schapire and
Singer, 1999).

In the original binary classification problem solved in the
Adaboost algorithm, the coefficients αt corrected for the basic
classifier during iteration are shown in Equation 5:

αt =
1
2
log
(1− εt)

εt
(5)

εt is the classification error rate of the base classifier on the training
dataset. This coefficient ensures that, in each round, the classifier’s
accuracy is at least greater than random probability, which is more
than 1/2 in a binary classification problem. To extend this to amulti-
classification problem, after ensuring the training data is balanced,
the accuracy of the base classifier must be at least 1/k, where k
is the number of categories. In this paper, k = 5. To ensure that
each round prioritizes minimizing the classification error of the
base classifier with the highest weight in the final classifier, we
refined it as Equation 6:

αt =
1
2
log
(1− εt)

εt
+ log (k− 1) (6)

In multi-classification Adaboost, we update the sample weights
and decrease the weight of the previously classified base classifier.
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TABLE 2 LncRNA subcellular localization dataset.

Name Origin Dataset Balanced Dataset Predictive Dataset

Nucleus 673 673 673

Cytoplasm 407 407 407

Cytosol 94 407 394

Ribosome 152 407 363

Exosome 16 320 302

TABLE 3 The predictive results of each subcellular localization.

Sample Balance Subcellular localization Sn(%) Sp(%) MCC ACC (%)

Before

Nucleus 98.36 89.28 0.885

86.58

Cytoplasm 95.33 94.97 0.891

Cytosol 47.38 98.51 0.604

Ribosome 32.97 98.87 0.456

Exosome 6.25 99.92 0.173

After

Nucleus 58.54 90.22 0.606

94.14

Cytoplasm 75.81 93.25 0.684

Cytosol 98.39 99.59 0.965

Ribosome 99.57 98.34 0.885

Exosome 99.19 99.79 0.989

TABLE 4 Predictive results using different feature combinations in
10-fold cross validation.

Feature Sn(%) Sp(%) ACC (%) MCC

3-mer 54.31 70.23 68.35 0.467

3-RF 62.53 81.23 80.35 0.673

3-mer+3-RF 84.74 95.05 92.81 0.771

3-mer+3-RF + MFE 86.38 96.67 94.14 0.829

The weight of correctly classified samples is shown as Equation 7:

ω′t+1,i = ωt,i × exp(−αt) (7)

Theweight of wrongly classified samples is shown as Equation 8:

ω′t+1,i = ωt,i × exp(αt) (8)

To ensure the weights sum to 1, the weights ωt+1,i of round t+1
in the training set after the round t are shown as Equation 9:

ωt+1,i =
ω′t+1,i
∑N

i
ω′t+1,i

(9)

2.7 Performance evaluation

We use the Specificity (Sp), Sensitivity (Sn), Accuracy (ACC),
and Matthews Correlation Coefficient (MCC) to measure the
performance of the predictive model. Evaluation indicators can be
written as Equation 10:

Sn =
TP

TP+ FN
; Sp =

TN
TN+ FP

ACC = TP+ FN
TP+TN+ FP+ FN

MCC = TP×TN− FP× FN

√(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
(10)

In the context of classification issue, TP represents the number
of correctly recognized positives, FN represents the number of
positives recognized as negatives, FP represents the number of
negatives recognized as positives, and TN represents the number
of correctly recognized negatives. Additionally, the ROC (Receiver

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1452142
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Hu et al. 10.3389/fmolb.2024.1452142

TABLE 5 Comparison with existing theoretical algorithm.

Method Subcellular Localization Sp(%) Sn(%) MCC ACC (%)

SVM

Exosome 66.92 65.53 0.262

73.37

Cytosol 73.74 64.17 0.306

Cytoplasm 92.15 48.32 0.445

Ribosome 88.47 59.23 0.451

Nucleus 94.11 25.85 0.274

Random Forest

Exosome 85.91 75.95 0.550

84.77

Cytosol 85.91 72.85 0.427

Cytoplasm 95.85 76.70 0.604

Ribosome 91.69 68.06 0.557

Nucleus 96.85 48.32 0.553

Xgboost

Exosome 96.97 94.44 0.906

90.22

Cytosol 92.31 93.54 0.810

Cytoplasm 92.78 89.47 0.804

Ribosome 91.26 78.13 0.680

Nucleus 93.88 51.35 0.519

LncSTPred

Exosome 99.79 99.19 0.989

94.14

Cytosol 99.58 98.39 0.965

Cytoplasm 93.25 75.81 0.684

Ribosome 98.34 99.57 0.885

Nucleus 90.22 58.54 0.606

Operating Characteristic) curve is established to evaluate the
model’s robustness. The AUC value, ranging from 0 to 1, represents
the area under the ROC curve. A larger AUC value indicates better
model performance.

3 Results

3.1 Description of predictive dataset

In our original dataset, the ratio of ribosome samples, cytosol
samples, and exosome samples to nucleus samples exceeded 1:3,
the distribution of original dataset is shown in Figure 2A. To
address this imbalance, we oversampled cytoplasm, ribosomes, and
exosomes. The balanced dataset was analyzed using the K-means
clustering method with all features, including k-mer, k-RF, and
MFE. Figure 2B illustrates the K-means clustering results after data
balancing. Clusters three and five corresponded to nuclear and
cytoplasmic localization, while clusters 1, 2, and four represented

ribosome, cytosol, and exosome localizations, respectively. After
preprocessing, which involved removing outliers and de-linearizing
the dataset, the revised K-means clustering results were shown
in Figure 2C. In this updated dataset, clusters 1 to five denoted
ribosome, cytoplasm, exosome, cytosol, and nuclear localizations,
respectively, the processing of the dataset is shown in Table 2.

3.2 Predictive modelling process

The predicted results, both before and after sample balancing,
were shown in Table 3. From Table 4, we found that exosomes,
cytosols, and ribosomes were well-identified in the new predictive
dataset. Notably, despite the limited data in the sample, these
categories exhibited improved predictive results compared to those
that were not oversampled. This result suggested that oversampling
may enhance the model’s ability to capture more biological
characteristics, thus improving prediction accuracy.This aligns with
the concept of biological diversity. Furthermore, the ROC curve
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TABLE 6 Comparison with previous state-of-the-art methods.

Method Subcellular Localization Sp(%) Sn(%) MCC ACC (%)

iLoc-lncRNA
2.0

Nucleus 95.59 91.03 86.59

91.60
Cytoplasm 98.96 94.37 94.59

Ribosome 99.01 83.72 85.71

Exosome 99.36 66.67 83.33

lncLocation

Nucleus — 74.19 95.83

87.78
Cytoplasm — 100 85.00

Ribosome — 55.56 100

Exosome — 33.33 100

LncSTPred in Lin’s dataset

Nucleus 78.74 90.06 60.48

90.76
Cytoplasm 95.20 75.12 67.06

Ribosome 99.84 97.67 97.53

Exosome 99.84 96.67 92.90

LightGBM-LNCLOC

Nucleus — 90.00 42.90

70.60

Cytoplasm — 40.00 66.67

Cytosol — 50.00 100

Ribosome — 40.00 40.00

Exosome — 42.90 100

LncSTPred in Li’s dataset

Nucleus 81.25 81.29 61.39

87.68

Cytoplasm 87.82 60.49 50.92

Cytosol 93.58 53.62 45.31

Ribosome 94.51 47.69 43.03

Exosome 99.83 6.25 75.43

was shown in Figure 2D. From Figure 2D, we found that the AUC
values for exosome, ribosome, cytoplasm, cytosol, and nucleus are
0.99, 0.94, 0.93, 0.84, and 0.77, respectively. These precise predictive
outcomes indicate that themodel has a commendable generalization
ability across diverse subcellular localization categories.

3.3 Predictive modelling process

The predicted results, both before and after sample balancing,
were shown in Table 3. In Table 3, we found that exosomes, cytosols,
and ribosomes were well-identified in the new predictive dataset.
Notably, despite the limited data in the sample, these categories
exhibited improved predictive results compared to those not
oversampled. This result suggested that oversampling may enhance
the model’s ability to capture more biological characteristics, thus

improving prediction accuracy. This aligns with the concept of
biological diversity. Furthermore, ROC curve analysis is conducted,
and the results were shown in Figure 2D. In Figure 2D, we found
that the AUC values for exosome, ribosome, cytoplasm, cytosol,
and nucleus are 0.91, 0.89, 0.99, 0.93, and 0.77, respectively.
These precise predictive outcomes indicate that the model has
a commendable generalization ability across diverse subcellular
localization categories.

To identify which feature categories most influence the
predictive model’s results, we conducted separate experiments on 3-
mer, 3-RF, MFE, and various combinations of these features. Table 4
shown the predictive results of different feature combinations in
the LncSTPred model. We observed that the model’s performance
using sequential features closely resembles that of other theoretical
models. However, a substantial improvement in efficacy was
achieved by adding the MFE feature.
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FIGURE 3
Top 10 features of the LncSTPred model.

FIGURE 4
Biological analysis of the 10 most important features: (A) Frequency distribution of triplex nucleotides in lncRNA sequences. The X-axis represents 64
types of triplexes nucleotides, and the Y-axis represents the frequency of triplexes. (B) Three types of substructures in the secondary structure
of lncRNAs.

3.4 Comparison with other researchers’
methods

Over the past few decades, numerous lncRNA predictive
models have emerged. In this study, we conducted a comparative

analysis between LncSTPred and existing theoretical algorithms,
as well as other scholars’ predictive models to assess LncSTPred’s
performance. Our comparison included Support Vector
Machine (SVM), Random Forest, and XGBoost, with results
presented in Table 5. MCC is a comprehensive performance metric
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TABLE 7 Frequency distribution of triplex nucleotide in secondary structure components.

AUA (%) ACA (%) AGA (%) UAU (%) Random combination (%)

Junction 1.632 3.081 2.998 1.382 1.563

Loop 1.414 2.691 1.938 1.415 1.563

Stem 1.613 2.232 3.347 2.101 1.563

that effectively reflects the classification ability of the model,
especially when dealing with unbalanced datasets. Despite both
XGBoost and LncSTPred employing the boosting integration
strategy, LncSTPred displayed higher accuracy and generalization
ability, particularly when using class-weight parameters for
predicting lncRNA subcellular localization. This improvement is
attributed to optimized error recognition and adjustments in error
recognition point weights within LncSTPred.

We compared LncSTPred with machine learning-based models,
specifically iLoc-lncRNA 2.0 and LightGBM-LNCLOC, using
datasets from these models for performance validation (Table 6).
Both iLoc-lncRNA 2.0 and LncSTPred demonstrated high precision
in ribosome and exosome categories, with superior sensitivity
in predicted cytoplasmic and nuclear localizations. In contrast,
lncLocation, which did not use oversampling, showed comparable
accuracy in nuclear and cytoplasmic categories but lower
performance in ribosomal and exosomal predictions. This indicated
that oversampling enhanced lncRNA subcellular localization
prediction, particularly improved sensitivity in the cytoplasmic
category compared to lncLocator. The analysis of classification
datasets highlighted LncSTPred’s robust adaptability across various
datasets, affirming its reliability as a classification model.

3.5 Analysis of feature importance

We computed the feature importance in LncSTPred using
the F-score described in Section 2.4, and the results were
depicted in Figure 3. The top 10 combinations were “ACA” and
“AUA” in the third RF, “AUA”, “AGA”, and “UCA” in the second RF,
and “GGU” in the first RF. Additionally, “AUA”, “UAU”, “CGG”, and
“GGC” were prominent in the 3-mer. The triplex nucleotide “ANA”
had a significant impact on predictive modeling. To explore the
potential effects of these 10 triplexes on the subcellular localization
of lncRNAs, we analyzed their distribution in lncRNA sequences
and secondary structure substructures.

Figure 4A displayed the frequency of triplex nucleotides in the
original dataset. Interestingly, ACA and AGA frequencies exceeded
the random probability, whereas AUA and UAU frequencies were
below the random probability in the lncRNA sequences.

We used the RNAfold software to predict the secondary
structure of lncRNA (Gruber et al., 2008). The output was in dot-
bracket format, where '...' denoted loop structures, ')))' or '((('
represented stem structures, and '..(', '..)',').. ', or '(..' indicated
junction structures. Figure 4B displayed three distinct substructures
observed in the secondary structure. A frequency analysis of these
substructure types was conducted, and the results were presented

in Table 7. Analysis of Table 7 revealed specific enrichments: ACA
in the junction, and AGA and TAT in the stem structures.
While the frequency of ATA in the predictive dataset was
lower than that of random combinations, ATA, ACA, and AGA
predominantly appeared at critical positions within the junction
and stem substructures of the lncRNA secondary structure. These
findings suggested the significant contributory role of ANA in the
construction of RNA secondary structures.

4 Discussion

In recent years, the recognition of lncRNA subcellular
localization has garnered increasing attention, as researchers have
realized its potential for discovering the function of LncRNA. In this
paper, we propose an improved algorithm for predicting lncRNA
subcellular localizations, called LncSTPred.

During the establishment of the predictivemodel, we recognized
the significant impact of the predictive dataset on the results. To
address this, we utilized three oversampling methods—Borderline-
SMOTE, ADASYN, and UNCERTAIN WEIGHT—to oversample
the sample sets. This ensured that the predictive model for each
category of samples could be sufficiently trained to achieve the
best predictive results. Constructing LncSTPred using the improved
Adaboost algorithm, we achieved 94.14% accuracy in the 5-
categorical dataset and 90.76% accuracy in Lin’s 4-categorical
dataset. This demonstrates that our improvements to the Adaboost
algorithm, combined with data balancing, can provide better results
than using the class-weight parameter in other algorithms.

Several studies have explored the impact of specific nucleotide
combinations on RNA secondary structure. For example, the
predictions of Smith et al. accurately identify mascRNA and a
conserved hairpin upstream of Evolutionarily Conserved Structures
(ECS). They observed that “ANA” triplex nucleotides predominantly
appear at the stem-loop junction in ECS (Smith et al., 2013).
Novikova et al., through biochemical probing, delineated a
complex, two-dimensional structure comprising distinct sub-
domains, including helical segments, terminal loops, internal
loops, and linker regions. This study underscores that purine-rich
sequences are highly conserved and often situated in single-stranded
regions such as terminal and internal loops (Novikova et al.,
2012). These findings corroborate the involvement of “ANA”
triplex nucleotide composition in lncRNA secondary structure.
Additionally, we performed a quantitative analysis of feature
importance to identify the most significant features. By analyzing
the frequency of triplex nucleotides and the stem-loop structures
of lncRNA, we aimed to understand the relationship between
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significant features and lncRNA subcellular localization. Our
analysis revealed a bias in the frequency of ANA nucleotide
combinations within triplex nucleotides and the substructural
frequency of stem-loop structures. These findings suggest that
ANA nucleotide combinations play key roles in the composition of
lncRNA secondary structures. In previous studies, Constanty et al.
found that conserved U-rich and A-rich motifs were associated
with specific processing and localization functions of lncRNAs
like NEAT1 and MALAT1 (Constanty and Shkumatava, 2021).
Furthermore, Cai et al. provided evidence that specific triplexes,
including ACA, ATA, and AGA, significantly influence localization
patterns by analyzing various sequences (Cai et al., 2023). Lyu et al.
emphasized the relevance of trinucleotide propensity and position-
specific features in recognizing lncRNA subcellular localization,
demonstrating that specific triplexes like UAU could play a role in
these predictions (Lyu et al., 2023).

Although LncSTPred has achieved better results in predicting
lncRNA subcellular localization, we still face some challenges. On
the one hand, the training process of AdaBoost is more complex,
leading to significantly higher computing time compared to other
prediction models. On the other hand, LncSTPred currently only
accurately predicts lncRNAs only localized to a single subcellular
localization, whereas many lncRNAs are localized in multiple
subcellular localizations. Therefore, we will focus on lncRNA
subcellular localization prediction in the future, further enhancing
the accuracy of predicting subcellular localization of lncRNAs and
the prediction of multi-localized lncRNAs using deep learning
algorithms.
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