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Introduction: This study applies NMR-based metabolomics to investigate
neovascular age-related macular degeneration (nAMD), addressing challenges
in patient management, disease progression evaluation, and treatment response
assessment. A two-year follow-up of 29 nAMD patients undergoing treatment
provided 231 time points for analysis.

Methods:Over the two-year period, 11males and 18 females (aged 61–92 years)
were monitored, yielding 231 time points. At each time point, blood samples
for NMR metabolomics analysis, clinical measurements (e.g., lactate, glucose
levels, HDL/LDL cholesterol, and blood pH), and optical coherence tomography
(OCT) images were collected to evaluate the progression of choroidal
neovascularization. 1H-NMR metabolomic analysis led to the quantification of
over 60metabolites and of themajor lipoprotein fractions. Bothmultivariate and
univariate statistical approaches tailored for longitudinal data were employed
to identify biomarkers correlating metabolomic changes with ocular alterations
during disease progression.

Results and Discussion: Despite a rigorous analytical workflow enabling
precise quantification of over 60 metabolites and the application of advanced
statistical tools for longitudinal data, achieving consistent results across
the cohort proved challenging. The dataset’s heterogeneity, reflecting real-
world clinical practice, complicated the derivation of global conclusions.
Personalized analyses on a patient-by-patient basis successfully identified
individual correlationmodels, but a universal model remained elusive. This study
highlights the inherent challenges of translating findings fromcontrolled settings
into clinical practice, where factors such as visit frequency, treatment variability,
and disease heterogeneity limit data uniformity. We emphasize the importance
of experimental design in longitudinal studies, particularly when dealing with
incomplete and variable datasets. We are therefore confident that, considering
both the challenges and difficulties identified in this work and the preliminary
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results presented here, it is possible to develop predictive and individualized
models for monitoring patients with nAMD. Such models could greatly assist
clinicians in providing better care for these patients.

KEYWORDS

age-related macular degeneration, metabolomics, NMR, personalized and precision
medicine, biomarkers

1 Introduction

Age-related macular degeneration (AMD) is the leading cause
of vision loss among the aging population in Western countries
(Colijn et al., 2017). The prevalence of AMD increases with age, and
given the growth of our life expectancy, the number of projected
cases is likely to rise in a dramatic manner. In 2014, Wong et al.
projected an increment of 47% between 2020 and 2040, reaching
288 million cases (Wong et al., 2014). Clinically, AMD is classified
into three stages, and 90% of the vision loss caused by AMD
happens in the last stage, named neovascular nAMD (Bressler et al.,
2011). nAMD is a degenerative disease. Its onset may be subtle to
detect for either patient or physician, and the most advanced stages
are characterized by the occurrence of macular neovascularization
(MNV), which leads to alternating active bleeding and stationary
phases. The earlier nAMD is diagnosed, the later the patient will
undergo severe and irreversible visual impairments. For this reason,
efforts are beingmade to raise awareness of regular nAMDscreening
among people aged 50 and over. Thus, in addition to the general
ophthalmologic examination procedures, routine home monitoring
between visits is recommended. The diagnostic protocol includes
fluorescein angiography (FA) and optical coherence tomography
(OCT), and it is generally assumed that better outcomes are achieved
with better initial visual acuity (VA) and, therefore, an earlier
diagnosis. Unfortunately, lesions are still usually detectedwhen there
is already considerable damage causing severe visual impairment.
Herein, when nAMD is diagnosed, the only way for the patient to
recoverVAand stop disease progression is an intravitreal injection of
the inhibitor of the angiogenic protein vascular endothelial growth
factor (VEGF).

Intravitreal anti-VEGF therapy is the only treatment that
allows nAMD patients to recover visual acuity. Indeed, the current
therapeutic strategy for managing neovascular AMD is a protocol
of a fixed monthly dose of antiangiogenic drug for a 96-week
follow-up period (Brown et al., 2006; Rosenfeld et al., 2006).
Despite the risk of overtreatment and safety (infection, retinal
detachment, development of geographic atrophy (GA), and systemic
side effects), monthly dosing guarantees the maximum efficacy in
terms of VA benefits (Schmidt-Erfurth et al., 2014; Meyer et al.,
2011; Grunwald et al., 2014; Modi et al., 2015). Some studies
investigated the possibility of an individualized dosing regimen based
on imaging parameters to overcome these safety problems (an “as
needed” approach named PRN). The results of these less frequent
but more adequate regimens were first encouraging in clinical
studies but failed in real-case clinical practice (Lalwani et al.,
2009; Holz et al., 2011; Writing Committee for the UK Age-
Related Macular Degeneration EMR Users Group, 2014;
Chakravarthy et al., 2013). This failure could be related to the fact
that OCT-based monitoring is usually applied in a less rigorous

manner than in clinical trials. Analysis of OCT images is a
fastidious, operator-dependent, and time-consuming process that
is not adapted to “real-life” clinical practices. Indeed, the adaptation
and personalization of the treatment require a better definition
and characterization of the patients’ status to predict the short-
term pathology evolution. Then, sensitive and robust biomarkers
or predictive models based on OCT and/or biofluid analyses are
mandatory in order to allow precise individual management of the
disease and help clinicians manage a PRN approach.

As part of the omics sciences, clinical metabolomics is the
comprehensive measurement of the metabolites present in a
biological human sample. Its main aims are to measure changes
in metabolite levels that occur in response to a pathological stress
or condition (Clish, 2015; Nicholson et al., 1999) and to provide
sets of biomarkers able to assess disease diagnostic, evolution,
and/or treatment responses at a personalized level (Ashrafian et al.,
2021). Used in combination with cutting-edge big data analysis
tools (Blaise et al., 2021; Liland, 2011) to decipher the complex
architecture of the generated datasets, this methodology could lead
to an innovative representation of an individual’s health status
(Clish, 2015). In the context of AMD, several studies were conducted
to investigate metabolome changes among diverse biofluids of AMD
patients at different stages of the disease (Brown et al., 2018).
These approaches identified different compounds belonging to the
oxidative stress and energetic pathways, to inflammatory processes,
or to lipid metabolism, but none were found to be used in clinics
(Osborn et al., 2013; Laíns et al., 2018; Mitchell et al., 2018), and
none explored patient treatment and follow-up.

In a previous study, through the use of an untargeted NMR-
based metabolomics approach, we reported the functional role of
lactate in AMD and highlighted the changes among the lipoprotein
profile toward an increase of VLDL moieties both associated with
MNV development and progression (Lambert et al., 2020). Based
on these results, these two biomarkers could be expected to provide
a new tool to monitor the evolution of the pathology and the
occurrence ofMNV active bleeding phase and pave the way to a new
patient follow-up and personalized medicine approach for nAMD
treatment (Lambert et al., 2020). Indeed, as these biomarkers are
associated with the MNV status of nAMD patients, a predictive
model that includes lactate level and lipoprotein profile could be a
keystone for an innovative approach to PRN clinical decisions for
intravitreal injections of anti-VEGF. As PRN regimens have been
shown to lack “handleable”markers of pathology, wewere convinced
that discovering new MNV biomarkers in nAMD could fill the
gap between scientific evidence and clinical practices (Schmidt-
Erfurth et al., 2014).

Therefore, we planned to verify the applicability and validity
of the previously identified biomarkers in a study closer to clinical
reality. For this purpose, we followed 29 patients with established
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nAMD and under anti-VEGF treatments over 2 years. At each
ophthalmologic visit, OCT pictures, VA data, clinicians’ comments,
and blood samples were collected. NMR-based metabolomics
analyses of the blood samples, as well as measurement of some
selected biochemical analyses, were performed. This study seeks
to implement an innovative longitudinal approach within a real-
world clinical context, aiming to correlate metabolome dynamics,
particularly metabolites previously identified as biomarkers of
the active phase of nAMD, with longitudinal changes in OCT
and/or VA markers used to detect and predict the onset and
progression of MNV. By applying this metabolomic approach in
a less controlled but clinically relevant setting, we aim to provide
clinicians with insights to develop more personalized and effective
treatment protocols. This real-world application will help uncover
the opportunities, challenges, and limitations of usingmetabolomics
for monitoring patients with AMD.

2 Material and methods

2.1 Study approval

The human study was conducted under protocols approved
by the Ethical Committee of the University Hospital of Liège,
B707201523572 (Belgium). Informed consent was obtained from all
study subjects before participation.

2.2 Patient selection, clinical data, and
sample collection

Over a 2-year period, 11 male and 18 female patients, aged
61–92 years (mean age: 76.83 ± 7.6 years, mean BMI 26 ± 3),
were followed in this study. All participants, free from metabolic
diseases such as diabetes (self-reported and no medical record
found) and no severe obesity, were diagnosed with exudative AMD
and enrolled in a monthly intravitreal anti-VEGF injection regimen
(ranibizumab or aflibercept). At each visit, OCT retinal images
were collected, and visual acuity (VA) assessments were performed
by practitioners. The VA outcomes and OCT analyses were used
by the practitioners to adjust the treatment regimen and schedule
subsequent visits. No special interventions were applied for this
study, as we aimed to replicate routine patient care as closely
as possible. At each ophthalmologic visit, blood samples (plasma
EDTA for metabolomics analysis, serum for lactate, glucose, and
HDL/LDL cholesterol, and whole blood for pH determination)
and OCT images were collected (total number of visits = 231).
For each visit, lactate concentration, blood pH, and HDL/LDL
cholesterol were measured. Lactate, glucose levels, and HDL/LDL
cholesterol values were obtained using dedicated enzymatic dosage
kits from Alinity®(lactic acid, ultra HDL, direct LDL, and glucose
reagent kits). Blood pH was measured using a GEM 500 Premier
analyzer (Werfen, Barcelona, Spain). Collected plasma samples were
conserved at −80°C prior to sample preparation and proton NMR
metabolomics analysis.

FIGURE 1
Markers of nAMD that can be highlighted from OCT images of retinas.
Intraretinal cystoid fluid (IRC) accumulation is highlighted in red,
subretinal fluid (SRF) in green, and measurement of the largest
pigment epithelial detachment (PED) in yellow (Schmidt-Erfurth and
Waldstein, 2016).

2.3 OCT images analysis

Analysis of OCT images (Figure 1) is crucially important
because it gives access to the best visualization of the pathological
event occurring during the follow-up of patients and to the
pathological status of the participants. All data were acquired
on a Heidelberg HRA + OCT (Heidelberg Engineering Gmbh,
Heidelberg, Germany) by the Experimental Ophtalmology
Laboratory of Liège team. Images were analyzed by our team
following guidelines described in the literature to assess AMD status
(Schmidt-Erfurth et al., 2014; Schmidt-Erfurth and Waldstein,
2016). Three main markers were measured and followed: intra-
retinal cystoid fluids (IRC), pigment epithelium detachment (PED),
and subretinal fluids (SRF). IRC and PED measurements are used to
monitor nAMD progression. Indeed, the presence of IRC fluids
is linked to MNV processes that are the hallmark of nAMD,
and PED growth is reported to be associated with long-term
vision loss in a flexible treatment regimen (Schmidt-Erfurth and
Waldstein, 2016). On the other hand, the presence of SRF fluids is
a sign of healing retinas and is the only measured parameter that
is correlated with improved visual function (Schmidt-Erfurth and
Waldstein, 2016).

At each ophthalmologic visit, 12 scans were taken from each
eye. From each scan, the surface of IRC spots (in mm2), SRF
spots (in mm2), and the largest PED section were evaluated from
the initial pigment epithelium baseline (in μm). Measurement
was performed using Heidelberg Eye Explorer software. From
the 231 visits, a total of 5,544 images (12 scans/eye/visit) were
generated, and 16,632 measures (three measures/scan/eye/visit)
were obtained, providing a single value for each parameter at each
single time point.
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2.4 NMR metabolomic analysis

1H-NMR metabolomic and lipoprotein profiles were obtained
from plasma samples collected during the 2 years of follow-up
and conserved at −80°C. For the lipoprotein profile, determination
samples were measured at 298K on a Bruker Neo spectrometer
(Bruker, Billerica, United States) operating at 500.13 MHz for proton
detection. The NMR instrument is equipped with a TCI 5 mm
cryoprobe equipped with Z gradients. Maleic acid was added
to samples as an internal standard, allowing quantification, and
trimethylsilyl-3-propanoic acid-d4 sodium salt (TMSP) was used
for ppm calibration. For sample preparation, 500 μL of plasma was
mixed with 200 μL of deuterated phosphate buffer, to which was
added 100 μL of 35 mMmaleic acid solution and 30 μL of 10 mg/mL
TMSP solution in D2O. The final solution was vortexed and placed
in a new 5 mm NMR tube before being analyzed. For the NMR
analysis, an edited 1D-CPMG sequence with water pre-saturation
was used: RD-90-(-t-180-t)n with a relaxation delay of 4 s (RD),
a spin echo delay of 300 ms (t), and a 128 loop (n). The pulse for
water pre-saturation occurred during the relaxation time (RD), and
the number of scans was fixed at 64. The total acquisition time is
3.1981568 s with four dummy scans.

For metabolite quantification, all NMR samples prepared as
described above and already analyzed for lipoprotein profile
evaluation were filtered through a wash-up 10K filter (AMICON
ultra 0.5 mL-10 KDa filter tube, Merck-Millipore, Burlington,
Massachusetts, United States) for 60 min at 13,000 rpm at 4°C. A
270 μL aliquot of filtrate was added to 30 μL of calcium formate
5 mM solution and placed in 3 mm NMR tubes. All samples were
measured at 298K on a 700 MHz Bruker Avance HD spectrometer
operating at 700.17 MHz for proton detection. The sequence used is
a 1D NOESY sequence with pre-saturation for urine samples. The
NOESY-presat experiment used an RD-90°-T1-90°-Tm-90°-acquire
sequence with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms,
and a fixed T1 delay of 4 μs. A water suppression pulse was placed
during the relaxation delay (RD). The number of transients was
64 (64K data points), and four dummy scans were chosen. The
acquisition time was fixed to 3.2769001 s. Internal standards and
deuterated buffers were purchased from Sigma-Aldrich (St. Louis,
Missouri, United States).

2.5 Lipoprotein profile evaluation

The NMR lipoprotein profile was evaluated from data recovered
using 1D-CPMG NMR analysis of plasma samples using the
methods previously described (Lambert et al., 2020). Then, we
determined the chemical shift corresponding to four lipoprotein
fractions: F1 = 0.92 ppm (mainly VLDL), F2 = 0.91 ppm (mainly
IDL and LDL), F3 = 0.89 ppm (mainly LDL and IDL), and F4
= 0.88 ppm (mainly HDL). The signal intensity at these different
chemical shifts was measured and then normalized to the total
intensities of all fractions to reduce the impact of the global
lipoprotein concentrations that could differ between samples. Thus,
the obtained values represent a fraction of the total signal and
allow a comparison of the different lipoprotein profiles across all
plasma samples.

2.6 ChenomX® metabolite quantification

Metabolite concentration was measured by 1H-NMR using
spectral data from the analysis of filtered plasma samples. Spectral
deconvolution was achieved using the ChenomX®NMR v9 suite
software (Chenomx Inc., Edmonton, AB, Canada) in profiler mode
by manually fitting the resonance peak of 61 metabolites. The
quantification was based on the signal of the chosen reference,
calcium formate at 8.46 ppm (a list of all fitted metabolites and
chemical shift cluster is available in Supplementary Table S1). As
we wanted to measure the lipoprotein profile on the sample, it was
not possible to follow the ChenomX®SOP guidelines. Thus, the
concentration values obtained are not absolute but rather relative.
This step allowed us to analyze the variations among the different
metabolite concentrations among all measured samples.

2.7 Statistical analysis

All analysesweremade using dedicatedRpackages, and rawdata
are accessible in the following GitHub repository: https://github.
com/MS28uliege/nAMD-FiBMS-data.git.

For unsupervised principal component analysis (PCA), the
MixOmics R package was used to generate the model and the score
and loading plots representing the variation within the dataset. Data
were centered and scaled to unit variance for model generation.
For the model generated from the entire dataset (with all patients
combined), multilevel normalization was applied to account for
the longitudinal nature of the data. This method is based on the
“split-up” variation approach developed by Westerhuis et al. (2010)
and allows extracting the stimulation effect from each subject
by removing the between-subject effect. Hence, we get a better
representation of the change effects within the subject on the score
plot than by considering all sources of variation.

To investigate correlations betweenOCTmarkers and quantified
metabolites, we applied PLS2 regression using the MixOmics R
package.Model performance, using the perf() function, for each PLS
regression was assessed through 10-fold cross-validation, repeated
five times, to evaluate the R2 and overall Q2 of the model. In cases
where the sample size was too small for 10-fold cross-validation (n
< 10), such as for PS32, we used 5-fold cross-validation instead.
During this analysis, correlations with absolute values exceeding
0.5 were considered noteworthy, and those greater than 0.7 were
considered strong.

Other correlation analyses and plots were generated using
the cor() function in R, with correlations typically considered
interesting if their absolute value exceeded 0.5 and considered strong
if above 0.7.

3 Results

Our cohort comprises 29 selected patients, monitored over
231 time points, with an average of 7.9 visits per patient across
2 years of treatment. Three datasets were generated from this
cohort (see Figure 2). The first consists of ophthalmologic data
(IRC, SRF, PED, and VA: means and range for each patient; see
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FIGURE 2
Overview of the study strategy and workflow, progressing from the validation of previously identified biomarkers for individual monitoring and cohort
analysis to the identification of new blood biomarkers associated with patient status. This approach aims to establish an innovative healthcare model
for nAMD patients, leveraging rational monitoring of blood marker levels to track disease progression and predict treatment responses.

Supplementary Table S3). The second includes the quantification
data of previously identified biomarkers, namely, lactate levels
and lipoprotein profiles (fraction F1/VLDL to F4/HDL), but
also blood pH and HDL/LDL cholesterol ratio (the means and
range for each patient are in Supplementary Table S4). The third
combines NMR-measured metabolome data from metabolomics
with biochemical data and gives us an overview of the global
metabolome (a table of mean relatives concentration values
and standard deviations for each metabolite is provided in
supplemental info Supplementary Table S2; mean metabolite
concentrations and standard deviations for each individual are
available in the following GitHub repository: https://github.
com/MS28uliege/nAMD-FiBMS-data.git). In this study, having
relative quantification values is not a limitation because we are
focused on variations in metabolite concentrations in relation to
disease progression.

As shown in Figure 2, our data analysis and utilization strategy
were sequential and guided by the results of each analytical step,
beginning with a comprehensive approach that utilized all available
data to develop a more personalized strategy.

To align with the project’s primary goal, validating previously
identified biomarkers, our initial approach focused on using these
molecules, specifically lactate levels and lipoprotein profiles, to
examine correlations between their variations and changes in AMD
OCTmarkers.Thesemarkers (IRC, PED, SRF, andVA) offer insights
into the patient’s condition and disease progression. Establishing a
correlation between changes in lactate levels and lipoprotein profiles
with IRC and PED would validate our previous findings and could
pave the way for a novel follow-up strategy. This strategy would
utilize these markers to assess patient status and predict treatment
responses.

To gain a more comprehensive understanding of the metabolic
changes occurring during the progression and treatment of
the disease, we also aimed to track the evolution of patients’
metabolomic profiles using our NMR-based metabolomics datasets.
With innovative data visualization tools, we sought to identify
patient clusters through unsupervised statistical analysis, grouping
patients who exhibit similar disease progression patterns. This
approach would help classify patients and identify those who may
not respond to intravitreal anti-VEGF injections.
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Additionally, by leveraging the extensive data generated from
both metabolite quantification and OCT biomarker analysis, we
aimed to explore the potential relationships between metabolite
levels and OCT marker values. If such links could be established,
they might enable the identification of new biomarkers capable
of explaining patients’ MNV status. Together with the previously
identified biomarkers, this would allow us to build a more robust
and comprehensive tool for evaluating patient status, predicting
treatment responses, and gaining further insights into the complex
pathological processes underlying the progression and treatment of
this degenerative disease.

Finally, driven by the results obtained with our previous
approaches, we plan to evaluate our methodology at an individual
level, exploring whether applying this strategy on a personalized
basis could enhance the understanding of disease evolution. As
patients may progress differently, an individualized approach could
prove more effective or, at the very least, validate our findings
when investigating the relationship between metabolomic and OCT
marker data.

3.1 Previously identified biomarkers poorly
correlated with OCT markers of nAMD

Correlation analysis investigating potential relationships
between OCT/VA disease markers and previously identified
biomarkers (lactate and lipoprotein profile) revealed only weak
associations between the two datasets (Supplementary Figure S1A).
Additionally, progression patterns for both disease
markers and biomarker values varied widely among
individuals (Supplementary Figures S1B–E), with no discernible
trends emerging from these parameters.

3.2 Untargeted NMR-base metabolomics
failed to identify an informative cluster of
patients

The multilevel normalization provided a good representation
of the individual evolution, as no strong cluster composed
of samples issued from the same individual can be observed
(Supplementary Figures S2A, C). Nevertheless, the generated
PCA models highlighted poor variability among our datasets
(expl. var: PC1 = 18%, PC2 = 8%, PC3 = 5%, and PC4
= 5%). Indeed, the PCA score and loading plot were
poorly informative as no group of patients seems to exhibit
a distinct metabolic profile from the remaining cohort
(Supplementary Figures S2C, E). Moreover, as depicted by
the loading plot of PC1 to 4 and their explained variance
(Supplementary Figures S2D, F), the variations of metabolites
among the dataset were quite weak. It is important to note
that PCA led us to identify two outliers that were removed
from the dataset used for the following statistical analysis.
These two outliers account for two samples from the same
patient and presented abnormal overall levels of metabolite
concentrations (Supplementary Figure S3). No outliers are
associated with the highest BMI score.

3.3 Metabolite levels show a weak
association with OCT markers when
analyzing all patients collectively

Pearson correlation tests were performed to analyze linear
association or dependency betweenNMRmetabolite concentrations
and ophthalmologic data (OCT markers and VA). From this
analysis, none of the metabolomics variables were interestingly
correlated with theOCT or visual acuity data, indicating weak linear
associations between those parameters (Supplementary Figure S4).

To consider the multivariate aspect of the dataset, partial
least square regression 2 (PLS2) was performed to highlight
putative interesting metabolites able to describe variations among
OCT data. From the PLS model, the score plot (Figure 3A)
represents all samples regarding the measured NMR metabolites
concentrations (X) and measured parameters in OCT images
(Y). The corresponding correlation circle plots (Figure 3B) show
the variables correlated with the different components. Some
variables appear weakly correlated with IRC and SRF values
and could be worth considering (i.e., 3-methyl-2-oxovalerate,
methylmalonate, acetone, 2-hydroxybutyrate, fumarate, isovalerate,
and 3-hydroxybutyrate). A relevance network plot (Figure 3C) can
be generated in which the correlations are represented. In this plot,
we can identify some features that are correlated to IRC and SRF
values. It is important to note that the tuning threshold for the
relevant association network had to be lowered to generate the
network. Indeed, no association stronger than 0.31 was found. From
this analysis, some interesting features can be highlighted, such
as metabolites correlated with important OCT markers for AMD
evolution.However, these results should be interpretedwith caution,
as the cutoff for variable selection in the PLS analysis was lowered,
suggesting that the findings may lack robustness.

3.4 Individual follow-up of AMD patients

As seen in the previous analysis, the significant heterogeneity
within the cohort regarding patients’ disease progression may
hinder the development of robust and global statistical models to
describe and predict nAMD evolution. When comparing changes
in OCT values across selected patients, it is clear that each patient
exhibited a unique pattern of disease progression. Some patients
experienced notable changes during their follow-up, while others
remained quite stable throughout the study.The variability in patient
progression complicates the identification of comparable individuals
in terms of disease status, injection frequency, visit frequency, and
the severity of the pathology at enrollment (all summarized in
Supplementary Table S3). To more effectively capture the metabolic
variability of patients during treatment and follow-up and to link this
variability with their pathological conditions, we aimed to conduct
individual analyses for each patient. When generating the heatmap
of OCT values for all patients, it is evident that some patients exhibit
higher values than others, indicating that they are progressing from
different baseline conditions. Moreover, the recovery, stabilization,
or deterioration of ocular health varies among patients, with each
experiencing different levels of progression (Figure 4). Analysis
of these heatmaps highlighted the heterogeneity in patient status
and progression. Some patients showed negative changes during
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FIGURE 3
(A) Score plot for the PLS analysis (model performance is assessed using R2 values for each Y and overall Q2 values; component 1: IRC. R2 = 0.167, PED.
R2 = 0.005, SRF. R2 = 0.14, totalQ2 = 0.089; component 2: IRC. R2 = 0.005, PED. R2 = 0.007, SRF. R2 = 0.001, totalQ2 = −0.039) of data coming from the
measured metabolites (X) and OCT data (Y). (B) Correlation circle plot showing the correlations between variables and components (explain how to
use). (C) Relevance network representing the interesting correlations between metabolites and OCT measurements. The color of the lines indicates the
strength of the correlation (correlations with an absolute value smaller than 0.5 are not worth considering). Notes: bubble dimensions are a function of
the name variables and have no statistical significance. In these score plots, the sample code XXYY represents the individual number and the visit
number (e.g., 0101 for the first visit of patient 01).

their follow-up (Figures 4B–D), while others remained relatively
stable, displaying neither significant improvement nor deterioration
throughout the study period (Figures 4E–G). In general, it appears
that each patient follows their own trajectory in terms of care and
disease progression, with few changes in visual status from one visit
to the next.

This heterogeneity in disease progression and treatment
responses led us to consider a more individualized approach to
the data. To explore whether our approach can yield meaningful
results at the individual level, we applied the statistical workflow
independently for each patient. Specifically, PCA analyses were

conducted to represent the metabolic evolution of each patient
throughout the follow-up period and highlight visits that exhibited
similar outcomes. This approach might allow us to build a statistical
model capable of representing patient status and analyzing their
trajectories. Additionally, PSL2 regression analyses were employed
to investigate the relationship between variations in themetabolome
of each patient and the evolution of data obtained from the analysis
of recorded OCT images (IRC, PED, and SRF). Several relevant
examples are presented below. We showcase the results from two
categories of patients in this paper: those who exhibited changes in
status during their follow-up (PS16, PS32, and PS06) and those who
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FIGURE 4
(A) Heatmap of OCT data for all patients; heatmaps of OCT data for individual patients: (B) PS16, (C) PS32, (D) PS06, (E) PS01, (F) PS02, and (G) PS12.
The x-axis represents each visit, while the y-axis shows the measured OCT values. In the right panels (B–G), it is evident that patients evolved at
different rates. Some patients appear to show positive improvements in their status during follow-up (B–D), while others exhibit minimal changes over
the study period (E–G). These distinct progression patterns are apparent when examining patients individually but are not reflected in the left panel (A),
where individuals with high OCT marker values dominate, masking the smaller changes in those with lower values.

did not show notable changes in their OCT markers throughout
the study (PS01, PS02, and PS12). These examples were selected
because they provide a clear and visual representation of the
phenomena discussed in this section. Indeed, the classification is
quite subjective for the other members of the cohort, and results
are more confusing and more difficult to interpret, as discussed
below. A summary of relevant results from all patients is provided
in Supplementary Tables S5, S6. Supplementary Table S5 includes
the performance test results for all PLS models generated for
each patient, while Supplementary Table S6 lists the identified
metabolites that show a strong correlation (|cor| ≥ 0.7) with at
least one of the measured OCT parameters. Specific examples are
discussed below, followed by a general overview of the entire cohort.

The PCA analysis performed on the NMR metabolite profiles
of patients PS16, PS32, and PS06 revealed interesting results
as the metabolomics data evolved in line with the patients’
ophthalmological progression. In fact, by examining each score
plot (Figure 5A for PS16, 5c for PS32, and 5d for PS06), we can
observe that samples with higher IRC values, probably the most
representative marker of the disease evolution, tend to form distinct
clusters compared to those from visits associated with lower values.

This data representation provides a clear way to identify periods
of positive progression in patients and may be useful for analyzing
their overall evolutionary trend (for loading plots of PCA models,
please refer to Supplementary Figure S5).

For example, a closer look at the PCA score plot for PS16
reveals that all samples with elevated IRC values are positioned
on the left side of PC1, which accounts for 30% of the total
variance. This suggests that these events have a significant
impact on the patient’s metabolism. Moreover, the PLS2 models
generated showed satisfactory performance (Table 1), and the
PLS correlation network ((Figure 5B for PS16, 5d for PS32, and
5e for PS06) offered a clear visualization of the metabolites
strongly correlated with the disease markers (IRC, PED, and
SRF). Several metabolites with strong correlations were identified
(Table 2).

Although the analysis of the previous group of patients was
relatively insightful, applying our analytical strategy to patients
who exhibited minimal changes during the follow-up proved
less informative. In the PCA score plots (Figures 6A,C,D) and
the loading plot (Supplementary Figure S6) generated from the
metabolomics data of these patients, no clear distinction could
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FIGURE 5
(A) PCA score plot illustrating the evolution of patients PS16, (C) PS32, and (E) PS06. Sample colors correspond to the IRC values from each visit, with
higher values represented in red and smaller values in blue. (B) PLS2 variable correlation network, showing the relationship between metabolite
variables and OCT data for patients PS16, (D) PS32, and (F) PS06. Only correlations with an absolute value ≥0.7 are considered strong. Model
performance is evaluated by overall Q2 values, as detailed in Table 1, and metabolites, as shown in Table 2.

be made between samples with positive or negative outcomes
based on the IRC parameter, which is the best indicator of disease
progression. This observation can also be made when trying to
represent the evolution of patients based on other OCT parameters
(data not shown). Even when patients experienced extraordinary
events (such as extreme values during a single visit, as seen
for patients PS01 and PS12), these time points did not appear
markedly different fromother visits associatedwith stable outcomes.
Similarly, the PLS2 models produced for these patients showed
globally weaker correlations (Figures 6B,D,E) than those observed
in patients who experienced more significant changes during

the follow-up (Figures 5B,D,E). Moreover, PLS2 models exhibited
poor performance indicators, showing that correlation values that
might appear as strong are not relevant (Table 1). These findings
support our hypothesis that, when considering the entire dataset,
patients with minimal progression reduce the validity of the model,
hindering the identification of meaningful correlations between
nAMD OCT markers (IRC, PED, and SRF) and quantified blood
metabolites.

The statistical workflow described above was applied
individually to each patient within the entire AMD cohort.
Supplementary Tables S5, S6 summarize the overall Q2 PLS2
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TABLE 1 This table shows the PLS2 prediction Q2 values from all models discussed above.

Feature Patients presenting nAMD status evolution Patients without clear nAMD status evolution

PS16 total.Q2 PS32 total.Q2 PS06 total.Q2 PS01 total.Q2 PS02 total.Q2 PS12 total.Q2

IRC 0.4397830 0.1170016 0.1241289 −0.4144425 −0.3759959 −0.3334529

PED 0.3400849 0.5389380 0.1880756 −0.3570862 −0.2153993 −0.3319730

SRF −0.3214319 −0.3976716 −1.1675381 −1.2896416 −1.3308868 0.5713058

IRC range 0.251–4.845 0.025–0.115 0.235–0.680 0.045–8.411 0.000–0.180 20.040–22.385

PED range 360.485–535.333 245.667–273.167 231.750–274.250 409.333–665.667 280.917–540.333 497.750–595.917

SRF range 0.000–0.516 0.005–0.030 0.000–0.010 0.000–0.330 0.315–1.025 20.050–20.080

Positive Q2 values close to 0.5 can be considered a predictive model, while negative Q2 values indicate models that have very poor predictability capacities and are not worth considering.

TABLE 2 This table shows the top five metabolites extracted from the PLS2 correlation network representation discussed above.

Patient Id Top 5 PLS metabolites (corr values/Y)

PS16 3-Methyl-2-oxovalerate (−0.72/IRC; −0.71/PED) - creatine (−0.71/IRC; −0.73/PED) - isoleucine (−0.73/IRC; −0.75/PED) - leucine (−0.69/IRC;
−0.71/PED) - alanine (−0.7/SRF)

PS32 Isopropanol (−0.84/IRC) - ornithine (−0.84/IRC) - O-phosphocholine (0.87/PED) - methanol (−0.87/PED) - methylmalonate (0.84/SRF)

PS06 Leucine (0.69/IRC) - lysine (0.63/IRC) - cysteine (0.64/IRC) - isoleucine (−0.62/SRF) - tryptophan (−0.72/SRF)

PS02 Succinate (0.48/IRC; 0.5/SRF) - choline (−0.69/PED) - proline (−0.48/PED) - sarcosine (0.47/SRF) - tyrosine (0.58/SRF)

PS12 MyoInositol (0.72/IRC; 0.72/PED) - acetone (−0.80/SRF) - 2-oxoisocaproate (−0.82/SRF) - 3-methyl-2-oxovalerate (−0.73/SRF) - methionine (−0.72/SRF)

PS01 Acetone (0.67/PED; 0.60/SRF) - ornithine (0.57/PED; 0.62/SRF) - 3-hydroxybutyrate (0.72/PED) - 3-methyl-2-oxovalerate (−0.60/PED) - propylene glycol
(0.57/PED)

Metabolites that exhibit absolute value |cor| ≥ 0.7 can be considered strongly associated with the effect by the models, while values |cor| < 0.5 are considered weak. The sign of the correlation value
indicates whether the correlation is positive or negative. A positive correlation indicates that concentration values increase in concordance with the measured OCT parameter. Note that strong
correlations do not account for the predictive ability of the selected features. Only features extracted from validated models (models with Q2 ≥ 0.5 from Table 1) can be considered relevant.

values and list the metabolites with strong correlations (|cor|
≥ 0.7) for each model across patients. To illustrate general
trends, Tables 1 and 2 display the performance of the PLS2
models and the top five metabolites most strongly correlated
with OCT data for selected individuals. Notably, some models
demonstrated promising results; for instance, the PLS2 model
for patient PS16 achieved a Q2 value of 0.44, with metabolites
like 3-methyl-2-oxovalerate, creatine, and isoleucine showing
correlations above 0.7.

Patients who experienced progression in their nAMD generally
exhibited stronger PLS model performance than those whose
condition remained stable, as most Q2 values in stable cases
were negative. However, even within the subgroup of patients
with disease progression, the results were inconsistent, with
considerable variation in model performance and the specific
metabolites identified (Supplementary Table S5).This inconsistency
extends across the broader cohort, where no metabolite
was consistently linked to AMD progression in all analyses
(Supplementary Table S6).

For patients displaying typical AMD progression during follow-
up (PS16, PS32, and PS06), the metabolites most strongly associated

with disease progression differed among individuals, with each
model highlighting distinct key metabolites despite encouraging
performance indicators. Conversely, for patients with stable AMD
progression throughout the study (PS01, PS02, and PS12), the
PLS2 models showed limited predictive performance, making it
challenging to draw robust conclusions about the relationship
between metabolite level variations and changes in OCT-based
AMD markers.

4 Discussion

Our previous study, which identified blood lactate level and
lipoprotein profiles as putative biomarkers of the active phase of
nAMD, prompted us to use these metabolites to predict disease
status in a personalized patient follow-up. With this aim, we
designed a longitudinal study that was as close as possible to the
clinical routine care of advanced and exudative AMDpatients under
anti-VEGF treatments. The initial plan was to follow volunteer
patients for 2 years during their ophthalmological care without any
adjustments to their treatment plans or the intervals between visits.
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FIGURE 6
(A) PCA score plot illustrating the evolution of patients PS06, (C) PS02, and (E) PS12. Sample colors correspond to the IRC values from each visit, with
higher values in red and smaller values in blue. (B) PLS2 variable correlation network, showing the relationship between metabolite variables and OCT
data for patients PS01, (D) PS02, and (F) PS12. Only correlations with an absolute value ≥0.7 are considered strong. Model performance is evaluated by
overall Q2 values, as detailed in Table 1, and metabolites, as shown in Table 2.

Using this longitudinal approach, we hoped to identify transitions
between active and stationary phases of the disease at an early stage
and link them to metabolomic markers. Initially, we attempted to
use the previously identified biomarkers, blood lactate levels, and
lipoprotein profiles to represent patient evolution. However, this
approach failed to effectively capture patient progression. When we
developed and applied a statistical workflow to the entire cohort to
identify patient clusters with similar disease progression or to study
potential relationships betweenmetabolite concentration values and
OCT imaging biomarkers, few significant results emerged. This

analysis demonstrated that the substantial heterogeneity within
the cohort concerning disease progression likely impedes the
development of robust and generalizable statistical models to
describe and predict nAMD evolution. For this reason, we shifted
to applying our statistical workflow at the individual level. Although
some encouraging results were observed for certain patients, the
lack of pathological variation in a significant portion of our
dataset limits the development of reliable statistical models. The
small number of patients showing notable results is insufficient
for drawing meaningful conclusions about the entire cohort.
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This issue is further exacerbated by variability in patient follow-
up schedules, with considerable differences in visit timing and,
consequently, the number of recorded time points and events for
each patient (Supplementary Figure S6).

The complexity of clinical data in the treatment of neovascular
age-related macular degeneration (nAMD) is well-documented
in the literature. Indeed, the variability in clinical practices, the
intricacies of the pathology, and the heterogeneity of patient
populations contribute to the generation of heterogeneous and
complex data sets (Daien et al., 2021; Polat et al., 2017). For
instance, studies have shown that real-world treatment regimens
often differ significantly from the rigorous protocols established
in clinical trials, leading to varied outcomes in terms of visit
frequency and the intervals between them (Bulirsch et al., 2022;
Lotery et al., 2017). Clinicians often modify visit schedules based
on each patient’s progression of nAMD, which complicates efforts to
standardize care (Polat et al., 2017).

Unfortunately, our study, which reflects real-world clinical
conditions, has resulted in heterogeneous and complex data sets
due to the variability of clinical practices, the complexity of the
pathology, and the diversity of our patient group. For example,
in terms of the longitudinal aspect, we ultimately obtained a
relatively inconsistent matrix of visit schedules and intervals. This
timing was determined by clinicians based on the progression of
each patient’s nAMD, making it difficult to control and predict.
Consequently, and quite logically, patients who responded well
to treatment had fewer ophthalmological visits than patients who
did not or poorly respond to treatment. This obviously affected
the application of statistical models dedicated to longitudinal
approaches. When considering the evolution of the pathology,
several observations could be made. At the time of entry into
the study, all patients were at varying stages of the disease, with
notably different degrees of ocular damage. Furthermore, over the
2-year follow-up period, we observed minimal changes in their
ocular parameters and disease progression. Therefore, over the
entire cohort, we encountered only a few events leading to a change
in nAMD and patient status. This is undoubtedly due to the very
slow progression of the pathology, the success of anti-VEGF therapy
administered to patients, or a combination of both factors. These
limitations made it especially challenging to distinguish between
active and stationary phases of the disease and to identify transitions
between them. This unpredictability led to complex data structures,
where changes in disease status were often subtle and difficult to
anticipate. Although tracking the dynamics of disease progression
is both highly interesting and important, it encounters challenges
due to clinical practice constraints and the unpredictability
of changes in patient status. Unfortunately, the absence of a
control group and the heterogeneity of patients further complicate
our approach.

The role of lactate and lipoproteins in the management of
nAMD is increasingly recognized in the literature. In our recent
work, we demonstrated that lactate, a byproduct of anaerobic
metabolism, has been proven to be implicated in the formation
of macular neovascularization (MNV), a hallmark of nAMD
(Lambert et al., 2020). Furthermore, recent studies have shown
that lipid metabolism, particularly involving lipoproteins, plays a
crucial role in the pathogenesis of nAMD. For instance, Zhang et al.
identified differentially regulated apolipoproteins and lipid profiles

as potential biomarkers for both polypoidal choroidal vasculopathy
and nAMD, indicating that dysregulation in lipid metabolism
may contribute to disease progression (Zhang et al., 2022).
Moreover, Cheung et al. demonstrated an association between
plasma lipoprotein subfraction concentrations and lipidmetabolism
in relation to age-related macular degeneration, suggesting that
variations in lipoprotein profiles may influence the risk and
severity of nAMD (Cheung et al., 2017).

Despite these data and our previous findings, both in a murine
model and in a human study, no overall correlation was identified
between lactate levels (and lipoprotein profiles) and parameters
related to the patient’s ophthalmological condition across all cases
and visits. Furthermore, when we analyzed our datasets using
an appropriate approach to account for their longitudinal aspect
and to correlate metabolite variations with changes in OCT data
related to AMD status, no consistent results were found, despite
the statistical tests conducted, whether considering all samples
together or individualizing the statistical approach. Thus, while the
individual analysis of single patients led to interesting information,
these results lack coherence when trying to develop a more
global model. Interestingly, we were able to identify metabolites
common to all cases or present in several patients (i.e., 3-methyl-2-
oxovalerate,methylmalonate, acetone, 2-hydroxybutyrate, fumarate,
isovalerate, 3-hydroxybutyrate), which may be correlated with
the ophthalmological data describing the pathology. Although
these data are not statistically significant, they suggest intriguing
avenues for further exploration. Indeed, thesemetabolites have been
implicated in the processes of para-inflammation and inflammation,
which are critical in the development of neovascularization (MNV)
associated with neovascular nAMD. For example, 3-methyl-2-
oxovalerate, a branched-chain keto acid, has been shown to be
significantly elevated in conditions such as impaired fasting glucose
and type 2 diabetes mellitus, which are risk factors for nAMD
(Spanou et al., 2022; Menni et al., 2013). Its accumulation is linked
to metabolic dysregulation, which can exacerbate inflammatory
responses in tissues, potentially contributing to the pathogenesis of
MNV (Sampey et al., 2012). Acetone and 2-hydroxybutyrate are also
noteworthy in the context of inflammation. Acetone, a ketone body,
can influence inflammatory pathways, while 2-hydroxybutyrate has
been recognized for its potential anti-inflammatory properties,
possibly counteracting some of the pro-inflammatory effects of
other metabolites (Wang et al., 2020). The balance between these
metabolites may thus be crucial in modulating the inflammatory
response relevant to MNV.

In addition, the generated individual models are particularly
interesting and represent probably the most relevant point
of this study. Indeed, our analyses show that it is possible
to generate an individual correlation model for each patient
between the ophthalmological data of nAMD and some metabolic
biomarkers. Inter-individual variations due to patient genetic
background, age, response to treatment and lifestyle, and
the heterogeneity of the pathology and its evolution could
mask the intra-individual variations linked to nAMD when
searching for a global model. For instance, the BIOIMAGE
study investigated genetic variants associated with treatment
response to aflibercept, emphasizing the significance of these
biomarkers in patient stratification (Burés Jelstrup et al., 2020).
Additionally, research has shown that specific polymorphisms, such
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as Y402H in the CFH gene, are linked to varied responses to anti-
VEGF treatments, highlighting the necessity of a personalized
approach (Hong et al., 2016; Mohamad et al., 2018). These
findings indicate that genetic factors should be considered to
optimize treatments and improve clinical outcomes. Furthermore,
longitudinal studies have demonstrated variations in functional
and anatomical responses to anti-VEGF therapy depending on
patient baseline clinical characteristics (Tsilimbaris et al., 2016;
Maguire et al., 2016). This underscores the potential value of
an individualized approach, where each patient serves as their
own control, to create more accurate and relevant predictive
models. In this field, significant advancements have been made
to develop robust statistical methodologies aimed at tracking
individual patient evolution over time. In the realm of clinical
metabolomics, the individualized approach to studying disease
progression has garnered significant attention due to its potential
to enhance diagnostic accuracy and treatment efficacy. Traditional
models, which often rely on data aggregated from large cohorts,
may overlook the unique metabolic profiles that characterize
individual patients. This limitation can lead to misdiagnosis and
ineffective treatment strategies, particularly in complex diseases
where metabolic alterations are pivotal to understanding disease
mechanisms and progression (Jacob et al., 2019; Palmnas and
Vogel, 2013; Trivedi D et al., 2017).

Our results align precisely with this ideology. This study
underscores the challenge of creating a global and comprehensive
model using metabolomics to monitor and predict nAMD
progression. These difficulties may stem from the initial
experimental design, which, though well-aligned with clinical
practice, produced incomplete and heterogeneous datasets. It
also reflects the considerable diversity among patients themselves
and the highly variable, often unpredictable disease progression.
Our generated datasets showed limited variability across visits in
both metabolite levels and ophthalmological changes related to
the pathology. Yet, it is precisely these events and changes that
should enable the construction of accurate models. Our analysis
highlights the challenges of translating discoveries from highly
controlled studies into real-world clinical practice, where numerous
parameters, such as visit frequency, treatment adjustments, and
disease progression, cannot be precisely controlled. These findings
emphasize the importance but also the challenges of experimental
design, particularly in longitudinal studies, and underscore the
difficulties in monitoring and predicting patient progression over
time and under treatment.

To develop predictive monitoring models, one solution would
be to study a cohort of naïve patients who are followed from the
initial detection of the pathology. Such patients generally adhere
to standardized protocols in terms of visit frequency and injection
schedules, providing a more consistent framework for analysis. An
extended follow-up period of, for example, longer than 5 years
would likely capture a sufficient number of significant events (such
as transitions between active and inactive phases) to enable the
assessment of potential links between nAMDprogression, treatment
responses, and metabolite levels. This cohort should account for the
slow progression of the disease while also reflecting the realities of
daily clinical practice to provide results that are both translatable and
useful for clinicians.

5 Conclusion

This study raises the question of how metabolomics and its
discoveries can be transferred from benchtop studies to clinical
practices. Indeed, it highlights the complexity involved in designing,
conducting, and valorizing metabolomics research when applied to
slowly progressing and multifactorial diseases like nAMD.

At this stage, our study demonstrates several important points.
First, it appears difficult to establish a global predictive model
for disease progression or patient monitoring or to identify
robust biomarkers that are common to all patients. Second, the
construction of cohorts for longitudinal studies, and especially
the selection of patients, remains challenging, as it is not easy
to predict the future progression of patients, particularly with
respect to treatment responses. Finally, our results reinforce the idea
that this pathology must be approached in a more individualized
manner, with the development of tools and models that allow
for patient stratification and monitoring relative to their own
baseline. Robust predictive models could be developed to monitor
individual changes, flag abnormal trajectories, and predict patient
evolution over time. We anticipated that, provided the appropriate
experimental design was employed, robust predictive models could
be developed, and some of our identified biomarkers could be useful
for this development.

Future studies must account for the slow progression of the
disease, the initial ophthalmological status of patients, and current
patient management practices. They should also be multicentric
to recruit a sufficient number of relevant and representative
cases and use standardized protocols for recruitment, sample
collection, and analysis. It is also essential, as we have done, to
use appropriate and customized statistical tools for individualized
assessments of disease progression, integrating metabolic changes
and disease advancement with advanced data visualization. This
study establishes a clear methodology that effectively identifies
metabolites associated with clinical markers commonly used to
assess patient status, even when working with a limited number
of samples.

We are therefore confident that, considering both the challenges
and difficulties identified in this work and the preliminary results
presented here, it is possible to develop predictive and individualized
models for monitoring patients with nAMD. Such models could
greatly assist clinicians in providing better care for these patients.
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