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Neisseria gonorrhoeae is the causative agent of the sexually transmitted
disease gonorrhea. The increasing prevalence of this disease worldwide, the
rise of antibiotic-resistant strains, and the difficulties in treatment necessitate
the development of a vaccine, highlighting the significance of preventative
measures to control and eradicate the infection. Currently, there is no
widely available vaccine, partly due to the bacterium’s ability to evade
natural immunity and the limited research investment in gonorrhea compared
to other diseases. To identify distinct vaccine candidates, we chose to
focus on the uncharacterized, hypothetical proteins (HPs) as our initial
approach. Using the in silico method, we first carried out a comprehensive
assessment of hypothetical proteins of Neisseria gonorrhoeae, encompassing
assessments of physicochemical properties, cellular localization, secretary
pathways, transmembrane regions, antigenicity, toxicity, and prediction of
B-cell and T-cell epitopes, among other analyses. Detailed analysis of all
HPs resulted in the functional annotation of twenty proteins with a great
degree of confidence. Further, using the immuno-informatics approach, the
prediction pipeline identified one CD8+ restricted T-cell epitope, seven linear
B-cell epitopes, and seven conformational B-cell epitopes as putative epitope-
based peptide vaccine candidates which certainly require further validation in
laboratory settings. The study accentuates the promise of functional annotation
and immuno-informatics in the systematic design of epitope-based peptide
vaccines targeting Neisseria gonorrhoeae.
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GRAPHICAL ABSTRACT

Introduction

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae,
stands as a persistent global health challenge, underscored by its
escalating prevalence and the concerning emergence of antibiotic-
resistant strains (Jefferson et al., 2021). The lack of a viable vaccine
against this sexually transmitted infection further augments the
complexities in disease management. As traditional treatment
options confront diminishing efficacy, it necessitates a paradigm
shift towards preventive measures through vaccination (McIntosh,
2020). Within the context of N. gonorrhoeae, our study addressed
the urgent need for a vaccine by presenting an in silico approach
that integrates two crucial components: functional annotation
of hypothetical proteins and immuno-informatics predictions of
potential vaccine candidates.

Hypothetical Protein (HP) is the term used when a protein
is assumed to be encoded by a well-defined open reading frame
(ORF), but no experimental protein product has been identified
or characterized (Galperin and Koonin, 2004). The majority of
genomes contain approximately fifty percent of the HPs with
proteomic and genomic significance (Nimrod et al., 2008). These
HPs are believed to play crucial roles in the pathogen’s survival
and disease progression. Through accurate annotation of these HPs
new pathways, structures, and function cascades can be identified,
and novel HPs can serve as a marker or target for vaccine or
drug development applications (Desler et al., 2009). More than 800
proteins of N. gonorrhoeae FA 1090 strain are unknown in terms of
their functions and biochemical characteristics.

The hypothetical proteins (HPs) of numerous bacteria, such
as Rhodobacter capsulatus (Mondol et al., 2022), Streptomyces

coelicolor (Ferdous et al., 2020), Chlamydia trachomatis (Li et al.,
2011),Haemophilus influenza (Shahbaaz et al., 2013), etc. have been
thoroughly studied in previous bioinformatics research utilising
structure and sequence-based approaches. To the best of our
knowledge, there have not been any comparable studies on N.
gonorrhoeae. As a result, this study is a groundbreaking attempt to
thoroughly analyse the roles and structures of preservedHPs unique
to N. gonorrhoeae. By performing this analysis, we hope to better
understand the potential roles and significance of these HPs in the
pathogenesis and survival of N. gonorrhoeae, which will help us to
identify potential vaccine candidates and develop new therapeutic
approaches.

The landscape of vaccine development has undergone
transformative changes with the integration of cutting-edge
technologies, prominently featuring Artificial Intelligence and
Machine Learning (ML), within the framework of reverse
vaccinology (Kaushik et al., 2023). Harnessing the power of
bioinformatics tools, advanced algorithms, and comprehensive
genome analysis, in silico approaches offer a promising avenue
for systematically identifying potential vaccine candidates.
By intricately scrutinizing the genomes of pathogens, these
methodologies unveil critical targets for immunogenicity,
thereby enhancing the precision and efficiency of the vaccine
development process (Motamedi et al., 2023).

This approach builds upon foundational research that
highlights the pivotal role of antigenic epitopes in eliciting
robust immune responses against pathogens (Habib et al., 2024).
Our methodology involves a detailed analysis of hypothetical
proteins in N. gonorrhoeae genome, employing sophisticated
AI-powered techniques for annotation, characterization,
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and identifying conserved domains and structural features
essential for the pathogen’s survival (Mazumder et al., 2022).
Furthermore, we investigated physicochemical properties, sub-
cellular localization, allergenicity, antigenicity and virulence factors,
to establish correlations between functional significance and
immunogenic potential, leveraging AI-enabled approaches in
bioinformatics (Chen et al., 2021).

The integration of epitope prediction methods for B-cell
and T-cell epitopes represents an additional layer of analysis.
Advanced AI-driven algorithms which are instrumental in
epitope prediction, provide an intricate understanding of the
immunogenicity of identified proteins, optimizing the selection of
promising vaccine candidates (Ponomarenko et al., 2008; Sanchez-
Trincado et al., 2017). By utilizing these multifaceted analyses,
our in silico strategy, aspires to strategically prioritize
prospective vaccine candidates against N. gonorrhoeae, laying the
foundational groundwork for subsequent rigorous experimental
validation.

Results

Evaluation of hypothetical protein from
Neisseria gonorrhoeae genome

Using data retrieved from the NCBI database, we identified
890 hypothetical protein sequences within the N. gonorrhoeae
genome. To minimize redundancy and obtain a high-quality
dataset for further analysis, we implemented a filtering procedure
detailed in the methods section. This initial step yielded a set
of distinct protein sequences (n = 824). Subsequently, CD-HIT, a
bioinformatics tool adept at eliminating highly similar sequences,
was employed (with default settings such as default sequence
identity cut-off = 0.9) to further refine the dataset. This step
resulted in 632 clusters and we retained one sample sequence
from each cluster, giving a final set of unique protein sequences
(n = 632). These refined sequences were then subjected to a
sequential filter of bioinformatics tools (Supplementary Table S1) to
predict their functional characteristics relevant to N. gonorrhoeae
pathogenesis.

Great degree of confidence (GDC) protein
subset

To ensure high confidence in the predicted protein functions,
a stringent filtering step was implemented. All 632 protein
sequences were analyzed using five bioinformatics tools: CDD-
BLAST, SMART, PFAM, ScanProsite, and InterProScan. Only
proteins with consistent functional predictions across all five tools
were retained for further investigation. This strategic approach
yielded a final set of 20 proteins designated as “Great Degree of
Confidence” (GDC) (Ezaj et al., 2021). This substantial reduction
from the initial set highlights the importance of this stringent
filtering step in identifying a reliable group of twenty proteins for
further studies aimed at elucidating their functional roles in the
bacterium (Naorem et al., 2022; Supplementary Table S2).

Functional annotation of great degree of
confidence (GDC) proteins

Analysis of the twenty identified great degree of confidence
(GDC) proteins using bioinformatics tools (details in Methodology
Section) revealed a diverse functional repertoire depicted in the
pie chart (Figure 1). Notably, this chart represents the predicted
functional distribution and categorization of these GDC proteins.
The most prominent category within the GDC set comprised
uncharacterized proteins (40%). These proteins lack currently
assigned functions in existing databases. Further investigation using
a combination of experimental and computational approaches is
warranted to elucidate their roles in N. gonorrhoeae biology.

Beyond uncharacterized proteins, a range of functional
categorieswere identified, potentially contributing to various aspects
of physiology and pathogenesis by N. gonorrhoeae. Notably, the
presence of proteins associated with virulence (10%) suggests
their potential involvement in disease-causing processes. Transport
proteins (20%) represent another significant category.These proteins
facilitate themovement ofmolecules across the bacterial membrane,
playing a crucial role in nutrient acquisition, waste removal, and
potentially virulence factor secretion.

Other notable categories included Adhesion proteins (10%).
These proteins mediate bacterial attachment to host cells, a
critical step for colonization and pathogenesis. Oxido-reductases
enzymes (5%) participate in electron transfer reactions, essential
for bacterial metabolism and energy production. Proteases (5%)
enzymes cleave protein bonds and may play a role in various
cellular processes, including nutrient breakdown, protein turnover,
and potentially virulence factor activation. Synthases/Hydrolases
were also identified (5%) and may be involved in the synthesis and
breakdown of variousmolecules, potentially contributing to cell wall
maintenance, metabolite production, and other critical functions.

While further investigation is required to determine the specific
functions of these GDC proteins, their diverse repertoire suggests
potential roles in various aspects of N. gonorrhoeae biology and
pathogenesis. Understanding these functions can provide valuable
insights into the mechanisms employed by N. gonorrhoeae to
establish infection and may contribute to the development of novel
therapeutic strategies.

Physicochemical characterization

The Expasy ProtParam server was used to calculate the
physicochemical properties of these twenty GDC proteins. Table1
shows the theoretical iso-electric point (pI), molecular weight
(MW), total amino acid number, Aliphatic index, extinction
coefficient, grand average of hydropathy (GRAVY), total number
of positively and negatively charged residues, and instability index.
These GDC proteins had pI values that ranged anywhere from 5 to
11.29. The amount of light at a given wavelength that is absorbed by
proteins is quantified by their extinction coefficient. The instability
index provides a rough estimate of a protein’s stability in vitro.
Protein with an instability index less than 40 is regarded as stable,
while proteins with an instability index larger than 40 are deemed
unstable. According to this standard, 11 proteins were found to be
stable and 9 to be unstable.
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FIGURE 1
Functional annotation of twenty great degree confidence (GDC) proteins identified in Neisseria gonorrhoeae.

The percentage of a protein that is made up of aliphatic
side chain amino acids is known as its aliphatic index. The
aliphatic index values ranged from 63.57 to 109.63 for these twenty
GDC proteins. The GRAVY score for a peptide or protein was
determined by adding up the hydropathy scores of each amino
acid and then dividing it by the total number of residues in
the query sequence. The GRAVY scores of hydrophobic proteins
are positive, while those of hydrophilic proteins are negative.
Only two GDC proteins (WP_003690500.1 and WP_010359741.1)
were identified to have positive GRAVY scores with values
close to zero.

Sub-cellular localization prediction

Using a variety of bioinformatics tools, the sub-cellular
localization of the GDCHPs was predicted, along with their
solubility, secretion or signaling ability, and potential membrane
helices. Among the twenty GDCHPs, we predicted nine
proteins (WP_010359741.1,WP_003690747.1, WP_010357457.1,
WP_010951062.1, WP_010951199.1, WP_003705520.1, WP_
010951229.1, WP_232469644.1, WP_010951360.1) that are in or
near the outer membrane or periplasmic space of N. gonorrhoeae
(Table 2). Out of these nine proteins, four (WP_010359741.1, WP_
003690747.1, WP_010357457.1 and WP_010951360.1) proteins
possess a consensus signal peptide, ‘a targeting signal’ guiding
the protein to the appropriate location within the cell. Proteins
with signal peptides are often directed to the endoplasmic
reticulum (ER) or other cellular compartments involved in protein
secretion (Supplementary Figure S1).

Further analysis of these four proteins (WP_010359741.1,WP_
003690747.1, WP_010357457.1 and WP_010951360.1) using

SecretomeP 2.0 predicted these proteins to be secretary in
nature. Hence, these proteins have the potential to be secreted
or targeted to cellular membranes, indicating a potential role in
extracellular or membrane-related processes. Protein segments
called transmembrane regions move across the lipid bilayer
of biological membranes. The membrane transport, signal
transduction, and receptor activation are just a few of the actions
that these regions are essential for in the body. Understanding
a protein’s structure, function, and cellular localization depends
on being able to identify its transmembrane sections. These four
proteins (WP_010359741.1,WP_003690747.1, WP_010357457.1
and WP_010951360.1) were predicted as soluble proteins (SP) by
DeepTMHMM web-server. It uses a deep learning approach to
analyze protein sequences and find the existence and position of
transmembrane sections. However, one protein (WP_010951360.1)
out of these four was predicted to have a trans-membrane helix
while the other three were predicted to have no trans-membrane
helix as predicted by DeepTMHMM and were predicted as
soluble proteins (Table 2).

Proteins are divided into two primary classes in the
DeepTMHMM output: soluble and transmembrane. Proteins
that are categorized as soluble are anticipated to perform
their intended functions in the cell cytoplasm or other watery
compartments. In contrast, transmembrane proteins feature one
or more transmembrane helices and are most likely encapsulated
within cellular membranes. Based on the outputs from the above-
mentioned predictions (signal peptide, secretory protein, trans-
membrane helix), the given proteins were found to have the
following combinations of properties (given the fact that all are
membrane-bound or periplasmic).

(1) Signal Peptide- Present; Secretory Protein- Yes; Trans-
membrane Helix- No
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TABLE 2 Shortlisted proteins having non-cytoplasmic localization.

S. No. Protein accession ID Consensus location Signal peptide Secretory protein Trans-membrane helix

1 WP_010359741.1 Inner Membrane Yes Yes No

2 WP_003690747.1 Periplasmic Yes Yes No

3 WP_010357457.1 Periplasmic Yes No No

4 WP_010951062.1 Periplasmic No Yes 1TM

5 WP_010951199.1 Periplasmic No Yes 2TM

6 WP_003705520.1 Outer Membrane No Yes Glob

7 WP_010951229.1 Periplasmic No Yes 2TM

8 WP_232469644.1 Outer Membrane No No Glob

9 WP_010951360.1 Outer Membrane Yes Yes 1TM

It suggests that the protein is probably intended for secretion
via the secretory route. Although it lacks parts that bridge cellular
membranes, it is anticipated to be discharged from the cell
or directed to extracellular compartments. These proteins (WP_
010359741.1, WP_003690747.1, WP_010951360.1) may play a
role in extracellular processes or are linked to particular secretory
organelles within the cell.

(2) Signal Peptide- Absent; Secretory Protein- Yes; Trans-
membrane Helix- Yes

This implies that the protein is projected to lack a signal peptide,
be categorized as a secretory protein, and possess transmembrane
helices, it may also follow non-classical secretion pathways and
be connected to cellular membranes. It probably serves as a
membrane protein, taking part in membrane-related processes
and maybe releasing the signaling molecules, growth factors, or
cellular components during processes like exosome release or cell
shedding. Following hypothetical proteins belong to this category-
WP_010951062.1,WP_010951199.1,WP_003705520.1 andWP_
010951229.1.

(3) Signal Peptide- Absent; Secretory Protein- No; Trans-
membrane Helix- Yes

This type of protein (WP_232469644.1) is anticipated to be an
integral membrane protein if it lacks a signal peptide, is categorized
as a non-secretory protein, and has transmembrane helices. This
indicates that the protein is incorporated into cellular membranes
and probably performs its function there. It could play a role in
structural support, signal transduction, or membrane transport
mechanisms. Its major function is probably within the cell and
not in extracellular compartments because it is not anticipated to
be secreted.

(4) Signal Peptide- Present; Secretory Protein- No; Trans-
membrane Helix- No

This protein (WP_010357457.1) is likely targeted to a particular
cellular compartment other than the secretory route if it is

anticipated to have a signal peptide, be categorized as a non-
secretory protein, and have no transmembrane helices. It is neither
engaged in secretion or membrane-related processes nor does it
bridge the cellular membrane.

As a result, if a protein is anticipated to have a signal peptide
and is positive in SecretomeP but is identified by DeepTMHMM
as a soluble protein, the protein will likely be secreted despite
lacking transmembrane sections. This shows that rather than being
entrenched within cellular membranes, the protein is targeted for
secretion and may participate in extracellular processes. Out of
the initial twenty proteins that were shortlisted, one protein (WP_
003690500.1) was discovered to have extremely odd predicted
features. It was not classified as secretary and was projected to
have a trans-membrane while being cytoplasmic and lacking a
signal peptide.The following explanations might be possible for this
unusual behavior-

(i) Dual Localization: The protein might have dual localization,
which would suggest that it is present in both the cytoplasm
and near membranes. This could be a result of the protein
having various iso-forms that allow for varied localizations
within the cell.

(ii) Despite the possibility that the protein is not secreted, it
may interact with intracellular membranes, including those
of the endoplasmic reticulum, the Golgi apparatus, or other
organelles. Transmembrane regions that aid the protein’s
connection with particular membranes may be involved in
these interactions.

(iii) Non-canonical Transmembrane Region: The anticipated
transmembrane region might have special qualities or traits
that differ from those seen in other membrane-spanning
sections. Some proteins have been found to have unusual
transmembrane topologies or alternate membrane connection
mechanisms.

We selected four proteins (WP_010951062.1, WP_
010951199.1, WP_010951229.1, WP_010951360.1) for further
analysis based on following criteria:
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TABLE 3 Antigenicity, virulence, and allergenicity prediction output of four shortlisted proteins.

S. No. Protein accession ID VirulentPred Vaxijen 2.0 score AllerTOP v2.0

1 WP_010951062.1 Non-virulent 0.7161 (Probable Antigen) Non-allergen

2 WP_010951199.1 Non-virulent 0.3845 (Probable Non-antigen) Non-allergen

3 WP_010951229.1 Non-virulent 0.3942 (Probable Non-antigen) Non-allergen

4 WP_010951360.1 Non-virulent 0.6790 (Probable Antigen) Non-allergen

FIGURE 2
Population coverage analysis of immunogenic epitope. (A) Linear B-cell epitope scores for Protein 1. (B) Linear B-cell epitope scores for Protein 2. (C)
Population coverage by predicted T-cell epitopes.

Protein ismembrane-associated (Inner, outer, or periplasmic)
and has at least one trans-membrane helix (as predicted by
DeepTMHMMorHMMTOP) regardless of having a signal peptide.
All these proteins were also predicted positively by SecretomeP
2.0. All these four proteins were then subjected to different
web servers such as VirulentPred, Vaxijen 2.0, AllerTOP v2.0
to predict the virulence, antigenicity, allergenicity respectively
(Table 3).

As can be observed from Table 3, all these proteins were
predicted to be non-virulent and non-allergenic with varying
degrees of antigenicity. It is important to mention that choosing
epitopes or antigens that are immunogenic, non-virulent (risk-
free, even for immune compromised individuals), and capable of
offering protection without causing harm is a crucial step in the
development of vaccines. The goal is to maximize the potential
for beneficial effects while inducing a specific immune response
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FIGURE 3
Full-length conformation of Protein 1 (WP_010951062). (A) Native structure from UniProt (Q5F9A2). (B) Linear B-cell epitopes in red, rest in gray. (C)
Surface view of predicted epitope regions (colored).

against the pathogen or disease target. Based on these criteria, only
two proteins (WP_010951062.1, WP_010951360.1) were selected
as they were non-virulent, non-allergenic, and probable antigenic
(Vaxijen score >0.5) as potential vaccine targets. From here onwards
wewill refer to themasprotein_1(WP_010951062.1), andprotein_
2 (WP_010951360.1) respectively and use for epitope prediction.

CTL epitope prediction

The final shortlisted highly antigenic proteins were then used to
predict CTL (cytotoxic T lymphocyte) epitopes, T-helper epitopes,
and linear and continuous B-cell epitopes described as further. We
used Net CTLpan v 1.1 server for 12 HLA supertypes (A1, A2, A3,
A24, A26, B7, B8, B27, B39, B44, B58, and B62) to predict possible
CTL epitopes. Due to their combined scores being greater than 1.5,
four epitopes from protein_1and thirteen epitopes from protein_2
were chosen as shown in Supplementary Table S3.

The relevant HLA allele and IC50 values were then predicted
using the SMM approach implemented in the IEDB MHC-I
epitope prediction tool. We selected only those MHC-I alleles
that have an IC50 value of less than 250 nM to interact with
the epitopes (Methodology Section). We obtained a total of
15 epitopes from these two proteins, 4 from protein_1 and 11
from protein_2 (Supplementary Table S3). Peptides SVVRGYFGY,
LVIAVIASM, KQYAGKLGKfromprotein_2interacted each with
maximum five different HLA alleles. Furthermore, using the “IEDB
Class I Immunogenicity tool” with default settings, immunogenic
peptides from these CTL epitopes restricted to MHC-I were also
predicted (Supplementary Table S4).

Eight of these fifteen CTL epitopes were predicted to
be immunogenic, while seven were discovered to be non-
immunogenic. Antigenicity predictions for these immunogenic
epitopes revealed that only two peptides (GSIEGMEQY and
EEIPFDLYL) are antigenic. According to their Vaxijen scores,
the former peptide was found to be weakly immunogenic while
the latter was found to be highly immunogenic. The results
are shown in Supplementary Table S5.

TABLE 4 Population coverage by the selected epitope using IEDB.

Population/Area Coverage (%) Average hit PC90a

World 22.92 0.25 0.13

Europe 21.98 0.24 0.13

East Asia 39.05 0.45 0.16

Northeast Asia 34.86 0.39 0.15

South Asia 10.85 0.11 0.11

North America 24.66 0.27 0.13

South America 10.74 0.11 0.11

aNumber of epitopes required to elicit an immune response in 90% of the population.

Toxicity analysis of these two epitopes by ToxinPred revealed
that both the epitopes were predicted to be non-toxic, while
the allergenicity assessment by AllerTOP v2.0 showed that
only EEIPFDLYL was predicted to be non-allergenic while
GSIEGMEQY was found to be allergenic. Our final shortlisted
CTL epitope, EEIPFDLYL was predicted to be restricted by four
HLA alleles (HLA-C∗ 03:03; HLA-B∗ 40:01; HLA-B∗ 15:02;
HLA-B∗ 44:03) as shown in Supplementary Table S3. Population
coverage analysis was also carried out for this immunogenic CTL
epitope (EEIPFDLYL) to comprehend the immune responses
in various populations. This thorough portrayal enhances our
understanding of immunology and the production of vaccines
globally and enables a more inclusive and accurate understanding
of immune responses. About 22.92% of the world’s population
is represented by the chosen epitope. East Asia (39.05%) has the
highest population coverage, followed by Northeast Asia (34.86%),
North America (24.66%), Europe (21.98%), South Asia (10.85%),
and South America (10.74%) Figure 2. The results are shown
in Table 4.
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CD4+ T-cell epitope prediction

MHC-II binders prediction
The IEDB MHC-II binding prediction approach was used to

predict MHC-II binders from protein_1 and protein_2 sequences.
We utilized peptides with IC50 values smaller than 50 nM as a
cut-off to choose strong binders as per IEDB recommendations
(Wang et al., 2008). We selected the top one percentile sequences
as very strong binders. According to these criteria, sixteen strong
binders were obtained for protein_1 (Supplementary Table S6).

The “CD4 T cell immunogenicity prediction tool” available
at the IEDB predicted only one peptide (ESEIAALKAVLAKAD)
as immunogenic among all the strong MHC-II binders from
protein_1. It was found to have a combined score of 46.82
and an immunogenicity score of 91.57 for seven MHC-II alleles
as shown in Supplementary Table S7.

This peptide was found to be antigenic (Vaxijen score = 0.4028),
non-allergenic and non-toxin as predicted by AllerTOP v2.0 and
ToxinPred respectively. Similarly, MHC-II binders were predicted
for protein_2 which resulted in twenty eight strong binders (top one
percentile). The result is shown in Supplementary Table S8.

Among all these twenty-eight strong MHC-II binders,
none of the peptides were immunogenic using the “CD4 T cell
immunogenicity prediction tool” (at default threshold) available at
the IEDB. Hence, these peptides were not evaluated for antigenicity,
toxicity, or allergenicity.

B-cell epitope prediction

Linear B-cell epitope prediction
Linear B-cell epitopes were predicted using the “Antibody

epitope prediction” module of IEDB with default setting (Bepipred
linear epitope prediction 2.0) for protein_1 and protein_2. The
length of predicted epitopes of protein_1 ranged from 9 to
63 amino acid residues. The length of predicted linear B-cell
epitopes of protein_2 ranged from 2 to 75 amino acid residues.
The results are shown in Tables 5, 6 respectively and Figures 3,
4 respectively.

Further analysis of these twenty linear B-cell epitopes from both
the proteins for antigenicity showed that thirteen peptides were
antigenic, seven peptides from protein_1, and six peptides from
protein_2 as per Vaxijen v2.0 prediction (Supplementary Table S9).
Twopeptides fromprotein_2 had a sequence length of less thannine,
hence their antigenicity cannot be predicted.

Toxicity and allergenicity of these thirteen antigenic peptide
sequences showed that five (out of seven) sequences from
protein_1 were non-toxic and non-allergenic, while only two
(out of six) were non-toxic and non-allergenic from protein 2
(Table 7).

Prediction of conformational
(discontinuous) B-cell epitopes

The majority of B cell epitopes, contrary to conventional
belief, are discontinuous or conformational (Novotný et al., 1986).
The 3D structures of the proteins (protein_1 and protein_2)

were developed and uploaded to the IEDB-integrated Ellipro
method to predict discontinuous B cell epitopes. Protein_1 was
found to have four conformational epitopes, while protein_2 had
three (Table 8).

The 3D structures of the epitopes, which show their specific
locations inside the protein, were visualized using Jmol (integrated
with Elipro module at IEDB). The full-length sequences of both
proteins were used to predict the epitope residues, which were
dispersed across the surface. The prediction parameters of the
Ellipro method were a minimum score of 0.5 and a maximum
distance of 6 Angstrom (Å). The epitope scores range from 0.594 to
0.965 for protein_1 and 0.583 to 0.646 for epitope_2. Figures 5A–D,
6A–C shows a detailed view of these conformational epitopes for
protein_1 and protein_2 respectively. We have further predicted the
structures of the proposed linear B-Cell epitopes using Phyre2 server
as shown in Figures 7A–C.

Discussion

The quest for alternative vaccines against N. gonorrhoeae stems
from the surging global prevalence of the disease, the rise of
antibiotic-resistant strains, and the complexities in treatment. Our
study endeavours to address this pressing need by introducing
an innovative in silico methodology, amalgamating functional
annotation of hypothetical proteins (HPs), and immuno-informatics
predictions to identify potential vaccine candidates.

A substantial fraction of N. gonorrhoeae FA 1090 strain’s
proteome (around 800 polypeptides) comprises proteins with
unknown functions and biochemical characteristics. Using
artificial intelligence and machine learning-driven tools we tried
tounravel the structure and function of these HPs. Leveraging
these methodologies, we have successfully forecasted various
attributes including functional annotations, structural features,
physicochemical properties, sub-cellular localizations, antigenicity,
and the presence of virulence factors for these proteins. Additionally,
we have endeavoured to comprehend the putative functions and
biological significance of N. gonorrhoeae HPs in the context
of pathogenicity and infection development. To ascertain the
sub-cellular localization of the identified proteins, we adopted a
consensus-based approach by integrating multiple methodologies,
each contributing its distinct advantages and algorithms to enhance
predictability and accuracy.

Building onMondol et al.'s work onR. capsulatus (Mondol et al.,
2022) and similar studies in S. coelicolor (Ferdous et al., 2020), our
research expands understanding of N. gonorrhoeae by identifying
diverse functional hypothetical proteins (HPs). Notably, we
identified a subset of HPs exhibiting oxidoreductase activity, crucial
for electron transfer reactions vital for bacterial metabolism and
energy production. Furthermore, our analysis revealed a proportion
of annotated HPs as proteases, implying potential roles in various
cellular processes, including nutrient breakdown, protein turnover,
and possibly virulence factor activation.

Studying a hypothetical protein in C. trachomatis-infected cells
(Li et al., 2011) and similar proteins in Haemophilus influenzae
Rd KW20 (Shahbaaz et al., 2013) highlights their roles in
inclusion membrane formation and pathogenesis, emphasizing
the significance of understanding bacterial hypothetical proteins
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TABLE 5 Bepipred 2.0 linear B-cell epitope prediction results for protein-1(WP_010951062.1).

S. No. Start End Peptide Length

1 8 16 IAKTEAQDD 9

2 26 34 SSEAVDSDG 9

3 45 65 AIPDYMKFGAVREMHGSNAAG 21

4 98 123 YKGFSIGGSVTARNDLNKSQITGLKL 26

5 127 136 SLVDRPANPD 10

6 144 206 ADKPKDEAGAADKDGKPSDKPTEEEDENPKDGDKGPKTEDKGDKDAGKKDEAGKSASVNLSES 63

7 218 235 ADKPKGGPAAKSMYQVKS 18

8 248 257 EDASYDNIDE 10

9 279 324 ASEADKPADGLAAKAGKSGDLAKAESADELAKAQDALKKSNDALAK 46

10 329 371 IESLKKQAVPPKGSTKAISKAEDNGEDPLKGFQPIVKNDGTLD 43

TABLE 6 Bepipred 2.0 linear B-cell epitope prediction results for protein_2(WP_010951360.1).

S. No. Start End Peptide Length

1 26 100 GGGSDSSMSVQPSVSEQLKDNANVDAKDEKVIEYLKKSSLDVPKELQAKVLKVKGDEYTGVRKQYAGKLGKGES 75

2 111 150 EPFSKEQLQKMDVYVNGKKYEGSKGGELDVLPKGLSEQKI 40

3 154 169 GADKEQNYALLKTWVY 16

4 181 222 GYSRKDGNPIEGDGQNPEEIPFDLYLGDIRGVATDEDKLPKA 42

5 233 248 GGNGVLSKESLDNHNG 16

6 259 260 RK 2

7 265 274 IEGMEQYGKI 10

8 280 295 AIERIPYRESGSSLGL 16

9 304 318 VNEGVAMLEKDNEIK 15

10 339 343 EHKHQ 5

in research and therapeutic targeting. In line with these
findings, our study identified a subset of HPs predicted to
possess transmembrane helices, suggesting their involvement in
membrane transport, signal transduction, and receptor activation.
Additionally, studying putative hypothetical proteins from Candida
dubliniensis demonstrates the effectiveness of bioinformatics tools
in pinpointing specific functions, advancing our understanding
of pathogenesis and aiding drug discovery (Kumar et al.,
2014). Our characterization of a subset of these proteins as
Synthases/Hydrolases suggests their involvement in synthesizing
and breaking down molecules, potentially crucial for cell wall
maintenance and metabolite production.

The development of effective vaccines against pathogens
necessitates a comprehensive understanding of their virulence
factors, protein functionalities, andmechanisms of immune evasion.

This knowledge forms the cornerstone for identifying suitable
targets for vaccine design and ensuring the elicitation of robust
immune responses. Central to our study was the quest to identify
optimal HP-derived subunit epitope-based vaccine candidates. We
therefore, employed an in silico approach to identify potential
vaccine candidates against N. gonorrhoeae by integrating functional
annotation of hypothetical proteins (HPs) and immuno-informatics
prediction of epitope-based peptide vaccines. Epitopes within
proteins serve as key sites capable of triggering immunological
responses. Immuno-informatics explores immune and epitope
relationships, developing tools for antigen response prediction
(Patronov and Doytchinova, 2013; Sanchez-Trincado et al., 2017).
Thus, in silico studies can play a crucial role in predicting epitopes
capable of eliciting both T-cell and B-cell responses, thereby
fostering cellular and humoral immune responses. Using these
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TABLE 7 Antigenic, non-toxic, and non-allergenic linear B-cell epitopes
from protein_1 and protein_2.

Protein_1

S. No. Antigenic, non-toxic and non-allergenic linear
B-cell epitopes

1 SSEAVDSDG

2 AIPDYMKFGAVREMHGSNAAG

3 YKGFSIGGSVTARNDLNKSQITGLKL

4 ADKPKGGPAAKSMYQVKS

5 ASEADKPADGLAAKAGKSGDLAKAESADELAKAQDALKKSNDALAK

Protein_2

S. No. Antigenic, non-toxic and non-allergenic linear
B-cell epitopes

1 EPFSKEQLQKMDVYVNGKKYEGSKGGELDVLPKGLSEQKI

2 GYSRKDGNPIEGDGQNPEEIPFDLYLGDIRGVATDEDKLPKA

tools, we prioritized B cell and T cell epitopes within the HPs,
to identify those with the potential to yield effective vaccines
against N. gonorrhoeae. A similar immuno-informatics strategy
was used recently to develop vaccines against SARS-COV2 by
Feng et al. (Zhang et al., 2023).

Our study predicts N. gonorrhoeae protein epitopes, aiding
vaccine development against this sexually transmitted disease.
Notably, the induction of a potent immunological response,
particularly one driven by B cells, is pivotal for vaccine success.
Identification of linear B-cell epitopes within the proteins of
interest strongly suggest its potential to be a good vaccine
candidate as these epitopes are recognized by antibodies produced
by B cells (Potocnakova et al., 2016).

Helper T-lymphocytes (HTLs) are crucial for triggering cellular
and humoral immune reactions, emphasizing the importance of
epitopes recognized by these cells in preventative and therapeutic
vaccinations. Our study predicts the multiple B-cell and T-cell
epitopeswithinHPs ofNeisseria gonorrhoeae supporting the rational
design of multiepitope vaccines against this antibiotic-resistant
pathogen. Ahmad et al. (2019) earlier used a multiepitope strategy
to design vaccines to combat tigecycline resistant Acinetobacter
baumannii. (Ahmad et al., 2019; Majidiani et al., 2021), predicted
major histocompatibility complex (MHC)-binding and B-cell
binding epitopes of five Toxoplasma antigens. Selected epitopes
were fused and checked for secondary and tertiary structures,
allergenicity, physicochemical features, and antigenicity using in
silico tools and experimentally validated for efficacy using BALB/c
mice. The recombinant, multi-epitope vaccine when expressed
in Leishmania tarentolae induced significant immune responses
against acute toxoplasmosis (Majidiani et al.) (Majidiani et al.,
2021). Universal multi-epitope vaccine involving three highly
immunogenic proteins of Streptococcus suis was designed using
the immuno-informatics approach (Segura, 2015; Jalal et al.,
2023; Shafaghi et al., 2023; Waqas et al., 2023; Zhang et al., 2023;

Liang et al., 2024). Similarly, multiepitope vaccines were predicted
against different strains of Streptococcus pneumoniae (Shafaghi et al.,
2023). Comparing our findings with studies on diverse organisms
informs vaccine development strategies, revealing commonalities
and unique features. Computational methods like structural
prediction and epitope mapping efficiently screen pathogen
proteins, identifying antigenic regions for vaccine optimization.

Our study highlights the pivotal role of computational
methodologies in both functional annotation and vaccine
design processes. By delving into the intricate realm of N.
gonorrhoeae hypothetical proteins, we have not only expanded
our understanding but also showcased the efficacy of in silico
methodologies in unravelling their functional roles. Furthermore,
through the precise utilization of bioinformatics tools, we have
pinpointed promising vaccine candidates for N. gonorrhoeae,
marking a significant stride in global efforts to effectively control
and eradicate this sexually transmitted disease.

Limitations of the study

Detailed analysis of all hypothetical proteins (HPs) led to
the confident functional annotation of twenty proteins. Further
investigation is however, necessary to ascertain the precise functions
of these GDC proteins. Their diverse repertoire hints at their
potential involvement in multiple facets of N. gonorrhoeae biology
and pathogenesis. Unravelling these functions promises valuable
insights into the mechanisms underlying N. gonorrhoeae infection,
potentially paving the way for innovative therapeutic approaches.
We have also successfully identified promising N. gonorrhoeae
vaccine candidates through further refinement of our approach.
However, it is crucial to note that in silico predictions, although
beneficial, can be prone to errors, emphasizing the need for
experimental validation to substantiate our findings. Moreover, N.
gonorrhoeae, being an intracellular pathogen, may evade immune
responses targeted at these antigens. Therefore, it is imperative to
validate our current approach both in vitro and in animal models to
assess its effectiveness comprehensively.

Materials and methods

Our study aims to offer thorough insights into the
functional and structural aspects of N. gonorrhoeae HPs by
combining several bioinformatics techniques. Additionally,
to develop focused and successful methods for battling N.
gonorrhoeae infections, our research aimed to find new vaccine
candidates by anticipating and characterizing the epitopes within
these HPs. Supplementary Table S6 depicts the entire framework
and the tools used in this investigation. The entire procedure
includes three phases: Phase I, Phase II, and Phase III.

Phase I involves genomic analysis and characterization of
specific hypothetical proteins (HPs). The genomic data of the
pathogenic organism, N. gonorrhoeae was scrutinized to pinpoint
and categorize the HPs encoded within the genome. This process
encompasses delineating their precise genomic loci, deciphering
potential protein sequences, and identifying open reading
frames (ORFs). Furthermore, available information pertinent to
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TABLE 8 Conformational B-cell epitopes predicted for protein_1 and protein_2 using Ellipro tool.

Protein_1

S. No. Residues No. of residues Score

1 _:E248, _:D249, _:A250, _:S251, _:Y252 5 0.965

2 _:D253, _:N254, _:I255, _:D256, _:E257 5 0.829

3 _:E272, _:K275, _:A276, _:A278, _:A279, _:S280, _:E281, _:A282, _:D283, _:K284,
_:P285, _:A286, _:D287, _:G288, _:A290, _:A291, _:A293, _:G294, _:K295, _:S296,

_:G297, _:D298, _:L299, _:A300, _:K301, _:A302, _:E303, _:S304

28 0.659

4 _:Q312, _:D313, _:A314, _:L315, _:K316, _:K317, _:S318, _:N319 8 0.594

Protein_2

S. No. Residues No. of residues Score

1 B:T166, B:W167, B:E170, B:Q171, B:N196 5 0.646

2 B:Y179, B:G181, B:Y182, B:S183, B:R184 5 0.583

3 B:G192, B:D193, B:G194 3 0.524

FIGURE 4
Full-length conformation of Protein 2 (WP_010951360). (A) Native structure predicted using Phyre2. (B) Linear B-cell epitopes in red, rest in gray. (C)
Surface view of predicted epitope regions (colored).

these HPs, such as putative functions or conserved domains,
was investigated.

Phase II encompasses the utilization of multiple computational
tools and diverse bioinformatics approaches to annotate and
delineate the functional attributes of the HPs. This multifaceted
analysis involves the assessment of their physicochemical
characteristics, sub-cellular localizations, antigenic profiles,
virulence factors, and other significant attributes. The integration
of various computational tools broadens the scope of analysis,
facilitating a comprehensive understanding of the functional
landscape exhibited by the HPs.

Phase III revolves around the prioritization of potential
targets conducive to vaccine development against the pathogen.
Within the spectrum of HPs, candidates with the potential
for vaccine development emerge based on the comprehensive
analysis and annotation conducted in the earlier phases.

These candidates undergo meticulous selection based on
their predicted functional attributes and their suitability for
vaccine formulation.

Phase I

Sequence retrieval
To initiate our study, the complete genome sequence of N.

gonorrhoeae strain ATCC 700825/FA 1090 was obtained from the
NCBI database with GenBank assembly GCA_000006845.1 and
RefSeqNC_002946.2 (UniProt, 2024). Initially, 890 Hypothetical
Proteins (HPs) were identified within the genome. The protein
sequences of these HPs were available on NCBI website and were
retrieved from there. Upon implementation of the filtering procedure
to reduce the redundancy and to refine the dataset, we obtained
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FIGURE 5
Conformation of the four B-cell epitopes predicted for Protein 1 using Ellipro method. (A–D) Four epitopes: yellow balls represent the relevant epitope
residues and white sticks indicate the structure of core residues.

824 distinct protein sequences. The extracted sequences (n = 824)
were saved as FASTA files for subsequent analysis. CD-HITv4.7 was
then utilized (at default setting) to effectively group and eliminate
highly similar sequences (Fu et al., 2012).This resulted in a refined set
of 632 protein sequences. To precisely understand the fundamental
characteristics of these 632 protein sequences, we subjected them toa
variety of bioinformatics tools (Supplementary Table S6) to predict
properties such as protein functions, structures, physicochemical
properties, sub-cellular localizations,antigenicity,andothersignificant
features pertinent to their potential roles in the pathogenesis of N.
gonorrhoeae.

Conserved domain exploration in hypothetical
protein sequences

Proteins are composed of domains and functional units that
execute specific tasks and may exhibit recurring patterns or
distinctive structures. Employing bioinformatics tools such as
CDD-BLAST (Marchler-Bauer et al., 2015), SMART (Letunic et al.,
2021), PFAM (Finn et al., 2014), ScanProsite (de Castro et al., 2006)
and InterProScan (Quevillon et al., 2005), we aimed to elucidate
potential functional attributes embedded within these proteins.

These computational tools scrutinize the amino acid sequences
of HPs, aligning them with established protein databases to
predict the conserved domains or structural folds, facilitating the
classification of HPs into protein families, and understanding their
role in biological processes. This acquired knowledge serves as a
cornerstone for future investigations, shedding light on the intricate
molecular relationships and mechanisms governing HPs. Moreover,
the discernment of distinct and conserved domains, often indicative
of pivotal functional roles, aids in prioritizing HPs warranting
further in-depth scrutiny. The proteins predicted by all these five
bioinformatics tools were retained for further analysis and are
classified under the label “Great Degree of Confidence” “(GDC)” for
this study.

Phase-II

Physicochemical characterization
Several physicochemical features of the above HP’s with a

great degree of confidence (GDC) were evaluated for a better
understanding of their properties. Theoretical iso-electric point
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FIGURE 6
Conformation of B-cell epitopes of Protein 2 as predicted by Ellipro method. (A–C) Three epitopes: yellow balls represent the relevant epitope residues
and white sticks indicate the structure of core residues.

(pI), molecular weight (MW), total amino acid count, aliphatic
index, and extinction coefficient were calculated by using the
Expasy ProtParamserver (Gasteiger et al., 2003), a commonly used
bioinformatics tool whereas the grand average of hydropathy
(GRAVY) was calculated using GRAVY Calculator tool (Kyte and
Doolittle, 1982). Total number of positively and negatively charged
residues, and instability index are a few significant physicochemical
properties that were determined. We also determined the iso-
electric point (pI), which sheds light on a protein’s solubility
and electrophoretic behavior, molecular weight (MW), which is a
measure of the size of a protein, and the total number of amino acids
which provides insight into the length and complexity of the protein
as a whole. The aliphatic index measures the proportional volume
occupied by aliphatic amino acids to provide light on the protein’s
structural stability and thermo stability (Ikai, 1980). The protein’s
light absorption properties are reflected by the extinction coefficient,
which can be used in measurement and purification methods (Gill
and von Hippel, 1989). The grand average of hydropathy (GRAVY)
is a measure of a protein sequence’s hydrophobic or hydrophilic
character (Kyte and Doolittle, 1982). It helps forecast its behavior

in various biological processes and shows how it might interact with
hydrophobic surroundings.

The overall charge distribution of the protein is also influenced
by the sum of positively and negatively charged residues, which can
have an impact on how the protein interacts with other molecules.
Last but not least, the instability index (Guruprasad et al., 1990)
estimates the protein’s stability; higher values denote a greater
likelihood of disintegration.

We can learn more about the GDC protein’s structural features,
solubility, stability, and potential interactionswith biological systems
by assessing their physicochemical qualities. These investigations
help to fully characterize these proteins and shed light on how they
function within the cell of N. gonorrhoeae.

Sub-cellular localization
Protein activities are typically connected to their sub-cellular

location. Thus, the capacity to anticipate sub-cellular localization
directly from protein sequences will be valuable for determining
its cellular activities. Proteins that are located in the cytoplasm are
well known to be possible drug targets, whereas proteins that are
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FIGURE 7
Structures of the linear B-cell epitope predicted to showcase the epitope regions from Protein 1.(A) and Protein 2 (B,C).

located on the surface of membranes are expected to be targets
for vaccines (Jiang et al., 2021). Because the HPs have not been
experimentally characterized, there is a knowledge gap and their
sub-cellular localizations are obscured.

We used several bioinformatics tools known for their precision
and dependability to ascertain the sub-cellular localization of
the shortlisted proteins, namely, CELLO (v2.5) (Yu et al., 2004),
CELLO2GO (Yu et al., 2014), PSORTb (Yu et al., 2010), and
PSLpred (Bhasin et al., 2005), and others. A two-level Support
Vector Machine (SVM) system is used by CELLO (v2.5) to predict
sub-cellular localization. It gives information about the potential
cellular organelles or compartments of proteins by analyzing
their sequences. CELLO2GO uses functional gene ontology
annotation to forecast sub-cellular localization (Yu et al., 2014).
It assigns functional annotations and forecasts protein localization
to certain biological components using the abundance of knowledge
contained inside the Gene Ontology database. CELLO2GO attains
a remarkable 99.1% accuracy in predicting sub-cellular localization
for Gram-negative bacteria, 99.4% for Gram-positive bacteria, and
98.4% for archaeal sequences (Yu et al., 2014) PSORTb stands
out as the most precise localization prediction tool, boasting an
accuracy of 96% for bothGram-negative andGram-positive bacteria
(Yu et al., 2010). CELLO maintains a high prediction accuracy of
89%, ensuring precision and reliability in its predictions. Based on
the previous reports and prediction accuracy, PSORTb is one of the
most widely and effective sub-cellular localization prediction tools
(Yu et al., 2010). To correctly predict the sub-cellular localization
of bacterial proteins, a variety of sequence characteristics and
signal peptides are taken into consideration. Another technique
for predicting sub-cellular localization is PSLpred (Bhasin et al.,
2005). For precise predictions, it uses a hybrid technique based
on PSI-BLAST and three SVM modules, taking into account

residue compositions, di-peptides, and physicochemical features.
PSLpred achieves an overall accuracy of 89% for prokaryotic
protein localization. It should be noted that PSLpred places
a strong emphasis on foretelling sub-cellular localization in
Gram-negative bacteria. In addition, we employed the neural
network-based system SignalP 6.0 (Emanuelsson et al., 2007),
SecretomeP2.0 (Bendtsen et al., 2004) to forecast signal peptides and
secretory pathways (non-classical). SOSUI (Hirokawa et al., 1998),
TMHMM (Krogh et al., 2001), DeepTMHMM (Hallgren et al.,
2022), CCTOP (Dobson et al., 2015), TOPCONS (Tsirigos et al.,
2015)and HMMTOP (Tusnády and Simon, 2001) were also
employed in our work to predict transmembrane structure and
protein solubility.

Function prediction
We used multiple servers to accurately predict the protein’s

specific roles. The domains were searched using CDD (Conserved
DomainDatabase) (Wang et al., 2023), ScanProsite (de Castro et al.,
2006), SMART (Letunic et al., 2021), Pfam (Finn et al., 2014) and
InterProScan (Quevillon et al., 2005) was also utilized; it employs
the InterPro consortium and its several databases, including Pfam,
SUPERFAMILY, SMART, PANTHER (Thomas et al., 2022), and
ProSite, to perform amix of protein signature recognitionmethods.

Protein structure prediction
Two final shortlisted proteins, WP_010951062 and WP_

010951360, were subjected to protein structure prediction analysis
as part of our methodology. The structure of WP_010951062,
consisting of 385 amino acid residues, was retrieved from the
UniProt database with the accession number Q5F9A2. The UniProt
database provides curated protein sequence information, including
experimentally determined structures, annotations, and functional
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details for proteins of various organisms. Concomitantly, the
structure of WP_010951360, comprising 353 amino acid residues,
was predicted using Phyre2, an established web-based tool for
protein structure prediction (Kelley et al., 2015). Phyre2 employs
advanced algorithms incorporating homology modeling, ab initio
folding, and threading methods to generate reliable 3D structure
predictions based on amino acid sequences. The selection of Phyre2
for the prediction of the structure of WP_010951360 was based
on its ability to provide accurate and detailed structural models,
guiding our exploration of the protein’s potential conformation and
functional implications.

Virulence factor prediction
Drug development focuses on virulence factors (VFs),

which are connected to the strength or severity of an infection.
Understanding the intricate virulence process of pathogenesis and
determining a bacterium’s pathogenic potential benefit from the
identification of virulent proteins in its protein sequences. Two
bioinformatics methods were used to identify the virulence factors
(VFs) of the chosen hypothetical proteins (HPs): VirulentPred
(Sharma et al., 2023)and VICMpred (Saha and Raghava, 2006).
In this investigation, both VirulentPred, with an accuracy of 81.8%,
and VICMpred (Saha and Raghava, 2006), with an accuracy of
70.75%, were used.

A potent machine learning method, Support Vector Machine
(SVM) technology is used by both VirulentPred and VICMpred to
forecast the existence of VFs in the protein sequences. Both servers
use a five-fold cross-validation procedure to guarantee accurate
predictions. By splitting the dataset into five subsets, training the
model on four of them, and validating it on the fifth, this validation
technique aids in evaluating the performance of the prediction
models. Each subset serves as the validation set once throughout
each of the subsequent five iterations of this process. Hence, using
extensive datasets for development and validation, VirulentPred and
VICMpred can provide precise predictions about the existence of
VFs in the HPs.These techniques were used in this study to uncover
possible virulence factors within the GDCHPs and provide insight
into their potential roles inN. gonorrhoeae pathogenicity and disease
progression.

Prediction of allergenicity
The potential vaccine candidate must not be allergic to

the host to prevent the body from mounting an auto-immune
response. For this, we used AllerTop v2.0 (Dimitrov et al., 2013) and
AllerCatPro (Nguyen et al., 2022) to determine whether the protein
would act as an allergen or non-allergen. The allergenic proteins
were removed from the dataset for further analysis.

Prediction of antigenicity
We used VaxiJen v2.0 (Doytchinova and Flower, 2007) to

assess the protein’s protective antigen potential. VaxiJen predicts
antigenicity from protein sequences. This work defined a bacteria-
specific threshold of 0.4 to identify putative protective antigens
with high precision. We assessed the protein’s antigenicity and
vaccination potential using the VaxiJen server. Proteins with higher
VaxiJen scores are more immune-stimulating and protective. We
chose the protein with the greatest antigenic score to predict B and
T cell epitopes. This protein was prioritized because its sections

are likely to trigger a significant immunological response and serve
as vaccine targets. Both T cells and antibodies recognize these
epitopes, which are critical to immunological responses. We used
VaxiJen and selected the most antigenic protein to identify vaccine
candidates that would induce an immune response and protect
against N. gonorrhoeae. This method helps produce pathogen-
specific vaccinations.

Phase III

Prediction of linear and conformational B-cell
epitopes

Weused the “BepiPred Linear Epitope Prediction 2.0” approach,
which is accessible through the B-cell epitope prediction tool
offered by the Immune Epitope Database (IEDB) (Jespersen et al.,
2017), to predict linear B-cell epitopes. The amino acid sequences
from both non-epitopes and epitopes discovered in antigen-
antibody crystal structures were used to train this tool. Based
on the input protein sequences, it uses the Random Forest (RF)
approach, a machine learning algorithm, to produce predictions
(Jespersen et al., 2017). When making a prediction, amino acid
residues that earn scores greater than the default threshold value
of 0.5 are considered epitopes (Jespersen et al., 2017). The protein
sequence is divided into areas that can likely act as B-cell epitopes
using this threshold.

According to Sanchez-Trincado et al. (Sanchez-Trincado et al.,
2017), conformational B-cell epitopes are made up of scattered
or interrupted amino acid sequences within an antigen that
interact with B-cell receptors (BCRs). Conformational epitopes, in
contrast to linear epitopes, require the proper three-dimensional
(3D) structure of the antigen for BCR recognition. We used
the ElliPro tool from the Immune Epitope Database (IEDB)
(Ponomarenko et al., 2008) to predict these discontinuous B-cell
epitopes. Based on the protein antigen’s 3D structure, ElliPro uses
a computer technique to anticipate conformational B-cell epitopes
using default parameter values of 0.5 for the lowest score and 6
Angstrom (Å) for the greatest distance (Ponomarenko et al., 2008).
The output provides information such as the number of residues,
the score given to the epitope, the amino acid residues involved in
the epitope, and a link to the 3D structure of the protein antigen
(Ponomarenko et al., 2008). Using the Phyre2 protein structure
prediction program (Kelley et al., 2015) the 3D structure of the
protein was predicted and verified in this study. This stage was
crucial to guarantee the precision and dependability of ElliPro’s
predictions for locating conformational B-cell epitopes inside the
protein antigen.We used ElliPro to examine the 3D structure to find
potential discontinuous B-cell epitopes, which will help us better,
understand the antigenic portions of the protein and develop N.
gonorrhoeae vaccines.

Prediction of CD8+ T-cell epitopes
In the present study, the CD8+ T-cell epitopes specific to

twelve HLA supertypes (A1, A2, A3, A24, A26, B7, B8, B27,
B39, B44, B58, and B62) were predicted using the NetCTLpan
v1.1 Server (Stranzl et al., 2010). This server accurately predicts
Cytotoxic T- Lymphocytes (CTL) epitopes by using sequence-
processing methods including proteasome cleavage, TAP binding,
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and MHC-I binding (Stranzl et al., 2010). The Immune Epitope
Database (IEDB)’s MHC-I binding prediction tool was used to
identify the corresponding HLA allele and the accompanying IC50
values for peptides with a combined score greater than 1.5. Epitopes
with IC50 values under 250 nM were taken into consideration for a
more thorough evaluation of immunogenicity (Anand et al., 2020;
Jagadeb et al., 2021).

To find MHC-I-restricted immunogenic peptides, we
used the “IEDB Class I Immunogenicity tool” with default
settings (Calis et al., 2013). This tool generates scores by
taking into account the characteristics of the amino acids
and their placements in the sequence; higher scores denote
a higher likelihood of eliciting an immunological response
(Calis et al., 2013).

Prediction of CD4+ T-cell epitopes
We used IEDB MHC-II binding tool (Andreatta et al.,

2018)to predict fifteen amino acid-long CD4+ T-cell epitopes.
The “CD4 T cell immunogenicity prediction tool” available at
the IEDB was used to predict the immunogenicity of MHC-
II restricted peptides. The “IEDB recommended” technique,
which combines the immunogenicity method with MHC-
binding to seven alleles, was used to make the prediction
(Dhanda et al., 2018).

Characterization of chosen B-Cell and T-Cell
epitopes

The B-cell and T-cell predicted epitopes with significant
cutoffs were examined for key characteristics such as
antigenicity, toxicity, and allergenicity. The potential peptide-
based vaccination epitopes need to be non-allergen, non-toxic,
and antigenic.

Antigenicity, toxicity and allergenicity prediction
The antigenicity of the epitopes was predicted using the

Vaxijen v2.0 web-server. The ToxinPred web server (Gupta et al.,
2013) was used to forecast the toxicity of antigenic B-cell and
T-cell epitopes with a Vaxijen score above 0.4 (Gupta et al.,
2013). To avoid allergic reactions in the host by vaccination,
potential vaccine candidates must also be tested for allergenicity
(McKeever et al., 2004). We predicted the allergenicity of these
predicted epitopes using AllerTOP v. 2.0that utilizes the k-nearest
neighbors (kNN)method to distinguish between allergens and non-
allergens (Dimitrov et al., 2013).

Population coverage prediction
The frequency of the various polymorphic HLAs varies among

populations, and the epitopes that these HLAs restrict would have
biased population coverage (Bui et al., 2006). To prevent a decrease
in the applicability of a vaccine candidate in specific communities,
population coverage must be taken into account while designing a
vaccine (Bui et al., 2006). As a result, it is crucial to determine the
proportion of people who are predicted to respond to a specific
epitope set based on HLA type (Bui et al., 2006). The population
coverage tool from the IEDB was used to determine the coverage of
our proposed epitopes with the associated HLAs among the various
ethnic groups.

Conclusion

Our study uses an in silico methodology harnessing Artificial
Intelligence and Machine Learning based tools to functionally
annotate 632 hypothetical proteins of N. gonorrhoeae, while
strategically prioritizing vaccine candidates. By exploring
physicochemical traits such as molecular weight, isoelectric
point, and hydrophobicity, alongside sub-cellular localization
prediction, we identified potential functions of these hypothetical
proteins within host cells. Utilizing specific algorithms, including
those for virulence factors, our results significantly contribute
to understanding the potential impact of these proteins on
pathogenicity and aid in their selection as vaccine targets.
Furthermore, epitope prediction methods unveil both B-cell and
T-cell epitopes, offering crucial insights into the immunogenic
potential of identified proteins and their capacity to stimulate
protective immunity. While further experimental validation is
necessary, our study establishes a foundational framework to
address the pressing need for a N. gonorrhoeae vaccine, significantly
advancing the frontiers of immuno-informatics and functional
genomics. This study marks a significant step forward in leveraging
computational methodologies for vaccine development, showcasing
the potential of bioinformatics in addressing complex public health
challenges. The nuanced insights derived from our comprehensive
approach not only hold promise in the specific context of gonorrhea
but also pave the way for innovative strategies in the broader
landscape of infectious diseases.
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