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We introduce a novel tree-basedmethod for visualizingmolecular conformation
sampling. Ourmethod offers enhanced precision in highlighting conformational
differences and facilitates the observation of local minimas within proteins
fold space. The projection of empirical laboratory data on the tree allows us
to create a link between protein conformations and disease relevant data. To
demonstrate the efficacy of our approach, we applied it to the ATP-binding
cassette subfamily D member 1 (ABCD1) transporter responsible for very long-
chain fatty acids (VLCFAs) import into peroxisomes. The genetic disorder called
X-linked adrenoleukodystrophy (XALD) is characterized by the accumulation of
VLCFA due to pathogenic variants in the ABCD1 gene. Using in silico molecular
simulation, we examined the behavior of 16 prevalent mutations alongside
the wild-type protein, exploring both inward and outward open forms of
the transporter through molecular simulations. We evaluated from resulting
trajectories the energy potential related to the ABCD1 interactions with ATP
molecules. We categorized XALD patients based on the severity and progression
of their disease, providing a unique clinical perspective. By integrating this
data into our numerical framework, our study aimed to uncover the molecular
underpinnings of XALD, offering new insights into disease progression. As we
explored molecular trajectories and conformations resulting from our study, the
tree-based method not only contributes valuable insights into XALD but also
lays a solid foundation for forthcoming drug design studies. We advocate for
the broader adoption of our innovative approach, proposing it as a valuable tool
for researchers engaged in molecular simulation studies.
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1 Introduction

We present here a novel tree-based method for molecular
conformation sampling. Our study revolves around the ATP-
binding cassette subfamily D member 1 (ABCD1) transporter,
central to X-linked adrenoleukodystrophy (XALD) pathogenesis.

The function of the ABCD1 transporter is to carry very long
chain fatty acid (VLCFA) consisting of 22 or more carbon atoms,
across the membrane from the cytosol into the peroxisome. Failure
due to mutation or absence of the protein causes an accumulation
of VLCFA in plasma as well as in tissues. This includes the
adrenal cortex, the spinal cord and the white matter of the brain
(Moser et al., 1981).The disease caused by such a dysfunction effects
all parts of the globe (Kemp et al., 2001), and has an estimate
prevalence of 1 in 17,000 newborns (Bezman and Moser, 1998).
Besides VLCFA transport deficiency it was shown that an interplay
with mitochondrial dynamics plays a role in the progression of
the disease (Launay et al., 2024).

In this study we delve into 16 mutations of ABCD1
prevalent in a reference center patient population. The phenotypic
variability of the patients is ranging from a devastating
inflammatory childhood cerebral adrenoleukodystrophy (C-CALD)
affecting boys to a progressive spastic paraplegia in adulthood
(adrenomyeloneuropathy, AMN) affecting both adult men and
women. Over the past decade, it appears that the majority of
AMN men – 50% over 10 years (1) – will also develop CALD
later in life (A-CALD) with the same grim prognosis as children
(Raymond et al., 1999; Berger et al., 2014; Turk et al., 2020). Over
800mutations have been identified in the ABCD1 coding region, yet
no clear link between specific mutations and phenotypic outcomes
has been established (Palakuzhiyil et al., 2020). Notably, even twins
with identical mutations can exhibit different forms of the disease
(Palakuzhiyil et al., 2020). Despite this challenge, with themolecular
structure of ABCD1 now accessible (Chen et al., 2022), we are
actively investigating the mutations found in our patients in-house
in an effort to understand how these mutations correlate with
observed disease progressions.

The primary objective is to establish a structure-function
relationship among these disease types which are characterized by
differences in disease progression. Our approach involves in silico
modeling of the ABCD1 protein in both inward and outward open
states, generating models for wild type and mutations inserted into
a modeled membrane. Molecular dynamics simulations produce
trajectories forwild type andmutations, aiming to correlatemolecular
conformational changes with specific disease progressions.

Research in visualizing molecular trajectories and extracting
meaningful insights from the vast data they encompass is actively
evolving. Various approaches exist for visualizing these trajectories
directly through different tools, as reviewed in (Belghit et al., 2024).
Popular molecular dynamics suites like GROMACS (Abraham et al.,
2015) or NAMD (Phillips et al., 2005), often used in conjunction
with VMD (Humphrey et al., 1996), offer diverse tools for analyzing
molecular trajectories. Python libraries such as MDAnalysis
(Michaud-Agrawal et al., 2011; Richard J.; Gowers et al., 2016) have
been developed specifically to analyze and graphically represent data
from these trajectories. Despite these advances, the challenge of
efficiently summarizing the often extensive number of molecular
conformations persists. Trajectory mapping, for example, attempts

to visualize entire molecular simulation datasets in a single graph
(Kožić and Bertoša, 2024). Another significant advancement is the
application of the DBSCAN algorithm (Ester et al., 1996) to locate
local energyminimawithinmolecular trajectoriesandconformational
spaces (Liu et al., 2021). Inspired by our prior work onMNHN-Tree-
Tools(Haschka et al.,2021),whereweappliedDBSCANtoclustergene
sequences adaptively and hierarchically, we have adapted MNHN-
Tree-Tools for similar tasks in molecular dynamics. This adaptation
allows us to leverage tree visualizations to explore and interpret
molecular dynamics trajectories, as detailed in this study.

The algorithm identifies clusters of conformations that are
densely connected within a space sampled by molecular dynamics
simulations. This is determined by the condition:

ρL >
minpts
V (ϵL)
, (1)

where ρL represents the density of clusters at iteration L, and
the right-hand side reflects the minimum density requirement set
by the DBSCAN algorithm. Here, minpts denotes the number
of conformations expected within a hyperdimensional sphere of
volume V and radius ε.These clusters typically occupy a subspace of
the overall conformational space defined by principal components
from PCA. In contrast to traditional DBSCAN, this algorithm
introduces a third parameter Δε, which incrementally expands ε
and triggers additional DBSCAN runs after each increment. As ε
increases, the volume in Eq. 1 expands leading to lower densities
and the identification of more diffuse clusters in each iteration. For
a subsequent layer (iteration) of the tree L+1 it follows Eq. 2:

ρL+1 >
minpts

V (ϵL +Δϵ)
. (2)

Alternatively, we can express εL = εL−1 + Δε.
In our previous work Haschka et al. (2021), we demonstrated

that using this algorithm allows us to construct a hierarchical
tree structure by embedding dense clusters into progressively more
diffuse clusters until all elements of the conformational space
merge into a single cluster—the root of the tree. We also noted
that dense clusters tend to form in regions corresponding to
potential energy wells within the force field employed in molecular
dynamics simulations. For a clearer understanding of the tree-
building process, refer to the schema presented in Figure 1 and the
algorithmic supplement of (Haschka et al., 2021).

This method identifies clusters in the conformational space,
building a tree linking different potential energy wells. Notably,
certain branches into different energy-wells are found to be
disease-progession-specific, linking molecular conformations to
patient observations. A further description of our algorithm is
provided in Section 2.6. The algorithm employs adaptive density
clustering, aided by principal component analysis in order to
analyze high-dimensional conformational states. The resulting
density to energy well correspondence reveals insights into the energy
landscape, providing a more nuanced understanding of molecular
dynamics trajectories.

Beyond XALD, we propose our tree-based method as a versatile
tool for researchers in molecular simulation studies, applicable to
diverse molecular systems. Our study not only uncovers structural
implications of ABCD1 mutations but also could serve for future
drug design studies around XALD and related membrane protein
mutations.
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FIGURE 1
An illustration of treebuilding from a potential energy landscape.

In brief, our investigation unveils the intricate relationship
between specific ABCD1 mutations and XALD form of disease
progression, leveraging a novel tree-based conformational sampling
approach. Our results contribute to understanding structure-
function relationships, paving theway for future drug design studies,
and advocate for the broader adoption of our method in molecular
dynamics research.

2 Methods

2.1 Molecular modelling

To facilitate molecular dynamics simulations, two distinct
molecular models of the wild-type ABCD1 transporter were created,
representing the cytosol-open and peroxisome-open structures. The
Protein Data Bank (PDB) structure with accession code 7VWC
(Chen et al., 2022) was used as a template to model the cytosol-
open structure.Missing residueswere inserted using theMODELLER
(Eswar et al., 2006) software. However, for the peroxisome-open
structure, a more elaborate process was required. The PDB structure
7VX8 (Chen et al., 2022) was used as a template, but MODELLER
aloneproducedunpromisingmodels.Tocompletethemissingresidues
(346–382and436–460),partsof theproteinstructure from7VWCand
the AlphaFold (Jumper et al., 2021; Varadi et al., 2021) prediction for
human ABCD1 were aligned, and MODELLER was used in order to
buildthefinalwildtypetemplateproteinstructurefromthisalignment.
The resulting peroxisome-open structure included ATP molecules as
found in 7VX8 and were used in molecular simulations.

To study single point mutations observed in patients, a mutant
was built by replacing the single amino acid for each mutation from

the wild type template using MODELLER. A total of 34 structures
of the ABCD1 transporter protein were generated, consisting of
two structures for the wild-type (cytosol-open and peroxisome-
open) and 16 derived mutations for both forms. Details about the
mutations are shown in Table 1. The location of the mutations
within the ABCD1 protein structure is further outlined in Figure 2
in a schematic way, while Figures 3, 4 highlight the positions
of the mutations in molecular visualizations prepared using the
VMD software (Humphrey et al., 1996).

2.2 Molecular simulation

In the previous section, 34 structures were modeled and to
further analyze these structures, molecular dynamics simulations
were conducted. Each simulation was set to run for 100 ns using the
GROMOS force field, specifically its 56a4 parameter (Schmid et al.,
2011) set, to govern the potential in the simulation. To increase
computational efficiency, electrostatic interactions were evaluated
using the particle mesh Ewald algorithm (PME) (Darden et al.,
1993). The GROMACS software (Abraham et al., 2015) suite was
utilized to prepare and execute the simulations.

Each of the 34 structures was immersed in a phosphatidylcholine
(POPC) membrane with approximately 1065 POPC molecules
surrounding the protein after removal of any steric clashes with the
protein. For simulations using cytosol open ABCD1 transporters,
a simulation box size of 20 × 19.6 × 15nm3 was prepared, while
simulations starting with ABCD1 transporters in a peroxisome open
conformation used a box size of 20 × 19.6 × 20nm3. Any void
areas in the simulation box were filled with water molecules, and
chloride ions were added as needed to balance the positive charge
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TABLE 1 Investigated single nucleotide mutations: We outline the form of disease progression exhibited by patients when a mutation is found to affect
a residue interacting with a ligand in the structure, and whether β-oxidation is affected.

Mutation Progression type Ligand interaction β-Oxidation

D194H A-CALD VLCFA reduced

E302Q AMN reduced

E609K C-CALD ATP reduced

G343S A-CALD VLCFA unknown

G512S A-CALD ATP unknown

R189W A-CALD reduced

R401Q AMN VLCFA reduced

R418W A-CALD reduced

R554H AMN ATP reduced

R591W AMN reduced

R617H C-CALD reduced

R660W C-CALD reduced

T254A AMN VLCFA reduced

W339G AMN unknown

of the transporter and create a neutral charged simulation box. In
the peroxisome open conformations, an ATP molecule with a bound
magnesium ion was included.

To prepare for the simulations, the steepest descent
implementation of GROMACS was used to minimize the box
configuration until the maximum force reached less than 104 kJ

mol,nm
.

This minimized configuration was then used as the starting point
for the equilibration phase. During equilibration, position restraints
were enabled for the unified atoms of the modeled ABCD1 protein
and, if available, for the ATP molecule. POPC and water molecules
were allowed to move freely during this phase, which lasted for 30 ns
to ensure proper binding of the membrane to the modeled ABCD1
protein.To increase stability andavoidoscillations, the systemcoupled
barostatandthermostatweremodeledafter theBerendsen et al. (1984)
type. Additionally, the Boltzmann velocity distribution was used to
generate initial velocities of the simulated particles from four different
seeds to the pseudo-random number generator for configurations
containing the wild type of the protein, while only a single seed
was used for mutated protein configurations. The barostat aimed at a
referencepressureof 1 bar,while the thermostat assureda temperature
of 310° Kelvin.

The final frames of the 30 ns equilibration trajectory were used
as input for the simulation run, which utilized the more physical
velocity rescaling (Bussi et al., 2007) algorithm as a thermostat,
while pressure coupling was performed using the Parrinello and
Rahman (1981) algorithm. The system pressure was maintained at
1 bar, with the system temperature set to 310° Kelvin. A 100 ns
trajectory was created from each simulation for the 34 modeled
ABCD1 molecules. Furthermore, six additional 100 ns simulations

were conducted for the wild type configuration from differently
initialized equilibrations, as outlined above. This totaled in 8 (two
includedin34,plus6)simulations,withfourforthecytosolandfourfor
the peroxisome open configuration inwild type form. Eight wild-type
simulations were conducted to evaluate if simulations starting from
identical conformations explore consistent conformational spaces,
indicating a roughly similar exploration pattern. The study aimed
to determine whether variations in conformational space exploration
were independent of the initial velocities assigned to the simulation
particles. Our equilibration procedure did not include a gradual
relaxation of the positional restraints on protein atoms before the
100 nsproductionsimulation.Thismighthave ledtoartificialbehavior
of the protein in the initial stages of the production run as it
adapted to its environment. Nonetheless, we maintain confidence
in our simulations, which focus on mutations observed in ABCD1
patients, offering insights into the conformational dynamics of the
transporter. This study serves as an important example of our tree-
based conformational clusteringmethod in action.A video of thewild
type simulation is found in the Supplementary Material.

2.3 Basic trajectory analysis

Basic trajectory analysis was conducted on each trajectory using
GROMACS tools to calculate the root mean square fluctuations
(RMSFs) for the protein chains’ carbon-α atoms. This analysis
provided a per-residue estimate of flexibility and allowed us to
identify flexible areas of the ABCD1 transporter. To establish
a baseline, the deviation of the four wild-type simulations was
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FIGURE 2
A schematic overview of the structure of single ABCD1 monomer with a list of residue positions. Positions are denoted for mutations associated with
XALD disease progression in the form of ACALD (cyan), AMN (magenta), and CCALD (yellow).

calculated and plotted in blue on individual graphs, while the mean
of thewild-type simulationswas plotted in yellowon the same graph.
The RMSF of a mutated form of the protein was then plotted in red
in the same figure. Regions with altered flexibility were identified by
comparing the red and blue curves.

2.4 Protein-ATP interaction potential

During the simulations, we sampled the energy potential
of the interaction between the ATP molecule and the
amino acids within a 5Å range from the ATP molecule.
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FIGURE 3
Overview of the mutated sites in our patients in the cytosol open structure. Sites to be mutated are shown as van der Waals spheres in blue. The form
of disease progression is given by the corresponding color code of the residue description.

This potential is the sum of long and short-range Lennard-
Jones and Coulomb potentials as specified in the GROMOS
force field (Schmid et al., 2011). Our focus was on understanding

how the mutations in the ABCD1 protein affect the Protein-
ATP interaction and whether they render the transporter
non-functional.
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FIGURE 4
Overview of the mutated sites in our patients in the peroxisome open structure. Sites to be mutated are shown as van der Waals spheres in blue. The
disease form is given by the corresponding color code of the residue description.

2.5 Principal component analysis

The trajectory data obtained from the simulations was analyzed
using principal component analysis (PCA), with the GROMACS

suite of tools. Only the carbon-α atoms present in the trajectories
were considered for this analysis. As we investigated only single
pointmutations of the protein, all carbon-α trajectories had the same
number of degrees of freedom. The trajectories from the various
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mutations were concatenated with the data from a single simulation
of the wild type, and the individual trajectory frames were sterically
aligned to each other before PCA was performed. 10 eigenvalues
and their corresponding principal components (eigenvectors) were
retained, which spanned a 10 dimensional subspace. These 10
dimensions capture approximately 73% of the information from the
carbon-α atom movements in the molecular dynamics trajectory,
as indicated by the ratio of the sum of the top 10 eigenvalues to
the sum of all eigenvalues, which is ≈ 0.726. It is important to note
that the treebuilding algorithm, being based on DBSCAN, may not
performoptimally in extremely high-dimensional spaces.Therefore,
a balance needs to be struck between dimensionality reduction
and maintaining meaningful clustering results. This 10 dimensional
subspace was used to project the concatenated trajectory consisting
of the wild type simulation and the 16 mutations. Additionally,
a concatenated trajectory of only the carbon-α atoms from all
the wild type simulations was created and projected into the
same 10-dimensional subspace. By demultiplexing the PCA data
according to mutations and disease type, individual frames could
be identified and assigned to specific mutations and diseases.
Apart from analyzing all carbon-α trajectories, PCA was also
performed on a subset of carbon-α atoms. Residues involved in
the VLFCA transport from the cytosol outward configuration
were selected, and PCA was performed using the same protocol
as before. Finally, residues within 5Å of the two ATP molecules
were selected, projected, and PCA was performed in a similar
manner. These non full protein PCAs did however not yield any
conclusive results.

2.6 Tree building algorithm

To effectively distinguish between different disease types/stages,
we employed an adaptive clustering approach on ensembles of
conformations in the 10-dimensional subspace defined by the
principal components.The underlying idea is that, duringmolecular
dynamics simulations, prevalent conformations tend to cluster
around local minima, which are mutation- and disease-specific.
To correctly identify these local minima, we used the DBSCAN
algorithm and scanned adaptively for clusters at different densities.
The minimum density, ρmin, was determined by a given radius,
r, and the number of conformations, n, to be searched within a
hypersphere with such a radius. Ensembles featuring a connected
region whose density ρ > ρmin were identified. By increasing ρmin,
we were able to find more connected ensembles that intrinsically
contained disconnected clusters from a previous run, allowing
us to study the entire 10-dimensional PCA space and discern
clustered ensembles of protein structures and local minima inside
it. Parts of MNHN-Tree-Tools (Haschka et al., 2021) were used
for this purpose. Figure 1 illustrates the algorithm that enabled
us to efficiently find potential wells and structures associated
with specific ABCD1 mutations and related X-ald disease forms
observed in our patients. The algorithm has three parameters, as
explained in detail in MNHN-Tree-Tools: ϵinit, the initial radius;
Δϵ, the radius increase in each step; and minpts, the number
of samples to be found within the radius. We considered only
the L2-Norm distance measure herein, even though MNHN-Tree-
Tools provides for distance measures of all kinds. Four different

TABLE 2 Parameters were used for adaptive clustering within a
10-dimensional subspace spanned by principal components using
MNHN-Tree-Tools.

ϵinit Δϵ minpts

peroxisome open, all C-α 0.83 0.01 4

peroxisome open, ATP pocket C-α 0.135 0.001 4

cytosol open, all C-α 3.7 0.05 4

cytosol open, VLFCA pocket C-α 0.3 0.001 4

trees were built corresponding to the PCA analysis above: for the
peroxisomal open structure, one considering all carbon-α atoms
and one considering the carbon-α atoms of the residues within 5Å
distance from the ATP molecule; for the cytosol open structure,
one considering all carbon-α atoms and one considering only the
carbon-α atoms of residues that interact with VLFCA molecules.
The parameters for constructing the tree were derived initially
by examining the outcomes of 2D principal component analysis.
This analysis provided a rough estimation of distances between
points, enabling a preliminary selection of the descent radius, ϵ.
Subsequently, a manual bisection process was employed on the
initial ϵ parameter to determine the optimal cluster count. If
the resultant trees exhibited too few branches, the Δϵ value was
reduced to generate trees with greater complexity andmore intricate
structures. The parameters are outlined in Table 2. Once the tree
was built, it was colored according to different disease progression
subtypes (A-Cald, AMN, and C-Cald), and we further created
a coloration discerning mutations involved with ATP binding or
not. The resulting tree for simulations starting with a cytosol
open conformation is outlined in Figure 9. As every node in the
tree corresponds to a cluster of protein conformations visited
during the simulation, we can identify conformations that are only
accessible for a certain disease progession type. We can further find
conformations that are typical for the wild-type protein and that
might be inaccessible for a mutated protein.

3 Results

3.1 Results from visual inspection and
mutation mapping

The structures 7vwc and 7vx8, as reported in the Protein
Data Bank (PDB) (Berman et al., 2000), were visually inspected
to identify the locations of mutations found in our in-house
patients (Chen et al., 2022). It was observed that the majority
of mutations associated with the C-CALD form were located
in the ATP binding cassette domain, while the adult form
AMN and ACALD associated mutations were distributed along
the transporter. Visual representations of the protein structures
with the identified mutations in our patients can be found in
Figures 3, 4. The VMD program has been used in order to visually
inspect molecular dynamics trajectories and provide 3D rendered
visualizations (Humphrey et al., 1996).
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3.2 Protein movement and stability

Simulations of cytosol open conformations revealed substantial
collective movements of the proteins. A movie of a cytosol open
simulation is shown in the Supplementary Material. These findings
suggest that the wide-open conformation observed in cryo-electron
microscopy (cryo-EM) experiments may not exist under natural
conditions. Upon visual inspection of the simulation trajectories, a
collapse leading to the collision of the twoATP-binding cassetteswas
observed. However, the transmembrane helices, particularly those
embedded in the membrane, appeared to be minimally affected
by this collapse. The internal spaces within the protein remained
conserved, which suggests the potential for VLCFA binding.

Interestingly, mutations associated with the C-CALD
progression form of the disease exhibited enhanced movements
in the ATP-binding cassette, with the exception of E609K and
R660W as shown in Figure 5. Figure 5 further reveals that there are
variations in local flexibilities between themonomers of the protein.
This could be attributed to the intricate allosteric mechanisms
found in ABC transporters, as observed in studies by Acar et al.
(2020). Notably, strong flexibilities were observed in transmembrane
helix VI encompassing residues 400 to 420, which included
mutated residues found in our patients. Specifically, the R418W
mutation increased local flexibility within this region. Intriguingly,
during the simulation of the Y296H mutated protein, this section
displayed significant flexibility, underscoring the importance
of the neighboring transmembrane helix V in establishing the
proper interlinkage between the transmembrane helices and the
ATP-binding cassette.

Furthermore, the region between residues 600 and 700,
particularly within the ATP-binding cassette, exhibited notable
flexibility, especially in cases of C-CALD forms. Detailed
information regarding these observations can be found in Figure 5.
In this section, we emphasize residue R660 and the observed
mutation R660W. As illustrated in Figure 4, R660 interacts
intermolecularly, with itself. The effects of this mutation are
profound across various aspects, including localized fluctuations
and stability (Figures 5, 6), as well as deviations in ATP
binding energy (Figure 1).

3.3 ATP-binding energies in peroxisome
open simulations

By including ATP molecules in our molecular dynamics
simulations, we were able to assess the force field energy between
ATP molecules and residues within a 5 Å distance from them.
The binding energy in this investigation primarily consists of
the sum of the non-bonded terms of the GROMOS force field.
Interestingly, mutations in the transmembrane helix appeared to
affect ATP binding interactions. More strikingly the link between
transmembrane helix I and II seems to play a crucial role in ATP-
binding stability as we observe shifts in the ATP-binding energies in
simulations of the mutated proteins D194H or Y181S.

Simulations involvingmutations of residues that directly interact
with the ATP molecule, such as R591W, E609K, and G512S, also
exhibited significant deviations in binding energy, as expected. The
mutation R660W, that can locally interact with itself as shown in

the peroxisome open conformation, (c.f. Figure 4) also showed a
noteworthy deviation in binding energy.

Detailed results of the ATP-(residues within 5 Å) interaction
energies are outlined in Figure 7.

3.4 Results from PCA and tree-based
subspace sampling

3.4.1 Classical PCA result
As described in Section 2.5, we conducted principal component

analysis (PCA) on the spatial coordinates of the carbon-α atoms
of the simulated proteins. The PCAs performed on simulation
trajectories originating from the ATP-bound peroxisome open
starting point did not yield significant results due to the absence
of large collective motions. Conversely, cytosol open simulations,
which exhibited substantial collective movements as discussed
in Section 3.2, demonstrated that the two ATP binding cassettes
approached each other. Figure 8 displays a two-dimensional
representation of the PCA obtained from trajectories initiated
from a cytosol open starting point. As expected, this figure
illustrates a confined space for the wild type simulations,
while simulations with diverse mutations explore a broader
conformational space.

To visually analyze the distribution of conformations generated
by simulations of mutations corresponding to different disease
forms, we color-coded them accordingly. In our PCA projection,
we observed that mutations associated with the peripheral AMN
form occupied the largest space, followed by C-CALD and A-
ACALD regions. Notably, the PCA appeared to consist of two
distinct densely clustered islands. The larger island on the left of the
image was sampled by all forms of disease progression as well as the
wild type, and different disease forms exhibited overlapping areas
with varying densities on this island. Additionally, in Figure 8, we
identified an island in the lower right region that comprised protein
conformations exclusively accessible through mutated proteins.
However, this island contained conformations from simulations
of mutations found in A-CALD, AMN, and C-CALD patients.
A-CALD conformations were observed in smaller quantities
on this island, and the maximum concentration of A-CALD
conformations appeared slightly shifted to the right, while the
distributions of AMN and C-CALD overlapped around a dense
central spot.

3.4.2 PCA and tree-based conformational
sampling

To overcome the limitations of two-dimensional PCA and
further explore the conformational space, we employed a tree-based
sampling approach as described in the introduction and Section 2.6.
This approach enabled us to identify clusters of various densities,
allowing us to uncover local minima in the energy landscape.
During MD simulations, conformations close to and within these
minima are frequently visited, resulting in clusters of densely
packed conformations in space.The adaptive nature of our approach
facilitates the merging of energy minima separated by lower
energy barriers into common clusters more rapidly than those
separated by larger energy barriers. Moreover, the algorithm not
only provides a tree-like visualization of the sampled energy
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FIGURE 5
The root mean square fluctuations for the simulations performed beginning with a cytosol open structure.

landscape but also enables exploration of separated islands in a
higher-dimensional subspace of principal components that may not
be visually accessible in 2 or 3 dimensions.

By applying this approach, we successfully separated the
PCA island mentioned earlier, located in the lower right
section of Figure 8 and described in detail previously. We were
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FIGURE 6
The root mean square fluctuations for the simulations performed beginning with a peroxisome open, ATP bound, structure.

able to clearly distinguish clusters of conformations belonging to
different disease forms, facilitating investigation of the distinct
conformations within these clusters.

An illustrative example is presented in Figure 9. This figure
showcases a tree representation created from a 10-dimensional
PCA. Different colors on the tree correspond to the three disease
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FIGURE 7
The interaction potential as evaluated during the different simulations starting from peroxisome open simulation between the ABCD1 dimer complex
and two bound ATP molecules.

progression forms, C-CALD, AMN, and A-CALD. Each branch
in the tree represents a cluster of a specific density, with dense
clusters located on the outer portions of the tree and diffuse clusters

situated toward the inner regions. Annotations A-K in Figure 9
highlight specific clusters. Additionally, the figure includes small
images associated with each annotation (A-K), where the blue cloud
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FIGURE 8
PCA performed on the carbon-α atoms of simulations that have been initialized with the cytosol open conformation.

represents the entire dataset and the orange cloud highlights the tree
branch corresponding to the respective annotation in the tree.

Notably, the tree-based representation clearly separates the two
islands observed in the PCA: the larger one on the left and the
smaller one in the lower right. This separation is well explained by
branches H and I in the tree. Furthermore, branches J and K, which
represent denser clusters and deeper localminima embeddedwithin
branch I, exhibit distinct characteristics. In contrast, the 2D PCA
representation at the bottom of the figure demonstrates the difficulty
of separating these two clusters using classical two-dimensional
visualizationmethods. However, the tree representation in a higher-
dimensional space demonstrates the visible separation of clusters
J and K, providing evidence of the utility of our approach.
Moreover, we demonstrate that branches J and K correspond
to different disease progressions, with J representing structures
generated during simulations of proteins harboring mutations
observed in our AMN patients and K representing mutations
observed in the disease progression form that already severely effects
children (C-CALD). Furthermore, we illustrate that both branches
exhibit distinct structures with different positioning of the ATP

binding cassettes, as outlined in Figure 10. Overall, this tree-based
algorithm offers a novel method to sample the conformational
space generated by molecular dynamics simulations and we have
effectively demonstrated its utility in this study.

3.4.3 Data projection on trees and data analysis
Our approach using tree-based data sampling allows us

to investigate the relationship between various conformations
and different protein properties. To illustrate this capability, we
project diverse disease progressions onto the tree depicted in
Figure 9. This visualization helps us pinpoint distinct branches
corresponding to varied protein structures, potentially influencing
different forms of disease progression. Figure 9 was annotated
by quantifying the number of conformations within each cluster
node derived from molecular dynamics trajectories featuring
mutated proteins associated with specific disease forms. The color
scheme employs a logarithmic scale ranging from white to full
intensity (all conformations of this disease-type regrouped in
one cluster), highlighting different disease forms. Cyan, magenta,
and yellow hues were selected to represent overlapping branches
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FIGURE 9
A tree view of the conformations of our simulations. Dense clusters are found on the outside of the tree. Diffuse, less dense and more connected
clusters on the inside. Colors as well as overlapping colors represent the disease progression forms associated with the conformations in the cluster
according to its mutation/simulation. The intensity of the color logarithmically expresses the number of conformations, from white for at least 5
conformations to full color intensity for all conformations found of the specific type. The formula used to determine the intensity of a color associated
with a specific disease type is given by: I = log10(conformations in a node)

log10(all conformations)
. PCA diagrams (A–K) correspond to tree branches (A–K).
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FIGURE 10
Alignment of folds of the latest, in simulation time, occurring structures from the J and K branches at outlined in Figure 9. The root mean square
deviation (RMSD) between the backbone atoms of the two structures is recorded to be 1.824 nm. The J structure is representative of a cluster of 741
over 34,000 structures, while the K structure is representative of a cluster of 576 over 34,000 structures. Both clusters were found to be a density
connected ensembles of structures satisfying ρ(J,K) > 480

π5R10 for R = 5.1nm in the 10 dimensional PCA subspace.
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FIGURE 11
Tree views outlining in orange conformations sampled by cytosol open simulations made with a specific mutation. Colors may overlap in mixed
clusters. The formula used to determine the intensity of a color associated with a specific selected mutation or other conformations is given by:
I = log10(conformations in a node)

log10(all conformations)
.
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FIGURE 12
Trees built from conformation state densities for simulations starting with the cytosol-open initial condition colored by relative concentrations of
VLCFA molecules observed. Colors may overlap in mixed clusters.

where conformations from multiple disease forms are found to
superimpose in the same cluster.

We utilize this capability to explore the unique conformations
generated by each simulation and mutation. Figure 11 displays
trees corresponding to individual simulations, depicting clusters of
conformations produced by simulations of specific mutations.

In Figure 11, two distinct colors, orange and blue, are employed.
The orange color represents conformations derived from molecular
dynamics simulations of the mutations under investigation, while
blue denotes all other conformations within the tree. Areas where
these colors overlap indicate mixed clusters. Similar to previous
visualizations, a logarithmic scale ranging from white to full
intensity is used for both sets of conformations: those resulting from
simulations of the highlightedmutation in orange and those from all
other simulations in blue.

Additionally, this approach enables us to attribute functional
properties to the protein. One crucial factor in X-ALD diagnosis is
the relative concentration of very-long-chain fatty acids (VLCFAs) in
the cell. In our patient data, we evaluated the concentrations of 24-
C:COA and 26-C:COA relative to the concentration of 22-C:COA. By
projecting these relative concentrations (24/22 and 26/22) onto our
tree, we created two colored trees based on the terciles observed in
our patients’ data, as depicted in Figure 12. This allows us to visually
comparethesetreesandinvestigatewhether thedisease formC-CALD,
AMN, and A-CALD (shown in Figure 9) correlate with the relative

VLCFA concentrations shown in Figure 12.We observe a certain level
ofcorrelation,particularly inthecaseof26/22,whereA-CALDroughly
corresponds to relative concentrations in the lower tercile, AMN to
the middle tercile, and C-CALD to the upper tercile. Ultimately, this
feature enables us to identify protein conformations that align with
specific relative VLCFA concentrations.

Overall, our tree-based approach provides valuable insights
into the relationship between protein conformations and various
protein properties, allowing us to analyze and interpret the data in a
meaningful way.

4 Discussion

In the pursuit of comprehending the dynamic behaviors of
the ABCD1 protein and the nuanced impacts of mutations, we
introduced a novel tree-based sampling method specifically tailored
for molecular dynamics (MD) simulation trajectories. Traditional
analyses based on static protein structures offer a snapshot view,
prompting us to seek a more dynamic and inclusive approach.

Our tree-based method capitalizes on the intrinsic tendency of
protein structures to aggregate in local energy minima during MD
simulations, forming dense clusters of closely related conformations.
This unique representation enables us to sample these clusters at
various densities, constructing a hierarchical structure that reflects
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the energy landscape. Notably, the merging of energy minima
separated by low energy barriers occurs rapidly, presenting a
distinct advantage. We were further able to outline how we could
separate conformation ensembles identified by the algorithm that
are indistinguishable in a plain 2D PCA diagram.

To illustrate the efficacy of our tree-based method, we applied
it to the study of X-linked adrenoleukodystrophy (X-ALD) and its
associated mutations in the ABCD1 transporter. By incorporating
this innovative approach into our analysis, we gained a dynamic
perspective on how mutations influence the behavior of the ABCD1
protein.Thetree-basedmethodfacilitated thecorrelationof functional
relationships with the explored conformational space, revealing
intricate insights into the structural implicationsofX-ALDmutations.

In conclusion, our study presents a novel tree-based sampling
method that enriches our understanding of protein dynamics,
outlined here in the context of disease-progression-associated
mutations. The application of this method to the study of X-
ALDmutations in the ABCD1 transporter exemplifies its versatility
and potential in uncovering comprehensive insights into molecular
dynamics.The tree-based overview of various conformations should
enhance molecular docking and drug design studies by facilitating
the selection of the precise molecular conformations required as
input for these processes. This approach holds promise for further
exploration in diverse proteins and diseases, providing a valuable
tool for researchers engaged in molecular simulation studies.
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Appendix: a practical guide to tree
building using GROMACS and
MNHN-Tree-Tools

Creating a tree using the method described herein does not
require new code development. Instead, it leverages a combination
of MNHN-Tree-Tools (Haschka et al., 2021) and the tools provided
by GROMACS (Abraham et al., 2015). The process outlined below
enables the construction of a tree from a molecular dynamics
trajectory, highlighting the most frequently visited conformational
states. In general trees are built as follows.

1. Principal Component Analysis: Initially, GROMACS tools
are employed to compute principal components from a
molecular trajectory. In this study, only carbon-α atoms
were analyzed, although any type of trajectory could be
utilized more generally. For the figures presented here,
a concatenated trajectory comprising various simulated
mutations was generated. Therefore, careful attention is paid
to frame numbers because different frames in the trajectory
can represent conformations from different mutations.
Concatenation is feasible due to our focus solely on carbon-α
atoms. The PCA analysis using GROMACS typically involves
successive application of the gmx covar and gmx anaeig tools.
Once the principal components are derived, the trajectory
is projected onto a selected subset of these components.
Specifically, for the trees depicted, the analysis utilized the
top 10 components corresponding to the largest eigenvalues.
The resulting projections are provided by GROMACS tools in
the form of xvg files.

2. Preparing the output for MNHN-Tree-Tools: MNHN-Tree-
Tools was originally designed for constructing phylogenetic
trees from gene sequences, utilizing specific formats. To adapt
the PCA results obtained from GROMACS for use with
MNHN-Tree-Tools, we developed a small conversion script
in C, which is included in the Supplementary Material of
this article (process_projections.c). To associate each frame
of a trajectory with its corresponding node in the tree,
we generate a virtual FASTA file. Each sequence in this
file represents a frame in the trajectory, labeled sequentially
(i.e., > frame_11950). These labels ensure alignment with the
frame numbering in the trajectory file and eliminate the
need to modify MNHN-Tree-Tools’ interfaces. The sequences
themselves are arbitrary (e.g., represented by the single letter

’A’), as their content does not affect subsequent calculations.
Once this virtual FASTA file and the PCA data are correctly
formatted, tree construction can proceed seamlessly.

3. Treebuilding with MNHN-Tree-Tools: To construct the tree,
we utilized the adaptive_clustering_PCA tool from MNHN-
Tree-Tools. This tool employs a density adaptive approach
to explore conformational space (c.f. Figure 1), which is
represented in higher dimensions by PCA. It utilizes the
DBSCAN algorithm to identify density-connected regions,
adjusting density parameters to initially locate densely packed
ensembles of protein conformations, which serve as the
outermost leaf nodes of the tree. As the algorithm progresses
towards the root of the tree, it identifies more diffuse
ensembles, into which the dense ensembles are integrated.
This process effectively forms branches of the tree, merging
from the leaves towards the root, where the most diffuse
ensemble encompasses all sampled molecular conformations.
The adaptive_clustering_PCA tool provides clusters at each level
of this hierarchical tree structure. Due to the functionality of
this tool it requires three input parameters: ϵ, the initial radius.
Δϵ the increase in radius and hence, the increase in diffusion of
the clusters found for subsequent stages of the tree, and finally
a minimum number of points to be found within the radii at
each stage.

4. Postprocessing of the Tree: The results from adaptive_
clustering_PCA can be converted into a Newick-formatted
dodendrogram using the split_sets_to_newick program.
Various tools fromMNHN-Tree-Tools can be used to color the
tree, highlighting specific features as desired. To group frames
for each mutation together, use the split_set_from_annotation
tool. Maps for coloring are then generated with the tree_map_
for_splitset set. These maps can be used in conjunction with
the Newick dodendrogram as input to perform visualizations
of the tree using Newick Utils (Junier and Zdobnov, 2010).

For further details of the tree building algorithm we refer the
interested reader to the MNHN-Tree-Tools (Haschka et al., 2021)
article, and its algorithmic supplement as well as manual. Finalized
and annotated trees can be quantitatively analyzed with tools
like split_set_to_fasta or split_set_to_projections, where the first one
allows to identify the frame numbers (using the generated virtual
FASTA file) corresponding to conformations in a tree node while
the second yields the projections onto the principal components for
the conformations in such a node.
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