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Melanin is an amino acid derivative produced by melanocyte through a
series of enzymatic reactions using tyrosinase as substrate. Human skin
and hair color is also closely related to melanin, so understanding the
mechanisms and proteins that produce melanin is very important. There are
many proteins involved in the process of melanin expression, For example,
proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte
nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired
box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated
transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1),
TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their
content to control the production rate of melanin. Others, such as OA1 (ocular
albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin),
have been found to control the transfer rate of melanosomes frommelanocytes
to keratinocytes, and regulate the amount of human epidermal melanin to
control the depth of human skin color. In addition to the above proteins, there
are other protein families also involved in the process of melanin expression,
such as BLOC, Rab and Rho. This article reviews the origin of melanocytes,
the related proteins affecting melanin and the basic causes of related gene
mutations. In addition, we also summarized the active ingredients of 5 popular
whitening cosmetics and their mechanisms of action.
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1 Introduction

The type, quantity, and distribution of melanin are the primary factors influencing
human skin color. Melanin is highly concentrated in the skin, hair, mucous membranes,
and other tissues (Lapierre-Landry et al., 2018).Melanin is generated bymelanocytes (MC),
which arise from neural crest cells (NCCs) and are mostly located in the basal layer of the
mammalian epidermis and hair follicles.

In the typical human epidermis, 40 keratinocytes (KCs) cluster around 1 MC,
and MC will unite keratinocyte (KC). KCs connective dendritic branches act as
conduits for mature melanosome trafficking to the KC (Moreiras et al., 2021). The
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research that is currently accessible describes transplantation
of epidermal cultivated melanocytes or melanocyte-
keratinocyte suspension as a unique therapy option
for vitiligo (Nilforoushzadeh et al., 2022).

Melanin is produced in melanosomes, and three enzymes,
TYR, TYRP-1, and TYRP-2, play important roles in melanin
formation (Lai et al., 2018). The substrate tyrosine gets converted
to dopaquinone by the rate-limiting enzyme TYR, which can
transform to colorless dopachrome. Some proteins, including as
MITF, PKC, and HNF-1α, regulate melanin production by altering
TYR. However, the majority of proteins, including PAX3 and
SOX10, p53, and the melanocortin-1 receptor MC1R, regulate
melanin production by directly or indirectly affecting MITF. Others
include OA1, melanophilin Mlph, Protease activated receptor-2,
PAR-2, and other similar proteins, which are primarily involved
in the process of melanin expression via influencing melanosome
trafficking.

In addition to changing human skin color and hair color,
melanin also has some very valuable advantages. Melanin not only
absorbs UV and visible light but also has free radical scavenging
and antioxidant capacity, it protects cells from toxic damage and
boundaries the damaging effects of UV on cellular macromolecules.
This prevents DNA damage and pathogenic mutations from UV
radiation on the skin (Swope and Abdel-Malek, 2018).

2 The source of melanin and
melanocytes

2.1 Different types of melanocytes

All pigment cells in vertebrates, with the exception of retinal
pigment epithelial cells, are produced fromneural crest cells (NCCs)
(Alkobtawi et al., 2018).Melanocytes in the brain come from cranial
neural ridge cells, whilst those in the limbs and trunk originate
from trunk neural crest cells (Bronner and LeDouarin, 2012; Vega-
Lopez et al., 2018). NCCs originate from the dorsal border of
the neural tube, which is created by ectoderm, are exclusive to
vertebrates. Numerous derivatives, including the pigmentation of
the skin, adrenomedullary cells, facial bone and cartilage, and the
sensory and autonomic ganglia of the peripheral nervous system,
are formed by them. A subgroup of embryonic stem cells known as
neural crest cells (NCCS) can come froma variety of cell types (Noisa
and Raivio, 2014).

Early in the development of the vertebrate embryo, the elevated
nerve folds of the ectodermal nerves close to form neural tubes.
Numerous neural crest cells can be found in the dorsal area of the
neural tube. The neural ridge cells enter a migration staging area
(MSA) at the beginning of the complicated differentiation process,
where they choose to migrate dorsolaterally (between the outer
embryo and the body segment) or ventrally (between the neural tube
and the body segment). According to their final differentiation sites,
neural ridge cells can currently be classified as cranial ridge, vagus
ridge, trunk ridge, and caudal sacral ridge.

There are two forms of pigment cells in the embryonic stage, one
is formed by the migration of neural crest cells with pigment cell
properties along the dorsolateral side, and the other is formed by
the neural crest cell subcellular Schwann cell precursor migrating

along the ventral side after receiving some signal induction. Studies
suggest that the differentiation of pluripotent neural crest cells is
specialized before they migrate out of the neural tube, rather than
being influenced by the migration environment. Early migrating
neural crest cells localize to the sympathetic ganglia, intermediate
migrating cells localize in the dorsal root ganglia, and the last
migrating cells form pigment blasts under the dermal sarcomere
and ectoderm. These pigment precursor cells then differentiate
through specific developmental pathways to form pigment cells
(Jacobs-Cohen et al., 2002; Dupin and Le Douarin, 2003; Thomas
and Erickson, 2008; Sommer, 2011).

Melanocytes are mainly divided into two categories: skin
melanocytes and non-skin melanocytes. The source of melanocytes
in the skin is mainly the neural crest cell subcellular Schwann
cell precursors (SCPs), formed after being induced by some
kind of signal.

2.2 Different transport modes of
melanosomes

According to the current research progress, the synthesis process
of melanin in the organism has been basically determined, and how
melanosomes are transported to keratinocytes, four possible ways
have been proposed, but no one is conclusive (Bento-Lopes et al.,
2023). The first hypothesis is that surrounding keratinocytes
would exert direct cellular phagocytosis on melanocyte dendrites
containing melanosomes (Wolff, 1973; Okazaki et al., 1976;
Yamamoto and Bhawan, 1994). The second hypothesis is that
melanocytes shed melanosomes, followed by cellular phagocytosis
of the shed melanosomes by keratinocytes (Cerdan et al., 1992;
Ando et al., 2011; Ando et al., 2012). Form the third hypothesis is
horniness cells and melanocytes occur between the cell membrane
fusion, so that the formation of melanin body directly transferred to
the cutin cell (Scott et al., 2002; Tarafder et al., 2014; Singh et al.,
2017; Hurbain et al., 2018). Fourth, melanosome enters the
intercellular space from melanocytes by exocytosis and enters
keratinocytes by endocytosis (Swift, 1964; Tarafder et al., 2014;
Correia et al., 2018; Hurbain et al., 2018). These pathways are not
mutually exclusive, they may coexist, and melanosome transport
may be completed through multiple pathways.

2.3 Different types of melanin

Melanin derived from tyrosine and other similar phenolic
chemicals form the widely dispersed phenolic biopolymer.
According to the different synthetic pathways and intermediate
metabolites, melanin can be mainly divided into eumelanin,
pheomelanin and allomelanin, and its sources can be bacteria, fungi,
plants or animals (Wakamatsu and Ito, 2023).

L-tyrosine is converted by tyrosinase to L-3,4-
dihydroxyphenylalanine (L-DOPA) and L-DOPA to dopaquinone.
Dopaquinone then proceeds through a sequence of reduction
and oxidation processes to yield 5,6-dihydroxyindole and 5,6-
dihydroxyindole-2-carboxylic acid, which are the building blocks of
eumelanin.
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FIGURE 1
The process of tyrosine derivative of melanin.

Tyrosinase converts the amino acid L-tyrosine into the
eumelanin that makes up human skin. Phaeomelanin is a cysteine
derivative that is primarily responsible for the color of red hair,
as well as other pigmentation. Neuromelanin is found in the
brain, studies have been conducted to investigate its efficacy in
treating neurodegenerative diseases such as Parkinson’s disease
(Nagatsu et al., 2022) (Figure 1). Neuromelanin can participate
in neuroprotective or toxic processes that occur in Parkinson’s
disease. Neuromelanin can prevent the toxic accumulation of
active compounds derived from catechins, and can also provide
neuroprotective effects by combining reactive/toxic metals to
produce stable and non-toxic complexes (Zucca et al., 2023). The
eumelanins that we’re most concerned about are the two most
common types—brown eumelanin and black eumelanin, because
human skin exhibits different colors based on differences in the
amount of brown and black pigment and the ratio of the two. Brown
eumelanin mainly controls the color of brown, showing differences
in shades from yellow to brown as the content of brown eumelanin
varies. Depending on the amount of melanin in the body, it will
appear light gray, dark gray, or black.

3 Melanin-related proteins

Melanocytes producemelanosomes, which are then transported
to adjacent keratinocytes, ascending in layers, and eventually visible
in the human epidermis. In this process, many ions interact
with proteins to affect the process, some of which affect the
production of melanosome, and some of which regulate the
transport of melanosome. And some protein family not only affects

the generation of melanin small body, also in the transport of
melanin body play a role (Bento-Lopes et al., 2023) (Figure 2).

3.1 Proteins involved in melanogenesis

Proteins such as p53, HNF-1α, SOX10, PAX3, and MC1R affect
MITF through a series of regulations, thereby affecting tyrosinase
activity to regulate melanin production. For example, when the skin
is stimulated by UV radiation, the DNA damage caused can activate
p53. On the one hand, p53 can promote the expression of HNF-1α,
whileHNF-1α can promote the expression ofMITF, and on the other
hand, it can directly act on MITF. MITF, by adjusting the TYR and
TRP - 1, the expression of TRP - 2 to participate in the generation
of melanin.

3.1.1 P53
The human p53 gene is located on chromosome17p13.1, with

a total length of 1620 kb. It contains 11 exons and 10 introns,
encoding a 393 amino acid nuclear phosphorylated protein with
a molecular weight of 53kD. P53 protein has a clear binding
site with the regulatory sequence of TRP1 gene, which directly
regulates the synthesis of melanin. Uv irradiation can stimulate the
upregulation of P53 protein in keratinocytes, thereby promoting the
expression of keratinocyte cytokines such as proopiomelanocortin
POMC (Cui et al., 2007). POMC can bind to receptors on the
surface of melanocytes to promote the proliferation of melanocytes
and the synthesis of melanin. Expression of endothelin ET and
stem cell factor SCF, which are associated with melanin synthesis,
was higher in skin pigmented keratinocytes than in other tissues
(Imokawa et al., 1997; Hachiya et al., 2004). Treatment of cultured
tissues and mice with p53 siRNA downregulated ET and SCF
expression (Murase et al., 2009).

As a powerful tumor suppressor, p53 inhibits tumor growth
in several ways. As a transcription factor, p53 coordinates the
expression of target genes and can promote cell cycle arrest,
apoptosis, DNA repair, etc., (Kastan et al., 1995; Fridman and Lowe,
2003; Williams and Schumacher, 2016; Kastenhuber and Lowe,
2017). However, current studies have shown that P53 is related to the
deterioration ofmelanoma, and the higher themalignant degree, the
higher the positive rate of p53 expression, which contradicts p53 as
a tumor suppressor, but the specific mechanism is still unclear.

3.1.2 HNF-1α
Hepatocyte nuclear factor 1α (HNF1-α) gene is located

on human chromosome 12q24.31, a POU-homeodomain family
transcription factor, expressed predominantly in the liver, and it
regulates many aspects of hepatocyte function (Shih et al., 2001;
Costa et al., 2003; Odom et al., 2004). In melanocytes, HNF1A is
activated by p53, which not only binds to the enhancer of MITF
and enhances MITF transcription (Schallreuter et al., 2008), also
can bind to the promoter of the tyrosinase gene to activate the
transcription of tyrosinase, thus further promoting the transcription
of tyrosinase gene (Schallreuter et al., 2003).

Mutations in the HNF-1α gene cause Maturity-onset diabetes
of the young (MODY) (Yamagata et al., 2007). Large-scale
genetic studies have clarified that the common variants of
HNF1α and HNF4α genes are also associated with type 2
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FIGURE 2
Proteins related to melanogenesis and melanosome transport.

diabetes, suggesting that they are involved in the pathogenesis of
both diseases (DeForest et al., 2023). Twenty-seven single nucleotide
polymorphisms (SNPS) in the HNF-1α gene are associated with an
increased risk of coronary artery disease.

3.1.3 SOX10 and PAX3
SRY-box 10 (Sox10) located in human chromosome 22q13.1

It is a member of the SRY-related HMG-box (SOX) family of
transcription factors and a regulatory molecule that plays an
important role in the development of the neural crest and the
peripheral nervous system (Britsch et al., 2001; Hong and Saint-
Jeannet, 2005; Bondurand and Sham, 2013). PAX3 located in
human chromosome 2q36.1 It contains 10 exons and is a member
of the paired box transcribed silver PAX family. SOX10 and
PAX3 are widely expressed in NCC and NC-derived tissues, and
play important roles in the early development of melanocytes
(D. S. Wilson et al., 1995; Takebayashi et al., 1996; Lang et al.,
2000; Hollenbach et al., 2002; Yasumoto et al., 2002). Without the
regulation of SOX10 and PAX3, it is difficult for MITF to affect the
transcription of TYR and thus the differentiation of melanocytes.
Moreover, SOX10 can also directly induce the expression of
DCT121 and TYR78. PAX3 can upregulate the transcriptional
activity of TYRP1, thereby affecting the production of melanin
(Poulat et al., 1995). A large number of experiments have confirmed

(Bertolotto et al., 1998; Watanabe et al., 1998; Bondurand et al.,
2000; Potterf et al., 2000; Yasumoto et al., 2002; Ludwig et al., 2004).
In melanocyte development, SOX10 increases MITF transcription
100-fold after binding to a highly conserved sequence in the MITF
promoter, a mechanism that is enhanced by PAX3, but the ability of
PAX3 alone to activate MITF transport is weak (Hershey and Fisher,
2005; Sánchez-Mejías et al., 2010). The transcriptional activation of
TYRP2/DCT by MITF requires a synergistic effect with SOX10
(Bertolotto et al., 1998; Yasumoto et al., 2002; Ludwig et al., 2004),
indicating that SOX not only induces MITF expression but also
regulates the transcription of other genes specifically expressed in
melanocytes during melanocyte development.

Mutations in PAX3 cause Waardenburg syndrome type 1 and
Waardenburg syndrome type 3 (Cao andWang, 2000; Pingault et al.,
2002; Mollaaghababa and Pavan, 2003; Baxter et al., 2004), At the
same time, PAX3 plays an important role in the regulation of
normal cell apoptosis, proliferation and differentiation. Once PAX3
is lacking, the balance between cell proliferation and differentiation
will be broken (Cao andWang, 2000). SOX10mutations causeWS2E
(Gether, 2000; Mollaaghababa and Pavan, 2003; Baxter et al., 2004).

3.1.4 MC1R
The melanocortin (MC) receptor family is the smallest member

of the class A (rhodopsin-like) family ofG-protein coupled receptors
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(GPCRs) (Gether, 2000; Montero-Melendez, 2015). And consists
of five members: MC1R, MC2R, MC3R, MC4R, and MC5R with
varying tissue expression and functions.

The human MC1R is 317 amino acids (García-Borrón et al.,
2005), it was originally identified and cloned by two independent
groups (Chhajlani and Wikberg, 1992; Mountjoy et al., 1992), and
mapped to chromosome 16q24.3 (Gantz et al., 1994). The receptor
is primarily located on melanocytes and transformed melanoma
cells (Ghanem et al., 1988; Siegrist et al., 1989; Donatien et al., 1992;
Siegrist et al., 1994). MC1R protein expression is typically low,
with an estimated 700 protein units expressed per melanocyte
and somewhat higher numbers on melanoma cells (Donatien et al.,
1992; Roberts et al., 2006). In humans, MC1R is activated by KC-
derived α-MSH, which stimulates MITF and accelerates melanin
biosynthesis (Goding and Arnheiter, 2019). It converts the yellow-
red sulfur-containing pheomelanin base substance into black-brown
eumelanin, leading to deeper pigmentation and promoting the
transfer of pigment to KCs (Guida et al., 2022).

Recent scientific evidence suggests that MC1R activation
enhances the process of DNA repair, which could potentially
prevent melanoma. This is contrary to the previous belief of most
researchers that the overexpression of MC1R in early melanoma
cells will promote its proliferation. Instead of proliferation, MC1R
will play a preventive and repair role (Chen et al., 2017; Castejón-
Griñán et al., 2018; Montero-Melendez et al., 2022). Beyond its role
in pigmentation, monocytes and macrophages are known to express
the MC1R, which mediates anti-inflammatory effects and helps
prevent macrophage foam cell production by increasing cholesterol
efflux via ATP-binding cassette transporter A1 (ABCA1) and
adenosine triphophate (ATP)-binding cassette (ABC) transporter
G1 (ABCG1) transporters (Catania et al., 2004; Rinne et al., 2017).

3.1.5 MITF
The Microphthalmia-associated transcription factor (MITF)

gene is a basic helix-loop-helix leucine zipper transcription factor
(T. Chang et al., 1993) which acts as a reaction substrate of ubiquitin
ligase VCHL1 and regulates the expression of key enzymes in
melanin synthesis, such as TYR (Shi et al., 2022). It can regulate
the expression of TYR, TRP-1 and TRP-2 by binding to the M-box
motif in the promoter region (a highly conserved sequence shared
by TYR, TRP-1 and TRP-2 in the promoter region, namely 5′-
AGTCATGTGCT3′), thereby regulating the production of melanin
(Y. S. Hwang et al., 2017). MITF is located on human chromosome
3p13 (Hou and Pavan, 2008). The retinal pigment epithelial (RPE)
represents the first site of MITF expression, followed by the
expression in the neural crest. The mutation of MITF gene can
lead to a series of phenotypic changes in many species, especially
in pigment cells. Some mutations can affect RPE, leading to
hypopigmentemia and microphthalmia (Nakayama et al., 1998).
Loss of MITF gene expression in humans can cause Waardenburg
syndrome type I, which is characterized by congenital cataract and
nerve deafness. In addition, a few MITF alleles have important
regulatory effects on the growth and development of melanocytes,
melanin production and transport by affecting osteoclasts and
leading to bone sclerosis (Cheli et al., 2010). MITF can regulate a
variety ofmelanosome production related proteins andmelanosome
transport related proteins, such as TYR, TYRP1, TYRP2, MC1R,
KIT, Rab27a, OA1 and so on (Hoek et al., 2008).

MITF haploinsufficiency can lead to Waardenburg syndrome
type 2 (Hodgkinson et al., 1998) Mutations in the MITF gene
cause Waardenburg syndrome (S. Kumar and Rao, 2012) and
Tietz syndrome (S. D. Smith et al., 2000), Both disorders are
accompanied by symptoms such as inadequate melanocyte
development, insufficient pigmentation of the skin and hair,
and deafness. In addition, Tietz syndrome is accompanied
by leukemia.

3.1.6 TYR-TYRP1-TYRP2
There are three types of tyrosinase and its related proteins,

including: Tyrosinase (TYR), Tyrosinase-related protein-1
(TYRP1), also known as gp75 (Glycoprotein 75), and tyrosinase-
related protein-2 (TYRP2), also known as dopachrome tautomerase
(DCT) (Villareal et al., 2010). TYR gene, located in human
chromosome 11q14.3 (Barton et al., 1988), is a rate-limiting enzyme
that controls melanin production and catalyzes the early rate-
limiting reaction of melanin production (Kumar et al., 2011).
TYRP1 gene, located in human chromosome 9p23 (Box et al.,
1998). It is a specific gene product of melanocytes involved in the
production of melanin. In addition, TYRP1 has been suggested
to function as a 5,6-dihydroxyindole-2-carboxylic acid (DHICA)
oxidase in murine melanocytes (Jiménez et al., 1988), and it is also
involved in the formation of melanosome structures (Sarangarajan
and Boissy, 2001). TYRP2 chromosomal localization to 13q31-
q32 (Bouchard et al., 1994). It mediates the tautomerization of
the red melanin precursor, L-DOPA chrome to the colorless
DHICA. In the absence of DCT, L-DOPA chrome is spontaneously
converted to the toxic melanin precursor, DHI (Leonard et al., 1988;
Tsukamoto et al., 1992; Kroumpouzos et al., 1994).

In the second stage of melanosome formation, TYR, TYRP1
and TYRP2 are transported into melanosomes (Hellström et al.,
2011), Beginning with the melanosome stage III, these enzymes
catalyze the conversion of tyrosine to pigment (Kobayashi et al.,
1994). TYR gene mutation inhibits the production of TYR,
directly affects the production of melanin, and then causes
oculocutaneous albinism type 1 (OCA1) (Witkop and Wolff,
1979). TYRP1 gene mutation causes oculocutaneous albinism
type 3 (OCA3) (Wakamatsu and Ito, 2023). The TYRP2 gene
regulation mechanism is negatively correlated with the melanocyte
growth regulation pathway.

3.2 Proteins involved in melanin transport

Although the generation of melanosome is the most important
step for melanin to reach the skin surface, the transport of
melanosome is also an indispensable focus. For example, OA1 and
PAR-2 affect melanosome transport by promoting the transport of
melanosome from melanocytes to keratinocytes. MLPH does the
same, but as a three-protein complex, MLPH-MyoVa-Rab27a, to
facilitate melanosomes trafficking.

3.2.1 OA1
The Ocular albinism type 1 (OA1) gene is located on the

human chromosome xp22.3-xp22.2 and encodes a 404 amino acid
(Shen et al., 2001). OA1 protein is expressed more in the retinal
pigment epithelium and skin and less in the brain and adrenal
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gland (Oetting and King, 1999). OA1 receptor is a typical G
protein-coupled receptor, a conserved intact membrane protein
with seven transmembrane domains. OA1 protein mainly exists in
the endocytic lysosomes of pre-melanosome and the membrane
of mature melanosome, connecting intracellular lysosomes and
melanosome (Staleva andOrlow, 2006). It may be involved in vesicle
trafficking or melanosome sorting (Young et al., 2013). Levodopa
(L-DOPA) is a specific ligand for the OA1 receptor (Gross, 2008), it
is also a by-product of the melanin biosynthesis pathway. Activation
of OA1 receptors by L-DOPA results in secretion of a neurogenic
factor by retinal pigment epithelial cells that contributes to normal
retinal development (Lopez et al., 2008).

Loss of function due to mutations in the OA1 gene,
causing ocular albinism type 1, also known as “Nettleship-
Falls syndrome (Oetting, 2002).” It is an inherited X-linked
recessive disorder with a higher incidence in males than in
females. It causes retinal hypopigmentation, nystagmus, strabismus,
foveal hypoplasia, abnormal fiber crossing, and decreased vision
(Oetting, 2002), strabismus and fundus pigmentation decreased
while skin and hair color remained normal (Lam et al., 1997;
Preising et al., 2001; Sallmann et al., 2006).

3.2.2 PAR-2
Protease activated receptor 2 (PAR-2), also known as

coagulation factor II (thrombin receptor-like 1, F2RL1), which
is encoded by F2RL1 gene in human chromosome 5q13.3,
can regulate the body’s blood coagulation, inflammatory
response, fat metabolism and other physiological processes
(Lim et al., 2013). It has a positive regulatory effect on Rho
protein signal transduction, cell phagocytosis and cell migration
(Rattenholl et al., 2007). PAR-2 plays an important role in the
transport of melanosomes from melanocytes to keratinocytes,
especially in skin pigmentation caused by ultraviolet radiation
and inflammation. After UV irradiation, PAR-2 can activate
Rho signaling, enhance the dendritic formation of melanocytes,
increase the phagocytic capacity of keratinocytes, increase the
amount ofmelanosomes transported to keratinocytes, and aggravate
skin pigmentation (Enomoto et al., 2011). After inflammatory
stimulation, PAR-2 can induce the release of prostaglandin (PG)
including PGE2 and PGF2α from keratinocytes. PG can enhance
the dendrites of melanocytes and promote the transport of
melanosome (G. Scott et al., 2004).

3.2.3 MLPH - MyoVa - Rab27a
The human melanophilin (MLPH, also known as Slac2-a)

gene is located on chromosome 2q37,3. The process of melanin
accumulation in the periphery of vitro has been shown to be
controlled by the unconventionalmyosinVa (MyoVa) (Mercer et al.,
1991), the Ras-associated gtpase Rab27a (S. M. Wilson et al., 2000),
and the Rab-effector MLPH (Matesic et al., 2001). The products of
these three genes work together to anchor melanosomes to the actin
cytoskeleton, thus facilitating their transport within the cell. MLPH
binds with MyoVa at one end and Rab27a, which is itself targeted
to the melanosomal membrane, at the other (Nascimento et al.,
2003). They form a protein complex that has been shown to
be essential for the capture and movement of melanosomes via
the actin cytoskeleton (Hume et al., 2002; Provance et al., 2002;
Strom et al., 2002; Wu et al., 2002). After actin-based melanosome

transport, Rab27a interacts with Slp2-a, another Rab27-specific
effector, and promotes the anchoring of melanosomes to the
plasma membrane (Kuroda and Fukuda, 2004).

Mutations in the MLPH gene cause Griseli’s syndrome, which
is characterized by abnormally light skin (hypopigmentation)
and silver-gray hair. Different from Grieseli syndrome caused by
other factors, MLPH gene mutations cause type 3 lesions. The
biggest difference between this type of lesions and other Grieseli
syndrome is that it does not involve abnormalities of the brain or
immune system.

3.3 Melanin-related protein family

There are also many protein families involved in the formation
and transport of melanosome, such as BLOC, Rab and Rho. BLOC
protein family are mainly effect on the transfer of tyrosinase that
control the formation of melanin. Rab protein family of proteins
will affect the transfer of tyrosinase, the other part is the influence
of transport of melanin body. And Rho protein family is mostly is
by influencing the transport of melanin body to participate in the
process of melanin expression.

3.3.1 BLOC
BLOC (biogenesis of lysosome - related organelles complex,

lysosome associated organelles biological complex). It is a
multisubunit protein complex that is widely expressed in
organisms and participates in the biosynthesis of special
organelles of the endoplasmic lysosome system, such as
melanosomes and platelets. BLOC is divided into three categories,
BLOC-1, BLOC-2, and BLOC-3, which are closely related to
HPS syndrome.

BLOC-1 is composed of eight subunits (pallidin, cappuccino,
disbindin, snapin, muted, BLOS1, BLOS2, and BLOS3).
disbindin mutations cause human HPS7 disease. BLOC-1
can sort TYRP1 and interact with PI4KII (Zhu et al., 2022),
KIF13A and AP3 to transport TYRP1 from endosomal
vesicles to melanosomes (Shakya et al., 2018; Thankachan and
Setty, 2022).

BLOC-2 consists of three subunits (HPS3, HPS5, and HPS6),
and mutations in HPS3, HPS5, and HPS6 cause HPS3, HPS5, and
HPS6 disease, respectively (Wei et al., 2019). BLOC-2 can interact
with Rab32/Rab38 to guide the endosomal recycling tubules to
transport TYRP1 until melanosomes. In melanocytes deficient in
BLOC-2, the number and length of endosomal tubules decreased,
TYRP1 accumulated in endosomal vesicles, and the production of
melanin decreased (Bultema et al., 2012).

BLOC-3 is composed of two subunits (HPS1 and HPS4),
and mutations in HPS1 and HPS4 cause HPS1 and HPS4
diseases, respectively (De Jesus Rojas and Young, 2020). As a
guanine nucleotide exchange factor of Rab32/Rab38, BLOC-3
deficiency directly affects the transport of melanin production
related proteins (TYR, TYRP1, etc.) involved in Rab32/Rab38
(Gerondopoulos et al., 2012). For example, in HPS1 patients, there
are phagocytotic vesicles near themelanosome, TYR and TYRP1 are
engulfed by phagocytotic vesicles, leading to the block of melanin
production (J. W. Smith et al., 2005).
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3.3.2 Rab
The Rab protein family is a member of the Ras superfamily of

monomeric G-proteins, and approximately 70 Rab proteins have
been identified in humans (Stenmark and Olkkonen, 2001). Rab
proteins are important regulators of vesicle trafficking and can
regulate many aspects of membrane trafficking, including vesicle
formation, vesiclemovement along actin andmicrotubule networks,
vesicle budding, and membrane fusion (Diekmann et al., 2011).
Among them, Rab7, Rab9a, Rab11, Rab17, Rab21, Rab27a, Rab32,
Rab36, and Rab38 play important roles in the formation and
transport of melanosomes.

Rab7 gene is located in human chromosome 3q21.3
(Kashuba et al., 1997). It is a key regulator of endolysosome
transport and controls the maturation and migration of
endolysosome (Bucci et al., 2000). Among the findings (Hida et al.,
2011): Rab7 plays an important role in the transport of melanin
production related proteins such as TYR, TYRP-1 and gp100
to melanosomes. RILP (Rab interacting lysosomal protein) is
a downstream effector of Rab7, which links Rab7 function
to the cytoskeleton and is related to the reverse transport of
melanosomes (Agola et al., 2015).

The Rab9a gene is located in human chromosome Xp22.2
(Davies et al., 1997). It regulates the reverse transport of late
vesicles to the Golgi apparatus. Rab9a can bind to RABEPK (Rab9
effector protein with Kelch motifs) (Díaz et al., 1997), M6PRBP1
(Mannose-6-phosphate receptor binding protein 1, M6PRBP1),
and M6PRBP1 (mannose-6-phosphate receptor binding protein
1, M6PRBP1). Also known as TIP47 (Carroll et al., 2001), BLOC
- 3 (Biogenesis of lysosome - related organelles complex 3)
interaction (Kloer et al., 2010). For example, the interaction between
Rab9a and BLOC 3 is involved in the formation of melanosome,
and Rab9a gene mutation can cause HPS syndrome (A. H.
Wei et al., 2013; Mahanty et al., 2016).

Rab11 is associated with both constitutive and regulatory
secretory pathways and may be involved in protein transport, and
Rab11 interacts with BLOC1 to participate in the trafficking of early
vesicles during melanosome generation.

Rab17 (Beaumont et al., 2011) and Rab21 (Ohbayashi et al.,
2012) are related to the formation of dendritic pseudopodia
in melanocytes and affect the transport of melanosomes from
melanocytes to keratinocytes. In addition, Rab17 expression may be
regulated by MITF (Hoek et al., 2008).

Rab27a gene is located in human chromosome 15q21.3
(Tolmachova et al., 1999), which is a membrane-bound protein
and may be involved in protein transport and small GTpase-
mediated signal transduction. Rab27a protein plays an important
role in melanosome transport. In melanocytes, MLPH could
bind to MyoVa and Rab27a to form Rab27a-MLPH-MyoVa
complex. This complex can transport melanosomes from the
periphery of the nucleus to the end of dendrites (Kim et al.,
2013). Mutations in any of the proteins in the complex will cause
abnormal transport of melanosome and abnormal accumulation
of mature melanosome around the nucleus (Kuroda et al., 2005).
Mutations in MyoVa can cause Griscelli syndrome type 1 (GS1),
which is characterized by characteristic hypopigmentation of
skin and hair accompanied by neurological abnormal brain
dysfunction (Ariffin et al., 2014). Rab27a mutation can cause

Griscelli syndrome type 2 (GS2), the main symptoms of which
are accompanied by immune abnormalities in addition to skin
and hair hypopigination (Panigrahi et al., 2015). Mutations
in MLPH cause Griscelli syndrome type 3 (GS3), which
is characterized by hypopigmentation of the skin and hair
(Van Gele et al., 2009; Bed’hom et al., 2012).

Rab32 and Rab38 are associated with melanosome formation
(Bultema et al., 2012). It is involved in the transport of melanogenic
proteins such as TYR and TYRP-1 to melanosome (Esposito et al.,
2012). The study found that (Wasmeier et al., 2006): in Rab32 and
Rab38 knockout melanocytes, TYR and TYRP-1 could not be
transported to melsome and thus affect melanin production. In
addition, mutations in the Rab32 gene of Drosophila melanogaster
can cause hypopigoria (Wang et al., 2012).

Rab36 gene is located in human chromosome 22q11.23
(Mori et al., 1999), and similar to Rab7, it can interact with the
effector protein RILP and participate in the reverse transport of
melanosomes (Matsui et al., 2012).

3.3.3 Rho
The Rho protein family is a member of the Ras superfamily

of monomeric G-proteins, which belongs to the small gtpase
proteins (∼21 kDa) and plays an important role in cellular functions
such as organelle development, cytoskeletal dynamics, and cell
motility (Ridley, 2015). At present, more than 20 members of
the Rho protein family have been found in mammals, which are
divided into 8 subfamilies, namely: Rac subfamily (Rac1, Rac2,
Rac3, and RhoG), Cdc42 subfamily (Cdc42, TC10/RhoQ, and
TCL/RhoJ), RhoUV subfamily (RhoV/Chp and RhoU/Wrch-
1), Rho subfamily (RhoA, RhoB, and RhoC), Rnd subfamilies
(Rnd1/Rho6, Rnd2/RhoN, and Rnd3/RhoE), RhoDF subfamilies
(RhoD and RhoF/Rif), RhoBTB subfamilies (RhoBTB1 and
RhoBTB2) and RhoH/TTF subfamilies(Boureux et al., 2007).
Among them, Rac1, Cdc42, and RhoA play important roles in the
dendrite, cytoskeleton, cell migration and melanosomes transport
of melanocytes.

Rac1 can mediate the formation of lamellipodia, promote the
extension of lamellipodia, prevent actin depolymerization, and play
a positive regulatory role in the formation of cell dendrites (Tashiro
and Yuste, 2004). In Rac1-deficient cells, cell morphology was
shrunken, lamellipodia formation was blocked, and dendrite was
not obvious (Guo et al., 2006).

Cdc42 is involved in dendritic growth, branching and branch
stability. Cdc42 can mediate the formation of filopodia, promote
filopodia elongation, prevent actin depolymerization, and play a
positive regulatory role in cell dendrite formation (Scott et al.,
2003). Studies have found that (Crawford et al., 1998), after Cdc42
deficiency in Drosophila, the dendritic morphology of neurons
in the vertical system is changed, and the dendritic caliber
and dendritic branch localization are defective. Cdc42 gene
mutation can cause Wiskott-Aldrich syndrome, which is a recessive
genetic disease, only affects males, and the membrane skeleton of
lymphocytes and platelets in patients is abnormal (Nonoyama and
Ochs, 2001).

RhoA can mediate the formation of stress fibers. RhoA binds to
the downstream effector molecule ROCK, promotes the formation
of stress fibers and focal adhesion, and promotes the polymerization
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FIGURE 3
(A) Copper ions bind to tyrosinase and activate tyrosinase activity. (B) KA preemptively binds to copper ions by trapping copper ions, thereby inhibiting
tyrosinase activity. (C) Arbutin binds to Emet and inhibits melanosome generation.

of actin microfilaments, thereby shortening the dendrites and
negatively regulating the formation of cell dendrites (Couvillon and
Exton, 2006).

4 Mechanisms of action of popular
whitening active agents

The study found that the dimension of country or region
was positively correlated with the length of local skin brightness,
and the difference gradually increased with the increase of age
(Bae et al., 2016). Factors can be divided into external factors and
internal factors. External factors such as ultraviolet radiation and
drug consumption, and internal factors such as the body’s immune
response and hormonal signals can affect melanin production
in different ways (Rzepka et al., 2016). Intense ex-posure to UV

radiation can cause a variety of conditions, ranging from mild
sunburn and oxidative stress to DNA damage and skin cancer,
and accelerate skin aging (Kong et al., 2016). We can based on
some biological knowledge in the process of melanin production
by melanocytes, to understand how some popular whitening
products today, the products that really have whitening effect play
their own value.

4.1 Disruption of tyrosinase activity: kojic
acid

Kojic acid (KA) is a metabolite produced by fungi, and its
derivatives exhibit biocompatibility, antibacterial, antiviral, anti-
cancer, anti-spot, anti-parasitic, and insecticidal characteristics,
among other things. Tyrosinase activity is activated and melanin
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FIGURE 4
Nicotinamide inhibits melanosome transport and AHA accelerates keratinocyte shedding.

formation is accelerated by UV radiation because copper ions,
which are very active under UV light, can quickly attach to the
copper active site of tyrosinase. To prevent copper ions from
activating tyrosinase and suppressing tyrosinase activity, KA instead
preemptively binds to copper ions by trapping copper ions. Due
to its ability to reduce o-dopaquinone to L-Dopa and avoid
melanin formation, KA has been extensively described in the
literature as a potent anti-TYR agent (Saghaie et al., 2013) (Figure 3).
Additionally, kojic acid is currently themost popular skin brightener
and is frequently added to a wide range of skin care products
so that the product has a particular impact. Yet kojic acid is
not entirely beneficial and may have side effects like erythema,
dermatitis, and hypersensitivity (T. S. Chang, 2009; Gillbro and
Olsson, 2011).The available human sensitization data supported
the safety of kojic acid at a use concentration of 2% in leave-on
cosmetics (Burnett et al., 2010).

4.2 Preempt tyrosinase binding sites:
arbutin

Arbutin is a natural active substance extracted from plants. Its
biological structure is similar to hydroquinone, and its damage to
the integrity of melanosomes is less than that of hydroquinone.
At present, the common arbutin include α-arbutin, β-arbutin and

deoxyarbutin. And the damage to the integrity of melanosomes was
less than that of hydroquinone (Miao et al., 2016).

It has been reported that arbutin can be used as a substrate of
TYR. In the presence of a certain amount of L-DOPA as a cofactor,
arbutin is oxidized by mushroom TYR to 3,4-dihydroxyphenyl-
O-beta-D-glucopyranoside (Nihei and Kubo, 2003), and can also
inactivate TYR by binding to Emet in the absence of L-DOPA
(Hori et al., 2004).This leads to interference of melanocytes, thereby
blocking melanin production (Figure 3).

4.3 Inhibits the transfer of the generated
melanin to the epidermis: niacinamide

Nicotinamide is a bioactive form of niacin (vitamin B3) that
has been shown to reduce pigmentation based on existing research
(Russomanno et al., 2023). Human skin naturally undergoes the
Maillard reaction as we age, which produces cross-linked proteins
that give aging skin a yellowish color (Wolff et al., 1991; Bissett et al.,
2004). Nicotinamide keeps melanin in melanocytes by interfering
with the transport of melanosomes, causing melanocytes to no
longer produce melanin, and the melanin that has been produced
cannot reach keratinocytes (Figure 4). Interestingly, in addition
to interfering with the transport of melanin bodies to produce
whitening effects, the current research progress has proved that
niacinamide can enhance the repair of UV-mediated DNA damage
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in keratinocytes, reduce UV-mediated inflammation, and prevent
UV-induced immunosuppression (Rolfe, 2014; Snaidr et al., 2019).

Unfortunately, inhibition of melanin transfer by nicotinamide
is reversible, and skin darkening occurs after cessation of
nicotinamide.

4.4 Accelerate the degradation of melanin
in the stratum corneum: alpha-hydroxy
acids

Alpha-hydroxyacids (AHA) is an organic acid extracted from
fruits, including grape acid, malic acid, citrus acid, etc., (Yu and
Van Scott, 2002). Many AHAs are intermediate products or end
metabolites in carbohydrate metabolism (Kai et al., 2019). Based
on its properties, glycolic acid can chemically reduce the viscosity
of glial cells in the epidermal layer, accelerate the exfoliation
of keratinocytes, rapidly remove aging keratinocytes, and make
melanin escape with glial cells (Sunder, 2019) (Figure 4). Due to the
small molecules and the strong permeability, the appropriate dose
of alpha hydroxy acids can act on the dermis, so it may stimulate
keratinocytes and fibroblasts to produce various cytokines, adhesion
molecules and growth factors, thereby improving and restoring the
aging skin and achieving the whitening effect (Huang et al., 2022).

4.5 Reduce the effect of UV on melanin
formation

In the past decade, the most popular category of cosmetics
should be sunscreen products, the impact of ultraviolet (UV) on the
skin is recognized to have immediate and delayed effects, tanning,
sunburn, can be triggered in the absence of adequate UV protection,
over time, the skin will change. Commonly used sunscreen products
are divided into physical sunscreen and chemical sunscreen
(Cole et al., 2023). Two physical sunscreens that are often added
to sunscreens are titanium dioxide and zinc oxide, both of which
have a strong anti-blue light effect (Bernstein et al., 2021). Titanium
dioxide has high refractive properties and high photoactivity and
is able to reflect UV light (Bernstein et al., 2021). Zinc oxide is an
N-type semiconductor, and the electrons on the valence band can
accept the energy transition in ultraviolet light, which is the principle
of their absorption of ultraviolet light. Chemical sun protection is
mainly through the absorption of ultraviolet rays, reduce ultraviolet
rays into the epidermal layer to achieve the effect of sun protection,
commonly used chemical sun protection are: diphenyl ketone,
ethyl hexyl salicylate, Humosalate, xisoxamate and phenyl diphenyl
imidazole tetraxanthate disodium, etc.

5 Conclusion and future expectations

In this paper, the research progress of related proteins involved
in melanin synthesis is reviewed. From the origin of melanin, the
proteins involved in the production and transport of melanin and
how they affect the formation of melanin are described. TYR is a
key enzyme in the process of melanin formation, which can directly
affect the production of melanin. MITF, PKC, HNF-1α, SOX10,

PAX3, p53, MC1R, OA1, Mlph, and PAR-2 related to it are all
proteins related to the production ofmelanin.These proteins directly
or indirectly control melanin production by affecting TYR. OA1,
Mlph, and PAR-2 control the expression of melanin on the skin
surface by affecting the transport ofmelanin bodies. In addition, this
paper briefly summarizes several active ingredients with whitening
effect on the market, and introduces their principle of blocking
melanin production.

At present, the research on melanin is no longer on the surface.
Relevant studies have proved that neural stem cell-derived CM can
be used as a new material in cosmetics, and NSC-CM can be used
as a core technology to meet the pursuit of fair skin in women
(Hwang and Hong, 2017). And the research on melanin has been
deeply applied to the medical field, such as using melanin as a probe
in magnetic resonance imaging, antioxidant therapy, photothermal
therapy, chemotherapy and therapeutics, tissue scaffold and sealing
material supplement, and other PDAM applications (Solano, 2017).
There are many diseases known to be related to melanin, such
as albinism, melanoma, and various lesions caused by mutations
in the genes related to melanin forming proteins mentioned in
the text. In order to elucidate the interactions between a variety
of transporters and proteins and ions, perhaps in addition to
biological functions and physiological roles, we should incorporate
the interactomics, which may better explain the function of proteins
in the human body. Based on the published literature so far, the
function and characteristics of melanosome-related transporters
need to be further studied.
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