
TYPE Technology and Code
PUBLISHED 30 October 2024
DOI 10.3389/fmolb.2024.1432495

OPEN ACCESS

EDITED BY

Matthew Wakefield,
The University of Melbourne, Australia

REVIEWED BY

Ira Cooke,
James Cook University, Australia
David Richard Powell,
Monash University, Australia

*CORRESPONDENCE

Robert N. McArthur,
robert.mcarthur@anu.edu.au

†Deceased

RECEIVED 14 May 2024
ACCEPTED 24 September 2024
PUBLISHED 30 October 2024

CITATION

McArthur RN, Zehmakan AN, Charleston MA,
Lin Y and Huttley G (2024) Spectral cluster
supertree: fast and statistically robust merging
of rooted phylogenetic trees.
Front. Mol. Biosci. 11:1432495.
doi: 10.3389/fmolb.2024.1432495

COPYRIGHT

© 2024 McArthur, Zehmakan, Charleston, Lin
and Huttley. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Spectral cluster supertree: fast
and statistically robust merging
of rooted phylogenetic trees

Robert N. McArthur1*, Ahad N. Zehmakan2,
Michael A. Charleston3, Yu Lin2† and Gavin Huttley1

1Research School of Biology, The Australian National University, Canberra, ACT, Australia, 2School of
Computing, The Australian National University, Canberra, ACT, Australia, 3School of Natural Sciences,
University of Tasmania, Hobart, TAS, Australia

The algorithms for phylogenetic reconstruction are central to computational
molecular evolution. The relentless pace of data acquisition has exposed their
poor scalability and the conclusion that the conventional application of these
methods is impractical and not justifiable from an energy usage perspective.
Furthermore, the drive to improve the statistical performance of phylogenetic
methods produces increasingly parameter-rich models of sequence evolution,
which worsens the computational performance. Established theoretical and
algorithmic results identify supertree methods as critical to divide-and-conquer
strategies for improving scalability of phylogenetic reconstruction. Of particular
importance is the ability to explicitly accommodate rooted topologies. These
can arise from the more biologically plausible non-stationary models of
sequence evolution. We make a contribution to addressing this challenge
with Spectral Cluster Supertree, a novel supertree method for merging a set
of overlapping rooted phylogenetic trees. It offers significant improvements
over Min-Cut supertree and previous state-of-the-art methods in terms
of both time complexity and overall topological accuracy, particularly for
problems of large size. We perform comparisons against Min-Cut supertree
and Bad Clade Deletion. Leveraging two tree topology distance metrics, we
demonstrate that while Bad Clade Deletion generates more correct clades in its
resulting supertree, Spectral Cluster Supertree’s generated tree is generally more
topologically close to the truemodel tree. Over large datasets containing 10,000
taxa and ∼500 source trees, where Bad Clade Deletion usually takes ∼2 h to run,
our method generates a supertree in on average 20 s. Spectral Cluster Supertree
is released under an open source license and is available on the python package
index as sc-supertree.

KEYWORDS

supertree, spectral clustering, rooted phylogenetic trees, phylogenetics, molecular
evolution

1 Introduction

The relentless pace of DNA sequence data acquisition has exposed the poor
scalability of phylogenetic reconstruction algorithms, establishing that new scalable and
accurate algorithms are required for phylogenetic analysis. The well known sensitivity
of phylogenetic results to data features that violate models of sequence evolution is
increasing the interest in applying non-stationary models to phylogenetic inference

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences
https://doi.org/10.3389/fmolb.2024.1432495
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1432495&domain=pdf&date_stamp=2024-10-26
mailto:robert.mcarthur@anu.edu.au
mailto:robert.mcarthur@anu.edu.au
https://doi.org/10.3389/fmolb.2024.1432495
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1432495/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1432495/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1432495/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

(e.g., Dang et al., 2022; Kaehler et al., 2015; Sumner et al., 2012)
including estimation of rooted phylogenies (Kaehler, 2017; Yap
and Speed, 2005). However, such models increase the number
of free parameters and thus worsen computational performance.
Theoretical results confirming the statistical consistency of the
divide-and-conquer Disk-Covering Method (DCM) (Huson et al.,
1999) identified this as a promising candidate for overcoming the
robustness versus performance trade-off, illustrated more recently
by DACTAL (Nelesen et al., 2012). DCM algorithms fundamentally
rely on merging phylogenies estimated from overlapping subsets
of the full data. While most prior DCM work has been focused
on unrooted trees, rooted topologies can also be handled. Given
these considerations, we have sought to resolve one important
bottleneck affecting the generalisation of DCM by developing a
rooted supertree method that is statistically robust and scalable.

Algorithms for merging phylogenies into a single phylogenetic
tree can largely be divided into two categories - supertree methods
and consensus tree methods. Consensus tree methods assume the
sets of taxa in each of the phylogenies are identical. Supertree
methods solve the more general problem where the sets of
taxa are not necessarily the same but are overlapping (Steel
and Bocker, 2000). A spectral clustering based consensus tree
method has been developed for clustering gene trees for multilocus
phylogenetic analysis (Yoshida et al., 2019). We will show how
spectral clustering can be applied as part of an efficient and
statistically robust supertree method.

In this work, we introduce Spectral Cluster Supertree (SCS) for
the case of rooted trees. SCS is amethodwhich recursively partitions
the set of all taxa in the source trees until a rooted supertree is
generated. SCS derives its origins from Min-Cut Supertree (Semple
and Steel, 2000), replacing the min-cut step with a substantially
more scalable spectral clustering approach (Shi and Malik, 2000)
to partition an internal graph. We also extend the method to make
use of information such as branch lengths and the depths of taxa in
the source trees. These modifications lead to a much more efficient
and accurate method, capable of solving problems with hundreds of
source trees and ten thousand taxa in the order of seconds.

1.1 Related work

Fleischauer and Böcker (2017) performed an extensive
systematic comparison among supertree methods in their paper
that introduced Bad Clade Deletion (BCD). The comparison
evaluated the running time and accuracy of both rooted and
unrooted supertree methods. The accuracy over generated datasets
was measured by counting the number of splits in the generated
supertree that were “true positives” (splits in the generated supertree
that should occur), “false positives” (splits in the generated supertree
that should not occur) and “false negatives” (splits in the generated
supertree that should occur but do not). These values can be used to
calculate the well-known F1 score.

The methods that were evaluated by the comparison included
the Greedy Strict Consensus Merger (GSCM) (Roshan et al., 2003);
FastRFS (Vachaspati and Warnow, 2017); Matrix Representation
with Parsimony (MRP) (Baum, 1992; Ragan, 1992); SuperFine
(Swenson et al., 2012); Combined Analysis using Maximum
Likelihood (CA-ML) with RAxML (Stamatakis, 2006); and their

own method BCD (Fleischauer and Böcker, 2017). A rooted variant
of GSCM exists that generates a supertree only containing clades
that are compatible with all of the source trees (Fleischauer and
Böcker, 2016). FastRFS (Vachaspati and Warnow, 2017) generates
an unrooted supertree optimising the Robinson-Foulds distance
(Robinson and Foulds, 1981) to the source trees under a constrained
search space using dynamic programming. MRP generates a rooted
supertree by performing parsimony analysis on a Baum-Ragan
encoding of the source trees (Baum, 1992; Ragan, 1992). Superfine
(Swenson et al., 2012) is a meta-method which combines the Strict
Consensus Merger (Huson et al., 1999) to merge the source trees
together, with another supertree method to resolve polytomies
(MRP yielded the best performance); it generates unrooted trees.
CA-ML concatenates the sequences used to generate each of the
source trees and creates a supertree using maximum likelihood
analysis; it has the potential to generate rooted trees depending on
the chosen substitutionmodel (e.g., using a strand-symmetricmodel
with IQ-TREE,Minh et al., 2020).Themethods were evaluated with
dataset sizes varying from 100 to ∼7000 taxa.

Of the methods evaluated, CA-ML consistently performed the
best in terms of topological accuracy of the constructed trees
according to the F1 score, generally followed by BCD. However,
BCD was much faster than CA-ML. On a particular dataset, BCD
usually took under 8 seconds whereas CA-ML took approximately
3 days. On this dataset, all other methods usually took less than
a minute to resolve a supertree with the exception of MRP which
usually took between 15 min and an hour. BCD was consistently the
fastest. The exact ordering of the accuracy of BCD and the other
methods depended on the exact dataset, although BCD was most
consistently at the top. Of particular importance when dealing with
scalability was BCD’s performance on a large dataset containing
an average of 5,500 taxa. BCD with an option enabling branch
length weighting performed the best in terms of accuracy here.
It was also the fastest excluding GSCM (which exhibited very
poor topological accuracy), taking 4–8 h. The next fastest non-
BCD algorithm was FastRFS, usually taking 8–16 h, but had poor
accuracy in comparison. Superfine had the second best non-BCD
accuracy and typically took between 16 h and 3 days to resolve a
supertree. MRP did not terminate within 14 days and on average
exhibited worse accuracy than Superfine.

Spectral Cluster Supertree was created out of the desire for a
rooted supertree algorithm that was capable of resolving a supertree
containing thousands of taxa in both a fast and topologically
accurate manner. Of the rooted supertree algorithms, based on the
comparisons by Fleischauer and Böcker (2017), BCD is clearly the
most efficient and accurate. We thus restrict our main comparisons
in this paper to be between Spectral Cluster Supertree, and Bad
Clade Deletion.

The BCD (Fleischauer and Böcker, 2017) algorithm seeks to
minimise the number of deleted characters in a Baum-Ragan
(Baum, 1992; Ragan, 1992) matrix encoding of the source trees so
that a consistent supertree is formed. In the matrix, rows represent
the taxa, and columns represent the clades, or equivalently internal
nodes, of a phylogenetic tree. An entry in the matrix is “1” if the
taxon is in the clade, “0” if it is in the tree for the clade but not in
the clade, and “?” otherwise. BCD at each iteration aims to delete
a locally minimum number of columns from this matrix to yield a
supertree.

Frontiers in Molecular Biosciences 02 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

From the matrix representation, BCD constructs a graph with
an edge connecting clade i to taxon j if the corresponding entry
in the matrix is 1. Any clades with no 0 entries in their column
contain no useful information for the algorithm and are ignored
in this process. If the graph is disconnected, the algorithm recurses
over the separate components of the graph. The taxa in each of these
components belong to different sides of the root in the tree. If the
graph is not disconnected, BCD attempts to delete a subset of clades
from the graph tomake it so.The algorithmpartitions the taxa over a
minimum-weight cut of a transformation of the graph, only allowing
clades to be deleted. The algorithm recurses over the components of
the partition until a complete supertree is formed.

BCD also introduces a number of additional strategies to
improve the accuracy of the generated supertrees and the time
it takes to construct them. This includes a number of weighting
strategies for the clades during the min-cut step, which can take into
account information including branch lengths and bootstrap values.
There is also an optional preprocessing step. A rooted variant of the
Greedy Strict Consensus Merger algorithm is used to collect clades
that do not contradict with any of the source trees and ensure they
are never cut (Fleischauer and Böcker, 2016; Roshan et al., 2003).
This step is later referred to as GSCM preprocessing. There is an
additional step which reduces the problem size by merging identical
clades in the matrix representation. Parallelisation is additionally
exploited when finding min-cuts and over the different partitions
of the problem.

1.2 Using more statistically robust distance
measures

It is conventional to use the Robinson-Foulds distance measure
(Robinson and Foulds, 1981) to compare tree topologies. In
the case of two rooted trees, the measure is determined from
the number of clades that do not match between them. The
Robinson-Foulds measure is known to exhibit poor statistical
behaviour (Böcker et al., 2013; Lin et al., 2011), for instance,
moving a single leaf in a caterpillar tree can maximise the
metric (Lin et al., 2011). We will later show in the definitions
and methods a mapping between the Robinson-Foulds distance,
and a rooted variant of the F1 score used by Fleischauer
and Böcker (2017). Alongside the Robinson-Foulds distance, we
also included the Matching Cluster distance (Bogdanowicz and
Giaro, 2013). Unlike the Robinson-Foulds distance, the Matching
Cluster distance also considers the degree of dissimilarity between
the clades that do not match. By capturing more detail in
how two topologies differ, it exhibits more robust statistical
behaviour.

2 Definitions and methods

2.1 Preliminaries

A phylogenetic tree, T = (V,E), is a connected, acyclic graph
displaying evolutionary relationships over a set of taxa, S(T)— the
leaves of the graph. Here, V is the set of leaves and internal vertices,
and E is the set of edges that connect them. A tree can be rooted at

an internal vertex to provide an orientation to the tree. In a rooted
bifurcating tree, every internal vertex of T has degree three except
for a special vertex of degree two that is labelled the root. A rooted
tree is multifurcating if the degree of the root is greater than or
equal to two and every other internal vertex of T is greater than or
equal to three.

A taxon, t ∈ S(T), is said to be a descendant of an internal vertex,
v ∈ V, of a rooted phylogenetic tree if the path that connects the root
to t passes through v. A clade, C, is the set of all descendants of an
internal vertex. A clade is called trivial if |C| = 1 (it is a single leaf)
or C = S(T) (the clade for the root of the tree). All other clades are
non-trivial.

Two taxa u,v ∈ S(T) are said to belong to a proper cluster
of T if the unique path connecting u to v does not pass
through the root (Semple and Steel, 2000).That is, two taxa belong to
a proper cluster if they are both descendants of an identical non-root
vertex of T.

For a graph G = (V,E), a contraction of two vertices u,v ∈ V
where (u,v) ∈ E gives a new graphG′ = (V′,E′) formed by removing
the edge from E and combining u and v into a single vertex,
deleting any parallel edges. For contraction in the context of a
weighted graph, all parallel edges except the one of maximal weight
are deleted.

We say that a tree, A, is a subtree of another tree, B, if A can be
obtained from B by deleting all taxa not inA from B and performing
a sequence of contractions. If A is a subtree of B, then we say that B
displays A. A collection of trees is called compatible if there exists a
phylogenetic tree that displays all of them.

Let T be a phylogenetic tree and X be a set of taxa. The induced
subtree T|X is the maximally sized subtree of T such that S(T|X) ⊆ X.
A multiset of trees, T = {T1,T2,…,Tn}, can be induced on X such
that T |X = {T1|X,T2|X,…,Tn|X}. If inducing a subtree would remove
all taxa in a tree, it does not appear in the resulting set.

A rooted supertree algorithm is one which takes as its input a
multiset of rooted trees T , called source trees, and returns a single
rooted tree T such that⋃ni=1S(Ti) = S(T).

2.2 Min-Cut supertree

Min-Cut Supertree is a well-studied polynomial-time algorithm
for merging rooted phylogenetic trees (Semple and Steel, 2000).
It works by recursively partitioning the set of taxa until a rooted
tree is formed. There are proven properties of the algorithm,
including that if all of the source trees are compatible, then
the returned tree displays all of them, and that any triple
that is displayed by all of the source trees is displayed in
the supertree.

2.2.1 Proper cluster graph
Given a multiset of rooted source trees, T = {T1,T2,…,Tn}, and

an associated weight, Wi, for each of the trees (usually set to 1),
Min-Cut Supertree constructs theweighted proper cluster graphG =
(V,E,w). The proper cluster graph contains vertices V = ⋃ni=1S(Ti).
An edge, (u,v), is in E if there exists any tree T ∈ T for which u and
v form a proper cluster. Let I be an indicator function which, given
a tree and two taxa, returns one if the taxa form a proper cluster in
the tree and zero otherwise. Each edge, (u,v) ∈ E, is weighted by the

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 1
A proper cluster graph (right) for an example set of two source trees
(left). Same coloured edges identify taxa belonging to a proper cluster.
Here, the trees have unit weights. That is, each edge in the proper
cluster graph is weighted by the number of source trees in which the
taxa form a proper cluster.

sumof theweights of the trees inwhichu and v formaproper cluster;
this is demonstrated by Equation 1. An example proper cluster graph
created from two trees is shown in Figure 1.

w (u,v) =
n

∑
i=1

Wi ⋅ I(Ti,u,v) (1)

If there are any edges in the proper cluster graph (e ∈ E)
with weight equal to the sum of the weights of the source trees
(w(e) = ∑ni=1Wi), then every tree supports that proper cluster. Then,
when finding a partition of the taxa, taxa in such proper clusters
should never be separated. These edges are contracted to ensure this
property and to reduce the problem size. Figure 2 (left) shows the
proper cluster graph from Figure 1 after such a contraction.

2.2.2 Finding the best partition
If the resulting proper cluster graph is disconnected, then the

taxa in each of the components of the graph are always split over
the roots of the source trees. Taxa in these components should thus
be separated over the root of the supertree. Otherwise, if the proper
cluster graph is connected, there is no partition of the taxa for the
root of the supertree satisfying all of the source trees. To resolve
these cases, every edge that lies on any min-cut of the proper cluster
graph is removed. This is analogous to removing groupings of taxa
with the weakest support in the source trees so that the graph can be
partitioned.

The components of this disconnected graph partition the taxa
into n disjoint sets {X1,X2,…,Xn}. From this partition, n multisets
of induced subtrees are generated {T |X1

,T |X2
,T |Xn}. Min-Cut

Supertree is then recursively called on each of these collections of
induced subtrees.

If there are two or fewer taxa remaining when Min-
Cut Supertree is called, the method immediately returns the
phylogenetic tree containing those taxa. Once the trees generated
from the recursive calls are returned, Min-Cut Supertree combines
the results by connecting the roots of these trees to a new root vertex.
This thus allows Min-Cut supertree to recursively create a complete
rooted phylogenetic tree. Figure 2 demonstrates this, continuing the
example in Figure 1.

2.3 Spectral clustering

Spectral clustering (Ng et al., 2001; Shi and Malik, 2000) is a
clustering technique that can be applied to partition a graph over
a “bottleneck”. We explain how spectral clustering works from two
perspectives.

2.3.1 Random walk perspective
We adapt this point of view from a tutorial on spectral

clustering by Von Luxburg (2007). Consider an agent performing a
random walk along a graph with n numbered nodes, and without
loss of generality assume the graph is connected. The random walk
can be represented as a symmetric stochasticmatrix P. Let the vector
u = (u1,u2,…,un) represent the initial probability the agent is in
each node. The probability the agent is in each node after t time
steps is given by Ptu. Spectral clustering can be used to partition the
graph into separate regions where the agent is most likely to remain
trapped in for an extended number of time steps.

As P is a real symmetric matrix, it is eigendecomposable
with eigenvalues λi and eigenvectors vi. Sort the eigenvectors
by decreasing eigenvalue. By writing u in terms of P’s
eigenvectors (Equation 2), the distribution of the agent after t time
steps can be formulated as below.

u = α1v1 + α2v2 +⋯+ αnvn (2)

Ptu = λt1α1v1 + λ
t
2α2v2 +⋯+ λ

t
nvn (3)

All eigenvalues of P are less than or equal to 1. The largest
eigenvalue is 1, and the associated eigenvector is the stationary
distribution π such that Pπ = π. For the symmetric stochastic matrix
here, it is π = (1/√n,…,1/√n). As t→∞, the distribution of the
agent converges to the stationary distribution. The second-largest
eigenvalue/eigenvector pair thus represents the slowest part of
Equation 3 to decay as it converges to the stationary distribution.
The values in this eigenvector corresponds to “bottleneck” regions
in the graph in which the agent may remain trapped in for the
longest period of time steps. By partitioning this eigenvector into
two clusters by, for example, using k-means clustering, the graph
is separated over the bottleneck. This process can be applied in a
similar fashion, starting from more general types of graphs (Shi and
Malik, 2000). It is usually done equivalently over the second-smallest
eigenvalue of an alternative representation called the Laplacian
matrix; see (Meilă and Shi, 2001; Shi and Malik, 2000; Von Luxburg,
2007) for further reading.

2.3.2 A normalised cut perspective
Another perspective for looking at this problem is from the

normalised cut perspective. Let G = (V,E,w) be a weighted graph.
Define W:ℙ(V) ×ℙ(V) → ℝ+ as the weighting between two sets of
vertices given by Equation 4.

W (A,B) = ∑
a∈A,b∈B

w (a,b) (4)

The normalised cut (Shi and Malik, 2000) of G aims to
bipartition the vertices into two sets A and B such that the
formula given by Equation 5 is minimised.

Ncut (A,B) =
W (A,B)
W (A,V)

+
W (A,B)
W (B,V)

(5)

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 2
Graphical representation of the partitioning and result merging processes. After contraction, any edge on any min-cut of the proper cluster graph (left)
is removed. Min-Cut Supertree is recursively called on the induced subtrees of the components of the proper cluster graph, making the roots of the
resulting trees adjacent to a new root vertex (right).

The solution to this optimisation problem essentially separates
the vertices into the two most densely connected regions of the
graph across a bottleneck. Minimising this value has been shown
to be NP-complete (Shi and Malik, 2000). However, a relaxation
of the problem can be solved in polynomial time. The solution to
the relaxation is the solution obtained through spectral clustering,
yielding an efficient solution relying on eigensolvers (Ng et al., 2001;
Von Luxburg, 2007).

2.4 Proposed algorithm: spectral cluster
supertree

Spectral Cluster Supertree is a supertree method derived from
Min-Cut Supertree. Through analysis of the Min-Cut Supertree
algorithm, it was determined that the most time-consuming
operation was the min-cut step. In particular, the need to remove
every edge on any min-cut of the proper cluster graph. The original
paper (Semple and Steel, 2000) proposed a test for determining if
an edge was in any min-cut of the proper cluster graph. For each
edge, if the edge was deleted and the weight of the min-cut of the
new graph was equal to the weight of the min-cut of the original
graph minus the weight of the edge, then the edge is on a min-
cut of the graph. Page (2002) proposed an improvement to this
method, instead using Picard and Queryanne’s algorithm (Picard
and Queyranne, 1980) to explicitly find all minimum cuts of the
graph. However, in practice, finding even a single arbitrary min-cut
of the proper cluster graph in this algorithmwas too computationally
expensive.

Instead of relying on the (in practice) slow min-cut algorithm
to partition the proper cluster graph, we use spectral clustering
to efficiently separate the graph into two densely connected
components. The remainder of the process is mostly identical to
that of Semple and Steel (2000), using these components to induce
the new trees for the recursive call. We also include an optimisation
from Page’s modified Min-Cut Supertree Page (2002) whereby if
only one tree is present on a recursive call, it is returned early and
grafted onto the growing tree. We modify the contraction condition
for the proper cluster graph to further decrease the problem
size. Where Min-Cut Supertree contracted edges representing
proper clusters which appeared in every source tree, we instead
contract edges representing proper clusters which appear only in
every source tree where either of the two taxa are present. An
overview of the algorithm is presented in Algorithm 1; Figure 3.

We now present additional modifications that allow the
method to make use of additional information provided by the
source trees.

2.5 Weighting strategies

BCD (Fleischauer and Böcker, 2017) introduced weighting
strategies over the clades of the source trees to enhance the accuracy
of their algorithm. Making use of the additional information that
could be gleaned from the source trees allowed for more accurate
supertree generation. To boost the topological performance of SCS,
we outline similar weighting strategies gathered from information
of the proper clusters in the source trees to weight the proper
cluster graph.

For this part, recall thatT = {T1,T2,…,Tn} is amultiset of rooted
source trees, and that S(T) denotes the set of taxa displayed in all
of the trees. Like Min-Cut Supertree (Semple and Steel, 2000), we
associate each source tree Ti ∈ T with a user-specified weight Wi.
This can correspond to the user’s confidence in each of the source
trees. If none are specified, unit weights are used. Finally, let lca be a
function that, given a tree and two taxa, returns the node that is the
lowest common ancestor of the two taxa if they are both present in
the tree, or the root otherwise. We present two modifications to the
weighting function for the proper cluster graph w(u,v), originally
defined by Equation 1.

2.5.1 Depth weighting
SCS works by recursively splitting taxa over a root. The further

the lowest common ancestor of a proper cluster is from the root of a
source tree, the more likely that proper cluster is to be correct in
the true tree. Conversely, the closer the lowest common ancestor
of a proper cluster is to the root of a source tree, the weaker the
proper cluster is. That is, it is more probable that the two taxa were
incorrectly misplaced together on the same side of the root.

Depth weighting can be used when the source trees are provided
without branch lengths, or when there is other reason for branch
lengths to be ignored. Let d be a function that returns the depth of an
internal node in a tree from its root (in terms of the number of edges
from the root).When using depthweighting, theweight of each edge
in the proper cluster graph for taxa u and v is given by Equation 6.

w (u,v) =
n

∑
i=1

Wi ⋅ d(lca(Ti,u,v)) (6)

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 3
An overview of the Spectral Cluster Supertree Algorithm. The source trees (1) are used to construct the proper cluster graph (2). Edges for proper
clusters that only appear together in the source trees are contracted (3). If the graph is not disconnected, spectral clustering is used to take a
normalised cut of the graph (4). For any component of the graph with more than two taxa, the source trees are induced on the taxa set and the
algorithm recurses on the induced trees (5); otherwise a rooted tree containing the one or two taxa is formed (6). The rooted trees obtained from this
step are merged together, connecting the roots of the trees to a new root node (7).

Algorithm 1. The Spectral Cluster Supertree Algorithm.

2.5.2 Branch length weighting
Branch length weighting works under the same motivation as

depth weighting, making use of the branch lengths of the source

trees. Let b be a function that returns the branch length distance of
an internal node in a given source tree from its root (the root node
returns 0). The weight of each edge in the proper cluster graph for
taxa u and v is given by Equation 7.

w (x,y) =
n

∑
i=1

Wi ⋅ b(lca(Ti,x,y)) (7)

2.6 Implementation

We provide an implementation of our algorithm on GitHub
under an open-source license. A Zenodo archive of the repository is
available (https://doi.org/10.5281/zenodo.11118433).The algorithm
was implemented using Python 3 and is installable as a package,sc-
supertree, on PyPI.The Spectral Clustering step of the algorithm
was implemented using scikit-learn (Pedregosa et al., 2011). The
algorithm can be invoked through the command line using the
scs command in its installed environment, taking as input a file

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://doi.org/10.5281/zenodo.11118433
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

TABLE 1 A summary of key properties of the datasets used to evaluate the supertree methods.

Dataset Summary

SMIDGenOG Aims to emulate data collection processes used by systematists. Each problem contains many densely sampled clade-based source trees and a single
widely sampled scaffold tree containing “Scaffold Factor” percent of the taxa

SMIDGenOG-5500 Similar to SMIDGenOG but at a much larger scale with each problem containing on average 5,500 taxa. Unlike SMIDGenOG, each problem contains
5 widely sampled scaffold trees with 100 randomly selected taxa each

SuperTriplets Explores the effect of the number source trees, and percentage of taxa missing from each of the source trees on supertree reconstruction

SCS-Exact Evaluates supertree reconstruction under conditions that may be encountered by divide-and-conquer methods. Simply applies REC-I-DCM3 to
decompose a known model tree into overlapping source trees. As there are no conflicts, all supertree methods should be able to quickly construct the
correct supertree

SCS-DCM-IQ Evaluates supertree reconstruction under conditions which may be encountered at the final step of divide-and-conquer methods prior to
convergence. For the taxa sets generated by applying REC-I-DCM3 to the model tree, uses IQ-TREE 2 to form a collection of overlapping maximum
likelihood source trees

name containing line-separated Newick-formatted source trees. The
algorithm can also be utilised as a library with the construct_
supertree function, taking as input a sequence of cogent3
tree objects (Knight et al., 2007). We also provide a load_trees
function to convert a line separated Newick-formatted source tree
file into a list of cogent3 trees. Further details on usage, including
specifying the weighting strategy, are available in the project’s
README.

3 Experimental design

We perform extensive comparisons between SCS and BCD
to evaluate their statistical and computational performance.
Comparisons were made over a number of datasets, both existing
and new. Our new dataset differs from those previously studied as
they are generated without relying on an outgroup, and in that it
aims to mimic what may be encountered during the last stage of
divide-and-conquer algorithms such as DACTAL (Nelesen et al.,
2012). This also corresponds to the practical application of
inferring the tree root without prior knowledge of the phylogeny.
An extended description of the datasets is presented below and
summarised in Table 1.

3.1 Datasets

3.1.1 SMIDGenOG
The SMIDGenOG dataset was generated by Fleischauer and

Böcker (2016) using the SMIDGen protocol (Swenson et al., 2010)
in a rooted context using outgroup rooting. The SMIDGen protocol
emulates data collection processes typically used by systematists,
having many densely-sampled clade-based source trees, and a more
widely sampled scaffold tree representing relations at a higher
taxonomic level. Each model tree was paired with a single such
scaffold tree and a number of densely sampled clade-based source
trees. The scaffold tree samples a percentage of taxa, the scaffold-
factor, uniformly at random over the entire tree. Five “universal”
genes (which originate at the root and do not become extinct)

were simulated to estimate maximum-likelihood scaffold trees for
the dataset. For the clade-based trees, a gene birth-death process
(Swenson et al., 2010) was used to select 200 subtrees to simulate
non-universal genes. All genes were simulated under a GTR +
Gamma + Invariant sites process. Alignments for each of the clade-
based trees were created by selecting a clade of interest (under
a birth node process according to the SMIDGen protocol), and
concatenating three non-universal gene sequences with the highest
taxa coverage. An outgroup with all three non-universal genes
present was also added to the alignment. Maximum likelihood trees
were estimated over the alignmentswithRAxML (Stamatakis, 2006).
All source treeswere rootedwith the outgroup, and the outgroupwas
subsequently removed.There are 30model trees with corresponding
source trees for every combination of 100, 500, and 1,000 taxa with
a scaffold factor of 20%, 50%, 75% and 100%.

3.1.2 SMIDGenOG-5500
The SMIDGenOG-5500 dataset was generated by Fleischauer

and Böcker (2017) as a large-scale variant of the SMIDGenOG
dataset. It was created using a similar methodology to the
SMIDGenOG dataset with 10 model trees with an average of 5,500
taxa. Each model tree was paired with 500 densely sampled clade-
based source trees with 75–125 taxa. Due to the size of the dataset (to
ensure the maximum likelihood process could run in a reasonable
time frame), each model tree was also paired with five sparsely-
sampled scaffold source trees with 100 randomly selected taxa. This
differs to SMIDGenOG where a single scaffold tree with varied
scaffold factors were used (Fleischauer and Böcker, 2016).

3.1.3 SuperTriplets
The SuperTriplets dataset was generated by Ranwez et al. (2010)

to explore the effect of both the size and number of source trees
on supertree construction. It contains 100 model trees with 101
taxa each (including an outgroup). The source trees are divided
into a number of deletion rates d ∈ {25%,50%,75%} and a constant
k ∈ {10,20,30,40,50}. In the data generation process, each model
tree was duplicated 50 times with varied branch lengths. Sequence
alignments were simulated on these duplicated trees. Maximum
likelihood trees were estimated from these 50 alignments, each

Frontiers in Molecular Biosciences 07 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

under the constraint of d percent of the ingroup taxa being removed.
The first k of these trees formed the set of source trees.

3.1.4 SCS datasets
We generated the SCS datasets to evaluate supertrees in a setting

as may be encountered by rooted variants of divide-and-conquer
methods for phylogenetic reconstruction (e.g., Nelesen et al., 2012).
In this case, the data generation process does not necessarily rely on
an outgroup.

Ten model trees (with 500, 1,000, 2000, 5,000 and 10,000 taxa)
were generated following a birth-death process with a birth rate of
1.0 and a death rate of 0.2. The rooted ultrametric trees were initially
scaled such that every tip was of distance one from the root. Similar
to the SMIDGen protocol (Swenson et al., 2010), branch lengths
were then scaled by a random scaling factor. At the root, the scaling
factor was 1.0 and the scaling factor evolved down different parts
of the tree by adding a number from a normal distribution with
a mean of 0 and a standard deviation of 0.05. The scaling factor
was additionally bounded in this process between 0.05 and 8.0 to
guard against excessively long or short branch lengths following the
SMIDGen protocol.

For each of the model trees, cogent3 (Huttley, 2020) was used
to simulate a sequence alignment of length 10,000 under a strand-
symmetric general nucleotide Markov substitution process under
which the root is identifiable (Kaehler, 2017). The alignment length
was chosen to allow for a sufficient level of accuracywhen estimating
the source trees.The parameters for the process were estimated from
a sequence alignment of three bacterial species (Kaehler et al., 2015).

Rec-I-DCM3 (Roshan et al., 2004) is a method that can be used
to decompose a tree into overlapping subsets of taxa. We have made
an implementation of this algorithm in Python publicly available
(https://doi.org/10.5281/zenodo.11118313). We used Rec-I-DCM3
to partition each model tree into overlapping subsets of taxa of
maximal sizes 50 and 100. We extracted the subtrees for these
partitions from the model tree to form a collection of source trees.
This forms a simple dataset we call the “SCS-Exact” dataset, from
which all methods should always be able to reconstruct the true tree.

For the more interesting second dataset, for each subset in
the partition of taxa formed by Rec-I-DCM3, the corresponding
simulated sequences were extracted. IQ-TREE 2 (Minh et al., 2020),
under a strand symmetric model, was used to fit a rooted tree to
these sequences. The set of trees generated for a partition formed
the source trees for the “SCS-DCM-IQ” dataset.

3.2 Distance measures

We measure the topological accuracy of supertrees generated by
the evaluatedmethods using the standard Robinson-Foulds distance
(Robinson and Foulds, 1981), but also the more statistically robust
Matching Cluster distance (Bogdanowicz and Giaro, 2013). For this
paper, we use a definition of Robinson-Foulds that is the cardinality
of the set containing the symmetric difference of the clades between
the two compared trees. Let C be a function mapping trees to their
set of clades, and ⊕ denote the symmetric difference operator. The
Robinson-Foulds distance is given by Equation 8.

RF (T1,T2) = |C (T1) ⊕C (T2) | (8)

FIGURE 4
By moving a single leaf (a) to the root of the tree, the Robinson-Foulds
distance is maximised.

The Robinson-Foulds distance, while quick to compute, is
known to exhibit poor statistical behaviours (Lin et al., 2011;
Böcker et al., 2013). For instance, it is known to saturate quickly.This
means similar topologies differing by only a single leaf canmaximise
this metric, as illustrated by Figure 4.

Consider the F1 score used by Fleischauer and Böcker (2017),
and adapt it to the rooted case (the unrooted version and unrooted
Robinson-Foulds follows similarly). This adaptation can be done by
letting “true positives” (TP) refer to clades in both the supertree
and model tree; “false positives” (FP) refer to clades in the
supertree but not the model tree; and “false negatives” (FN) refer
to clades in the model tree but not the supertree. The F1 score
is given by Equation 9 (we include an example calculation in the
Supplementary Material). The Robinson-Foulds distance measure
can then simply be calculated as RF = FP+ FN. Further, there
is a direct mapping between the Robinson-Foulds distance and
F1 score scaled by the number of correctly identified clades
as given by Equation 10.

F1 =
2TP

2TP+ FP+ FN
(9)

RF = 2TP(1
F1
− 1) (10)

Further, the number of non-root internal vertices in the supertree
is equal to the sum of the number of true positive and false positive
clades. In the case of a fully resolved tree with n taxa containing
no polytomies, there are n− 2 such internal vertices and FP =
FN = RF

2
. Thus, TP = n− 2− RF

2
and, treating the number of taxa

as constant, there is an exact linear mapping between the F1 score
andRobinson-Foulds distance given by Equation 11.This implies that
under this scenario, the F1 score and Robinson-Foulds distance are,
in effect, measuring the same relation. Though this exact mapping
assumes no polytomies, in practice whenwe calculated the Robinson-
Foulds distance and F1 score they told very similar stories in the
results. As such, we only report the Robinson-Foulds distance of
these two in our comparisons and include the F1 score in the
Supplementary Material.

RF = 2 (n− 2) (1− F1) (11)

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://doi.org/10.5281/zenodo.11118313
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 5
The Matching Cluster distance is calculated by solving the min-weight
matching problem of a bipartite graph. Each side of the bipartite graph
contains the clusters of the respective trees. Edges are weighted by
the cardinality of the symmetric distance of the sets it connects.

We also include the more statistically robust Matching Cluster
distance in our comparisons. The Matching Cluster distance
(Bogdanowicz and Giaro, 2013) is similar to the β distance
(Boorman and Olivier, 1973). Rather than considering only exact
matches of clades, it also takes into consideration the degree of
dissimilarity between the clades. It does this by solving amin-weight
matching problembetween the symmetric differences of each pair of
clades in the two trees. For the example in Figure 4, the non-trivial
clusters are {{a,b}, {a,b,c}} and {{b,c}, {b,c,d}} respectively. Figure 5
shows a bipartite graph between the non-trivial clusters of the two
trees. The edges are weighted by the cardinality of the symmetric
difference of the clusters. The solution to the min-weight matching
problemhere is 4.ThemaximumpossibleMatchingCluster distance
for bifurcating trees with four taxa here is 6.

When consideringmultifurcating trees, one tree may have fewer
clades than the other. This could mean one side of the graph in the
min-weight matching problem could have fewer vertices than the
other. The Matching Cluster distance generalises to such scenarios
by adding empty sets to the side with fewer vertices until the number
of vertices on each side are equal.

The Matching Cluster distance has been shown as more
statistically robust than the Robinson-Foulds distance for general
tree topologies (Bogdanowicz and Giaro, 2013). That said, for
bifurcating trees, the Robinson-Foulds distance and Matching
Cluster distance are equal if the weights of the edges for clusters are
replaced by 0 if they do match, and two if they do not. See Smith
(2020) for further reading on distance measures.

3.3 Experiments

Experiments were performed using the Australian NCI’s Gadi
(https://nci.org.au), running on a single core of an Intel(R) Xeon(R)
Platinum 8268 CPU @ 2.90 GHz with 16 GB of RAM. SCS, BCD
with and without the Greedy Strict Consensus Merger (GSCM)
preprocessing, and Min-Cut Supertree (MCS) were evaluated over
all of the datasets. We used our own Python implementation for

SCS and MCS, and the Java implementation of BCD by Fleischauer
and Böcker (2017). A modified version of Min-Cut Supertree was
used that included our weighting strategies for the proper cluster
graph. We also allowed MCS to find only a single arbitrary min-cut
of the proper cluster graph, rather than all min-cuts, so the problems
could be solved within a reasonable time. Branch length weighting
was utilised across all methods where possible (except for the
SuperTriplets dataset). Otherwise, depth weighting for our method,
or unit weighting for BCD, was used. The CPU time to resolve each
supertree was recorded, as well as the Robinson-Foulds Distance
and Matching Cluster Distance when compared to the model tree
(F1 score results are included in the Supplementary Material). If a
method did not complete a dataset under specific parameters within
a wall time of 48 h, it was terminated early. We have made the
code used to process and evaluate the experiments publicly available
(https://doi.org/10.5281/zenodo.11118313). It also includes a script
for downloading the datasets.

4 Results

4.1 Spectral cluster supertree vs. Min-Cut
supertree

Here, we show how SCS is a significant improvement over
Min-Cut Supertree across all measures. Figure 6 displays the
difference in the recorded measures between the two methods
over the largest dataset where Min-Cut Supertree resolved at
least some problems (4/10 for each of the maximum subproblem
sizes). Where SCS takes a matter of seconds to solve a problem,
Min-Cut Supertree can take from 2 hours to close to a full
day. SCS additionally outperforms Min-Cut Supertree in every
metric—consistently producing more correct clades in the
generated supertree (from the Robinson-Foulds Distance), and
markedly superior general topological accuracy from the Matching
Cluster Distance.

The results shown in Figure 6 are similar across most datasets,
though not necessarily to the same extent with regard to time on
the smaller datasets. MCS only outperformed SCS with respect
to time on the SCS-Exact dataset, where importantly no min-
cut or spectral clustering calls are required, and all methods
recovered the true tree. On the largest SCS-Exact problems, both
methods took around 6–10 s. This illustrates the extent at which
the min-cut component of the MCS impacts its computational
efficiency. SCS always dominated MCS with respect to topological
accuracy under both distance metrics on all other datasets.
Going forward, we thus only compare the performance of
SCS to BCD.

4.2 Spectral cluster supertree vs. Bad Clade
Deletion

All methods could construct the correct supertree in the SCS-
Exact dataset, though GSCM preprocessing made BCD sometimes
take hours for the largest problems. Without GSCM, BCD finished
in a few seconds. Note that this is contrary to the time results for the
other datasets shown in the figures.We now show the results for SCS

Frontiers in Molecular Biosciences 09 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://nci.org.au
https://doi.org/10.5281/zenodo.11118313
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 6
SCS outperforms MCS on the SCS-DCM-IQ dataset with 5,000 taxa. Lower is better for all graphs. Time results are shown on a log scale. Each
parameterisation of the dataset contains 10 problems. While SCS solved all problems, MCS only solved 4/10 within the time limit for each of the
maximum subproblem sizes.

compared with BCD with and without GSCM preprocessing over
each of the datasets.

Figure 7 shows the results over the SCS-DCM-IQ datasets with
10,000 taxa. Results for the other taxa counts follow the same
pattern (see Supplementary Figures S2–S5). The figure shows that
with GSCM preprocessing, BCD outperforms SCS in terms of
the Robinson-Foulds distance. This metric measures the number
of clades that are different (no matter how similar) between the
model tree and generated supertree. SCS however outperforms
BCD under the Matching Cluster distance, which measures
more generally how similar the overall topologies of the tree
are—taking into account the degree of similarity/dissimilarity
in the clades. SCS is also vastly superior here compared to
BCD in terms of the time taken to solve the problems. Where
BCD takes multiple hours per problem instance, SCS can
solve these problems in less than a minute—usually in under
20 seconds.

Figure 8 compares the results of SCS to BCD under the large
SMIDGenOG-5500 dataset. The results follow a similar pattern to
the SCS-DCM-IQ dataset. BCD still outperforms SCS in terms
of the Robinson-Foulds Distance, though the difference is less
pronounced. SCS again outperforms BCD in terms of the Matching
Cluster distance, which compares the tree topologiesmore generally.
SCS is still a vast improvement over BCD in terms of the time
required to solve the problems, takingminutes, where the others can
take multiple hours.

Figure 9 shows the results over the largest original
SMIDGenOG dataset with 1,000 taxa and different scaffold
factors (the percentage of taxa sampled for the scaffold trees).
This dataset shows the best results for BCD when compared
to SCS. BCD outperforms SCS in terms of the Robinson-
Foulds Distance. The results are roughly even in terms
of Matching Cluster Distance for the smaller two scaffold
factors, though BCD with GSCM preprocessing is slightly

ahead with the higher two scaffold factors. SCS is slightly
ahead with respect to time compared with BCD with GSCM
preprocessing. However, problems here are being solved in
the order of seconds and the difference is not significant for
practical purposes. Results are similar for the 100 and 500 taxa
counts (see Supplementary Figures S6, S7), with BCD being faster
on the 100 taxa dataset.

Figure 10 shows the results over the SuperTriplets dataset with
a 50% deletion rate (percentage of taxa removed when generating
each source tree). The SuperTriplets dataset shows a significant
amount of variance over the different deletion rates. With a 50%
deletion rate, SCS generally performs worse with respect to the
Robinson-Foulds Distance, but better in terms of Matching Cluster
distance. With a 75% deletion rate (Supplementary Figure S9),
SCS generally outperforms BCD in all distance metrics.
For the 25% deletion rate (Supplementary Figure S8), BCD
outperforms SCS in terms of the Robinson-Foulds distance.
The central distribution of the Matching Cluster distance is
roughly identical, with BCD achieving better minimum values,
though SCS achieves better maximum values. The time results
here are all low enough to not make much of a difference for
practical purposes.

Full figures for the other parameterisations of the datasets are
available in the appendix. The raw results have been archived on
Zenodo (https://doi.org/10.5281/zenodo.11118313).

5 Discussion

The Spectral Cluster Supertree (SCS) algorithm for
merging rooted phylogenetic trees exhibits comparable or
markedly better statistical and computational performance
than current approaches. While Min-Cut Supertree (MCS)
was demonstrated impractical for modern sized data sets,

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://doi.org/10.5281/zenodo.11118313
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 7
SCS vs. BCD on the SCS-DCM-IQ dataset with 10,000 taxa. The dataset emulates what may be encountered when using divide-and-conquer
algorithms for phylogenetic reconstruction. Each parameterisation of the dataset contains 10 problems. BCD without GSCM processing only solved
the first two and six problems within the timeout for the 50 and 100 max subproblem sizes respectively. The other methods solved all ten problems.

FIGURE 8
SCS vs. BCD on the SMIDGenOG-5500 dataset. The dataset applies the SMIDGen protocol to mimic what may be encountered by systematists at a
large scale. As there is no parameterisation for this dataset, no x-axis is displayed. All methods solved all ten problem instances within the timeout.

Bad Clade Deletion (BCD) was far more efficient when
used in conjunction with its GSCM pre-processing step.
Under most conditions examined, particularly for large
problem size, SCS was orders of magnitude faster than BCD.
Comparison of the statistical performance of the algorithms
was sensitive to the topology distance metric used. Thus,
judgement of the statistical merits of SCS relative to competing
approaches hinges on the properties of the Robinson-Foulds and
Matching Cluster distance metrics.

5.1 SCS statistically outperforms BCD on
most datasets

In terms of Robinson-Foulds distance, BCD with GSCM
preprocessing almost always outperformed SCS or were otherwise
roughly equivalent. However, the Robinson-Foulds distance metric
suffers from poor statistical qualities. It can saturate quickly; it
is possible for trees that are identical minus the placement of a
single leaf to maximise this distance metric. It simply compares

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

FIGURE 9
SCS vs. BCD on the SMIDGenOG dataset with 1,000 taxa. The dataset aims to imitate data curation processes of systematists. The SMIDGenOG dataset
contains one scaffold tree sampling over “Scaffold Factor” percent of the taxa, as well as many densely sampled clade-based source trees. Each
parameterisation of the dataset contains 30 problems.

FIGURE 10
SCS vs. BCD on the SuperTriplets dataset with a deletion rate of 50%. The SuperTriplets dataset explores the effect of percentage of taxa in the source
trees, and number of source trees, on supertree construction. Each parameterisation of the dataset contains 100 problems. Results are variable
depending on the deletion rate, and results for the others are included in the appendix.

how many of the clades are an exact match between the model
tree and supertree, without considering the degree of similarity or
dissimilarity between the clades.

The Matching Cluster distance is a more statistically robust
distance measure when comparing tree topologies. It gathers the
clades of the model tree and supertree, and measures the degree of
dissimilarity between the clades of these two sets (based on the size
symmetric difference of the clades, or in other words, how many
taxa in the clades are different). Having found the optimal pairing

of clades between these sets, the distance measure is calculated. By
considering the degree of dissimilarity between the clades of the
trees, rather than whether they match or not (as per Robinson-
Foulds), it is more robust. If instead the degree of dissimilarity was
measured as two if the clades do not match and 0 otherwise, the
distance measure would become identical to Robinson-Foulds.

SCS frequently outperformed BCDwith respect to theMatching
Cluster distance on all datasets except the SMIDGenOG dataset,
and SuperTriplets dataset with a deletion rate of 25%. The

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

median improvement of the Matching Cluster distance over each
parameterisation of the datasets was measured on a problem by
problem basis. By this measure, SCS performed 1.10–2.58 times
better than BCD on the SCS-DCM-IQ dataset; 3.45 times better
than BCD on the SMIDGenOG-5500 dataset; and from 1.93–2.25 to
2.60–6.60 times better on the SuperTriplets dataset with a deletion
rate of 50% and 75% respectively. SCS and BCD performed similarly
on the SMIDGenOG dataset with 1,000 taxa and scaffold factors of
20% and 50%with themedian improvement of SCS over BCD being
1.03 and 1.00 times respectively. On all other parameterisations of
the SMIDGenOG dataset, the median improvement of BCD over
SCS was 1.07–1.68 times. BCD also performed 1.18–1.43 times
better on the SuperTriplets dataset with a deletion rate of 25%.

It is somewhat curious, on first consideration, the discrepancy
between the SMIDGenOG and SMIDGenOG-5500 results given
the underlying data was simulated under a similar protocol. The
primary difference between the two datasets here is the number of
taxa in the scaffold tree. Due to practical limitations, SMIDGenOG-
5500 contains five scaffold trees with 100 taxa each (less than 2%
of the taxa each on average) and SMIDGenOG contains a single
scaffold tree containing either 20%, 50%, 75% or 100% of the taxa.
It also appears the rate at which BCD improves on SCS decreases
as the scaffold factor decreases. Further, the effect of the deletion
rate under the Supertriplets dataset indicates that the more taxa that
are removed from each of the source trees (higher deletion rate), the
more topologically accurate SCS is compared to BCD.

The algorithmic properties of the twomethods could potentially
explain this relationship. BCD effectively aims to delete a minimum
number of clades from the source trees when conflicts arise to
construct a supertree. Importantly, every clade in the supertreemust
also be a clade in one of the source trees (which leads to lower in
comparison Robinson-Foulds distances). Having a strong backbone
with a widely sampled scaffold tree can support this. When conflicts
arise in SCS, however, we consider the degree to which the source
trees support taxa appearing on the same side of a prospective root.
We partition the taxa, into two groups with maximal support within
each group but minimal support between the two groups. This is
clearly quite effective in practice, but it may not count as heavily,
in comparison, the presence of a strong backbone. On further
examination. we found that by increasing the tree weight associated
with the scaffold tree in the SMIDGenOG dataset, the accuracy
of the SCS method improved significantly (sometimes better than
BCD). The improvement was particularly strong for high scaffold
factors. This supports our hypothesis for the explanation of the
relationship here. However, as BCD also supports tree weights and
to avoid overfitting these extra parameters to the reported accuracy,
we do not include these results in our comparisons.

When considering practical applications of the algorithms on
large datasets, the choice of method is clear. For large phylogenetic
reconstruction problems, the time required to perform a full
maximum likelihood analysis over sequences of interest is far too
computationally taxing. In these scenarios (as in the SMIDGenOG-
5500 dataset), the presence of a large scaffold tree can potentially
be infeasible. Divide-and-conquer methods relying on the Disk-
Covering Method (Roshan et al., 2004), breaking down the problem
into small overlapping subproblems, may thus be required to make
computation possible. In these situations, it is clear SCS performs

best with respect to topological accuracy, though BCD may still be
useful for smaller problems with a strong scaffold tree.

5.2 SCS displays superior computational
efficiency over BCD in serial

SCS is also vastly more efficient in terms of CPU Time compared
to BCD. For the largest problems in the SCS-DCM-IQ dataset,
SCS could solve problems (that took BCD roughly 2 h) in under a
minute—usually in less than 20 s (median speedup of 386 and 409
times for maximum subproblem sizes of 50 and 100 respectively). For
the SMIDGenOG-5500 dataset, where BCD took 1–8 h to solve each
problem, SCS tookonly1–8 min (median58 times speedup). Ignoring
problems which took both BCD (GSCM) and SCS under 15 seconds
to solve, the median speedup over BCD under each combination of
parameters of all the datasets ranged from 12 to 409 — the greatest
speedups on the largest datasets.The only problems BCDbeat SCS on
speed, SCS still solved in only 1–2 s. SCS is clearly the superior choice
in terms of time needed to fully resolve a supertree.

It must be noted that the results illustrated in the figures were
obtained from running the experiments on a single CPU core. BCD
has support for multi-threading, which is performed over both
min-cut computations and recursive calls. In the current version
of SCS, concurrency is only utilised within NumPy operations
(Harris et al., 2020) and during a part of the spectral clustering
step as implemented in scikit-learn (Pedregosa et al., 2011). There
is room for further parallelisation in SCS, however. Similar to
how BCD parallelises across independent recursive calls, the same
can be done trivially for SCS. This parallelisation was trialled, but
the improvement was minor on these problem sizes due to the
associated overhead, and the time domination of performing the
first and largest split. Parallelisation will likely have a much more
beneficial effect for even larger problems than we have tested, and
we accordingly leave a full comparison of the parallel versions for
future work. Due to BCD’s parallelisation over solving min-cuts
in addition to the subproblems, greater speedup may be obtained,
particularly on these problem sizes. However, SCS improves on the
time results of BCD over large problems sizes to such a significant
extent that this difference may not matter. This is especially true
when considering limitations such as Amdahl’s law (which gives
a theoretical asymptotic limit to the speedup of a program as the
number of processors are increased).

6 Conclusion

We presented a new algorithm, Spectral Cluster Supertree,
for merging overlapping rooted phylogenetic trees. Our algorithm
is significantly faster than Bad Clade Deletion on large problem
sizes, taking on average 20 s where Bad Clade Deletion took
∼2 h on one dataset, and 1–8 min where Bad Clade Deletion
took 1–8 h on another. While Bad Clade Deletion can sometimes
display a superior topological accuracy on datasets containing
large scaffold trees, on most datasets Spectral Cluster Supertree is
more accurate. Of particular importance, Spectral Cluster Supertree
was more topologically accurate than Bad Clade Deletion on
large problems, or otherwise those where the number of taxa in

Frontiers in Molecular Biosciences 13 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

each of the source trees may be low in proportion to the total
number of taxa. This may be especially valuable for large problems
where divide-and-conquermethods for phylogenetic reconstruction
could be necessary for computational feasibility. We leave further
comparisons with respect to parallel implementations for future
work, where larger datasets than those currently considered are
necessary for proper investigation.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://doi.org/10.5281/zenodo.
11118022.

Author contributions

RM: Investigation, Methodology, Software, Writing–original
draft, Writing–review and editing. AZ: Methodology, Supervision,
Writing–review and editing. MC: Methodology, Writing–review and
editing.YL:Conceptualization,Methodology.GH:Conceptualization,
Investigation, Methodology, Project administration, Resources,
Software, Supervision, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

This research was undertaken with the assistance of resources
and services from theNational Computational Infrastructure (NCI),
which is supported by the Australian Government.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmolb.2024.
1432495/full#supplementary-material

References

Baum, B. R. (1992). Combining trees as a way of combining data sets for
phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10.
doi:10.2307/1222480

Böcker, S., Canzar, S., and Klau, G. W. (2013). “The generalized robinson-
foulds metric,” in Algorithms in bioinformatics: 13th international workshop, WABI
2013, sophia antipolis, France, september 2-4, 2013. Proceedings 13 (Springer),
156–169.

Bogdanowicz, D., and Giaro, K. (2013). On a matching distance between rooted
phylogenetic trees. Int. J. Appl.Math. Comput. Sci. 23, 669–684. doi:10.2478/amcs-2013-
0050

Boorman, S. A., and Olivier, D. C. (1973). Metrics on spaces of finite trees. J. Math.
Psychol. 10, 26–59. doi:10.1016/0022-2496(73)90003-5

Dang, C. C., Minh, B. Q., McShea, H., Masel, J., James, J. E., Vinh, L. S., et al. (2022).
nQMaker: estimating time nonreversible amino acid substitution models. Syst. Biol. 71,
1110–1123. doi:10.1093/sysbio/syac007

Fleischauer, M., and Böcker, S. (2016). Collecting reliable clades using the greedy
strict consensus merger. PeerJ 4, e2172. doi:10.7717/peerj.2172

Fleischauer, M., and Böcker, S. (2017). Bad clade deletion supertrees:
a fast and accurate supertree algorithm. Mol. Biol. Evol. 34, 2408–2421.
doi:10.1093/molbev/msx191

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585, 357–362.
doi:10.1038/s41586-020-2649-2

Huson, D. H., Nettles, S. M., and Warnow, T. J. (1999). Disk-covering, a fast-
converging method for phylogenetic tree reconstruction. J. Comput. Biol. 6, 369–386.
doi:10.1089/106652799318337

Huttley, G. A. (2020). Cogent3: comparative genomics toolkit.
doi:10.5281/zenodo.4542532

Kaehler, B. D. (2017). Full reconstruction of non-stationary strand-
symmetric models on rooted phylogenies. J. Theor. Biol. 420, 144–151.
doi:10.1016/j.jtbi.2017.03.007

Kaehler, B. D., Yap, V. B., Zhang, R., and Huttley, G. A. (2015). Genetic distance
for a general non-stationary markov substitution process. Syst. Biol. 64, 281–293.
doi:10.1093/sysbio/syu106

Knight, R., Maxwell, P., Birmingham, A., Carnes, J., Caporaso, J. G., Easton, B. C.,
et al. (2007). Pycogent: a toolkit for making sense from sequence.Genome Biol. 8, 1–16.
doi:10.1186/gb-2007-8-8-r171

Lin, Y., Rajan, V., and Moret, B. M. (2011). A metric for phylogenetic trees
based on matching. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9, 1014–1022.
doi:10.1109/TCBB.2011.157

Meilă, M., and Shi, J. (2001). “A random walks view of spectral segmentation,” in
International workshop on artificial intelligence and statistics (Key West, Florida, USA:
PMLR), 203–208.

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M.
D., Von Haeseler, A., et al. (2020). Iq-tree 2: new models and efficient methods
for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534.
doi:10.1093/molbev/msaa015

Nelesen, S., Liu, K., Wang, L.-S., Linder, C. R., and Warnow, T. (2012). Dactal:
divide-and-conquer trees (almost) without alignments. Bioinformatics 28, i274–i282.
doi:10.1093/bioinformatics/bts218

Ng, A., Jordan, M., and Weiss, Y. (2001). On spectral clustering: analysis and an
algorithm. Adv. neural Inf. Process. Syst. 14.

Page, R. D. (2002). “Modified mincut supertrees,” in International workshop on
algorithms in bioinformatics (Springer), 537–551.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Frontiers in Molecular Biosciences 14 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://doi.org/10.5281/zenodo.11118022
https://doi.org/10.5281/zenodo.11118022
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1432495/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1432495/full#supplementary-material
https://doi.org/10.2307/1222480
https://doi.org/10.2478/amcs-2013-0050
https://doi.org/10.2478/amcs-2013-0050
https://doi.org/10.1016/0022-2496(73)90003-5
https://doi.org/10.1093/sysbio/syac007
https://doi.org/10.7717/peerj.2172
https://doi.org/10.1093/molbev/msx191
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1089/106652799318337
https://doi.org/10.5281/zenodo.4542532
https://doi.org/10.1016/j.jtbi.2017.03.007
https://doi.org/10.1093/sysbio/syu106
https://doi.org/10.1186/gb-2007-8-8-r171
https://doi.org/10.1109/TCBB.2011.157
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/bioinformatics/bts218
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

McArthur et al. 10.3389/fmolb.2024.1432495

Picard, J.-C., and Queyranne, M. (1980). On the structure of all minimum cuts in a
network and applications. Springer.

Ragan, M. A. (1992). Phylogenetic inference based on matrix representation of trees.
Mol. phylogenetics Evol. 1, 53–58. doi:10.1016/1055-7903(92)90035-f

Ranwez, V., Criscuolo, A., and Douzery, E. J. (2010). Supertriplets: a triplet-
based supertree approach to phylogenomics. Bioinformatics 26, i115–i123.
doi:10.1093/bioinformatics/btq196

Robinson, D. F., and Foulds, L. R. (1981). Comparison of phylogenetic trees. Math.
Biosci. 53, 131–147. doi:10.1016/0025-5564(81)90043-2

Roshan, U. W., Moret, B. M., Warnow, T., and Williams, T. L. (2003). Greedy strict-
consensus merger: a new method to combine multiple phylogenetic trees (Citeseer)

Roshan, U. W., Warnow, T., Moret, B. M., and Williams, T. L. (2004). “Rec-
i-dcm3: a fast algorithmic technique for reconstructing phylogenetic trees,” in
Proceedings. 2004 IEEE computational systems bioinformatics conference, 2004 (IEEE),
98–109.

Semple, C., and Steel, M. (2000). A supertree method for rooted trees. Discrete Appl.
Math. 105, 147–158. doi:10.1016/s0166-218x(00)00202-x

Shi, J., and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans.
pattern analysis Mach. Intell. 22, 888–905. doi:10.1109/34.868688

Smith, M. R. (2020). Information theoretic generalized robinson–foulds
metrics for comparing phylogenetic trees. Bioinformatics 36, 5007–5013.
doi:10.1093/bioinformatics/btaa614

Stamatakis, A. (2006). Raxml-vi-hpc: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
doi:10.1093/bioinformatics/btl446

Steel, M., and Bocker, S. (2000). Simple but fundamental limitations on supertree and
consensus tree methods. Syst. Biol. 49, 363–368. doi:10.1093/sysbio/49.2.363

Sumner, J., Fernández-Sánchez, J., and Jarvis, P. (2012). Lie markov models. J. Theor.
Biol. 298, 16–31. doi:10.1016/j.jtbi.2011.12.017

Swenson, M. S., Barbançon, F., Warnow, T., and Linder, C. R. (2010). A simulation
study comparing supertree and combined analysis methods using smidgen. Algorithms
Mol. Biol. 5, 8–16. doi:10.1186/1748-7188-5-8

Swenson, M. S., Suri, R., Linder, C. R., and Warnow, T. (2012). Superfine: fast and
accurate supertree estimation. Syst. Biol. 61, 214–227. doi:10.1093/sysbio/syr092

Vachaspati, P., and Warnow, T. (2017). Fastrfs: fast and accurate robinson-
foulds supertrees using constrained exact optimization. Bioinformatics 33, 631–639.
doi:10.1093/bioinformatics/btw600

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics Comput. 17,
395–416. doi:10.1007/s11222-007-9033-z

Yap, V. B., and Speed, T. (2005). Rooting a phylogenetic tree with nonreversible
substitution models. BMC Evol. Biol. 5 (2), 2. doi:10.1186/1471-2148-5-2

Yoshida, R., Fukumizu, K., andVogiatzis, C. (2019).Multilocus phylogenetic analysis
with gene tree clustering. Ann. Operations Res. 276, 293–313. doi:10.1007/s10479-017-
2456-9

Frontiers in Molecular Biosciences 15 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1432495
https://doi.org/10.1016/1055-7903(92)90035-f
https://doi.org/10.1093/bioinformatics/btq196
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/s0166-218x(00)00202-x
https://doi.org/10.1109/34.868688
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1093/bioinformatics/btl446
https://doi.org/10.1093/sysbio/49.2.363
https://doi.org/10.1016/j.jtbi.2011.12.017
https://doi.org/10.1186/1748-7188-5-8
https://doi.org/10.1093/sysbio/syr092
https://doi.org/10.1093/bioinformatics/btw600
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1186/1471-2148-5-2
https://doi.org/10.1007/s10479-017-2456-9
https://doi.org/10.1007/s10479-017-2456-9
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org

	1 Introduction
	1.1 Related work
	1.2 Using more statistically robust distance measures

	2 Definitions and methods
	2.1 Preliminaries
	2.2 Min-Cut supertree
	2.2.1 Proper cluster graph
	2.2.2 Finding the best partition

	2.3 Spectral clustering
	2.3.1 Random walk perspective
	2.3.2 A normalised cut perspective

	2.4 Proposed algorithm: spectral cluster supertree
	2.5 Weighting strategies
	2.5.1 Depth weighting
	2.5.2 Branch length weighting

	2.6 Implementation

	3 Experimental design
	3.1 Datasets
	3.1.1 SMIDGenOG
	3.1.2 SMIDGenOG-5500
	3.1.3 SuperTriplets
	3.1.4 SCS datasets

	3.2 Distance measures
	3.3 Experiments

	4 Results
	4.1 Spectral cluster supertree vs. Min-Cut supertree
	4.2 Spectral cluster supertree vs. Bad Clade Deletion

	5 Discussion
	5.1 SCS statistically outperforms BCD on most datasets
	5.2 SCS displays superior computational efficiency over BCD in serial

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

