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Background: Carpal tunnel syndrome (CTS) is a common symptom of nerve
compression and a leading cause of pain and hand dysfunction. However, the
underlying biological mechanisms are not fully understood. The aim of this study
was to reveal the causal effect of circulatingmetabolites on susceptibility to CTS.

Methods: We employed various Mendelian randomization (MR) methods,
including Inverse Variance Weighted, MR-Egger, Weighted Median, Simple
Mode, and Weighted Model, to examine the association between 1,400
metabolites and the risk of developing CTS. We obtained Single-nucleotide
polymorphisms (SNPs) associated with 1,400 metabolites from the Canadian
Longitudinal Study on Aging (CLSA) cohort. CTS data was derived from the
FinnGen consortium, which included 11,208 cases and 1,95,047 controls of
European ancestry.

Results: The results of the two-sample MR study indicated an association
between 77 metabolites (metabolite ratios) and CTS. After false discovery
rate (FDR) correction, a strong causal association between glucuronate levels
(odd ratio (OR) [95% CI]: 0.98 [0.97–0.99], p FDR = 0.002), adenosine 5′-
monophosphate (AMP) to phosphate ratio (OR [95% CI]:0.58 [0.45–0.74], p FDR

= 0.009), cysteinylglycine disulfide levels (OR [95% CI]: 0.85 [0.78–0.92], p FDR =
0.047) and CTS was finally identified.

Conclusion: In summary, the results of this study suggest that the identified
glucuronate, the ratio of AMP to phosphate, and cysteinylglycine disulfide levels
can be considered as metabolic biomarkers for CTS screening and prevention
in future clinical practice, as well as candidate molecules for future mechanism
exploration and drug target selection.
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1 Introduction

Carpal tunnel syndrome (CTS) emerges when the median
nerve gets compressed within the carpal tunnel by the transverse
carpal ligament (Carpal tunnel syndrome, 2019; Walter, 2022). This
condition is primarily marked by symptoms such as paresthesia,
numbness, and a “pins and needles” sensation in the thumb, index,
and middle fingers (Newington et al., 2015). Some individuals may
also experience muscle atrophy in the thenar area, difficulty with
thumb abduction, and palm dysfunction (Middleton and Anakwe,
2014). CTS is notably prevalent, affecting 5%–10%of the population,
particularlymiddle-aged and pregnantwomen (Atroshi et al., 1999).
Although surgical decompression provides relief formany, a portion
of patients endure persistent or recurring symptoms, making CTS
a significant socioeconomic challenge. The incidence of CTS is
on the rise (Hacquebord et al., 2022), leading to reduced hand
function, decreased work efficiency, and increased medical costs.
Consequently, finding effective prevention methods for CTS is a
critical area of research.

Despite its common occurrence, the underlying
pathophysiology of CTS, especially concerning its genetic
aspects, remains poorly understood. Metabolomics, the study
of metabolites in biological samples, offers promising insights
into the altered metabolic pathways associated with diseases
like CTS (González-Domínguez et al., 2020). By examining
metabolite levels, researchers can discern variations in normal
and pathological states (Teckchandani et al., 2021a). This approach
can improve our understanding, diagnosis, and management of
CTS. However, research specifically focusing on the application of
metabolomics to CTS is still limited, highlighting a significant need
for further study.

This research employed the MR method to explore the
relationship betweenmetabolomics andCTS. Clinical research often
relies on observational studies and randomized controlled trials,
with the latter being the gold standard. However, challenges such
as ethical constraints and high costs can limit the feasibility of
conducting randomized controlled trials. Observational studies,
while simpler to implement, are often subject to confounding factors
and reverse causality issues (Sekula et al., 2016). MR utilizes genetic
variations as instrumental variables to examine causal relationships,
thus bypassing these limitations (Bowden and Holmes, 2019). This
method provides a more reliable inference of causality between
disease and genetic factors. Our study applies MR to investigate the
causal relationship between plasma metabolites and CTS, aiming to
contribute to the management and prevention of this condition.

2 Methods

2.1 Study design

Figure 1 presents a comprehensive overview of our study
design, underpinned by three key assumptions integral to the
MR methodology. The first assumption posits a robust correlation
between specific genetic variants and the exposure factor, in this
case, metabolites related to CTS. The second assumption stipulates
that the instrumental variables, derived from genetic variants, are
not influenced by any external confounding factors.This ensures the

observed effects are primarily due to the genetic variants themselves.
The third assumption is that these instrumental variables are
not directly linked to the outcomes, barring their effect through
the exposure. In this study, our focus was on the relationship
between plasma metabolites and CTS. To this end, we analyzed
1,400 metabolites, data which were sourced from the Canadian
Longitudinal Study on Aging (CLSA) cohort and are available
through the Genome-Wide Association Studies (GWAS) Catalog
database (GWAS:GCST90199621-90201020). Information specific
to CTS was obtained from the FinnGen database. The inclusion
of these studies in GWAS was contingent upon approval from
the respective review committees and the informed consent of
all participants. The present study was approved by the ethics
committee of Longyan First Hospital (Ethics number: 2,022,022).

2.2 Instrumental variable selection

We identified 34,930 single-nucleotide polymorphisms (SNPs)
associated with 1,400 metabolites at the genome-wide significance
level (p-value < 1 × 10−6). This identification was based on
data from the he CLSA cohort (Chen et al., 2023). To ensure the
independence of these instrumental variables (IVs) representing the
1,400 metabolites, we employed a stringent selection process. This
process involved (1) clumping, an approach that involves grouping
SNPs that are in high LD with each other to identify and retain
only one representative SNP from each group, thereby reducing
redundancy and ensuring that the selected SNPs are not correlated,
and (2) discarding SNPS that exhibited a linkage disequilibrium
(LD) R2 greater than 0.01 or were within a ±500 kilobase (kb)
distance to ensure further that SNPs within this genomic distance
of each other were not included simultaneously if they were in
LD. This study applied these criteria to select a set of independent
SNPs, ensuring that the genetic variation captured by each SNP
is distinct and not influenced by the variation captured by other
SNPs in the set. This independence is essential for the validity of
our instrumental variable analysis, as it reduces the risk of bias
and ensures that the associations we observe are more likely to
be due to the causal effects of the genetic variants rather than
confounding factors. To identify the effect of confounding factors
on CTS, all SNPs were searched by using the ensembl database
(https://www.ensembl.org/index.html). Through the analysis, it was
found that some SNPs associated with each metabolite were also
associated with a variety of CTS risk factors including diabetes
mellitus, dyslipidemia, thyroid disease, overweight or obesity, etc. By
controlling for confounding factors that may affect CTS outcomes,
7,373 SNPs can be identified to serve as instrumental variables
(detailed in Supplementary Table S1). Furthermore, we calculated
the F-statistics for these SNPs to evaluate the strength of the genetic
variation they represent. The F-statistics for all selected SNPs were
found to be greater than 10, indicating a strong and reliable genetic
instrument for our MR analysis.

2.3 CTS data source

Summary-level data on the association of outcome-related
SNPs with CTS was obtained from a genome-wide association
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FIGURE 1
The study flow chart. Legend: Figure 1 illustrates the flow of participants through the study. This visual representation provides a clear overview of the
study design and participant retention throughout the research process. X indicates that there is no correlation.

meta-analysis conducted by the FinnGen consortium. The dataset
included 11,208 CTS cases and 1,95,047 controls of European
descent. The data can be accessed at https://www.finngen.fi/en.

2.4 Statistical analysis

To assess the relationships between 1,400 metabolites and
CTS, our study employed a two-sample MR method. The primary
statistical approach was the Inverse Variance Weighted (IVW)
method. For cases where the IVs were three or fewer, we combined
the Wald ratio of a SNP effect on the outcome using the fixed-
effect IVW method. In instances with more than three IVs, the
random-effect IVW method was utilized. We also used MR-Egger
regression, weighted medians, and both a simple and weighted
model for auxiliary analysis. The MR-Egger regression method
was used to correct for horizontal pleiotropy (p-value for intercept
<0.05), enhancing the credibility ofMR analysis (Carter et al., 2021).
We used the weighted median method, enhancing causal effect
estimate accuracies by weighing genetic variation locus effects
(Davies et al., 2018). We applied the simple mode test to determine
the significance of genotype differences, providing insights into
gene effects on specific traits (Birney, 2022). Utilizing a weighted
model accounted for sample importance differences, enhancing
result accuracy and reliability, which is especially pertinent when

interpreting complex genetic data and exploring gene impacts on
specific traits (Davey Smith and Hemani, 2014). Sensitivity analyses
were conducted using the MR-Egger method and MR-PRESSO.
The MR Steiger test was utilized to determine the causal direction
between metabolites and CTS. A statistically significant association
was considered if the estimated causal effect of a given metabolite
had a FDR<0.05.The analyseswere performedusing theTwoSample
MR package (version 0.5.7), MendelianRandomization (version
0.5.7) and MR-PRESSO (version 1.0) in R (version 4.3.1).

3 Results

We investigated the influence of 1,400 metabolites on
CTS, identifying significant causal relationships through the
application of the Inverse Variance Weighted (IVW) method,
as detailed in Supplementary Tables S2, S3. The findings from
a two-sample MR study revealed an association between 77
metabolites (and metabolite ratios) and CTS, as illustrated in
Figure 2 (detailed in Supplementary Table S4). There are 38
metabolites (metabolite ratios) that may be protective factors for
CTS and another 36 that may be risk factors for CTS (as detailed
in Supplementary Tables S5, S6). Following correction for the
false discovery rate (FDR), a robust causal link was established
between glucuronate levels, the ratio of AMP to phosphate, and
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cysteinylglycine disulfide levels with CTS, detailed in Figure 3.
The results are summarized as follows: A significant correlation
was found between glucuronate levels and CTS, evidenced by an
Odds Ratio (OR) of 0.98 and a 95% Confidence Interval (CI) of
0.97–0.99, achieving statistical significance with an FDR-adjusted
p-value of 0.002. Moreover, the ratio of AMP to phosphate exhibited
a significant association with CTS, with an OR of 0.58 and a 95% CI
of 0.45–0.74, and an FDR-adjusted p-value of 0.009. Additionally, a
notable correlation was observed between cysteinylglycine disulfide
levels and CTS, indicated by an OR of 0.85 and a 95% CI of
0.78–0.92, and an FDR-adjusted p-value of 0.047. Seventy-four
other metabolites (and metabolite ratios) were also identified as
having a potential causal relationship with CTS. To corroborate
these findings, sensitivity analyses were performed using the MR-
Egger and leave-one-out methods, further validating the identified
associations, as illustrated in Supplementary Figures S1–S6.

4 Discussion

CTS is a common peripheral neuropathy characterized by
compression of the median nerve within the carpal tunnel.
Various risk factors have been identified, including diabetes
(Pourmemari and Shiri, 2016), menopause (Mondelli et al., 2002),
hypothyroidism (Shiri, 2014), obesity (Shiri et al., 2015), pregnancy
(Padua et al., 2010), and rheumatoid arthritis (Kaya Subaşı et al.,
2021). While the relationship between metabolomics, pain,
and peripheral neuropathy has been extensively studied
(Teckchandani et al., 2021b; Dopkins et al., 2018), its connection
with CTS remains unclear. Our study aims to comprehensively
investigate the individual causal effects of a wide range of circulating
metabolic traits on the risk of developing CTS, thus contributing
significantly to the understanding of this condition. This study
successfully identified at the SNP level that glucuronic acid, the
ratio of AMP to phosphate, and cysteinylglycine disulfide have a
significant impact on CTS. These findings offer valuable insights
into the metabolic factors contributing to the development and
prevention of CTS.

4.1 Causal relationship between
glucuronate and CTS

Glucuronate is a type of glucuronic acid, which is formed
by combining glucose molecules with aldehyde acid (glucuronic
acid) molecules (Dowben, 1956). Glucuronate has a variety of
physiological roles in the human body, such as detoxification,
antioxidant, maintenance of joint lubrication (Kroemer and Klotz,
1992; Zenser et al., 1999; Fabregat et al., 2013; Nash and Prather,
2023). Glucuronic acid has a role in maintaining joint lubrication
because of its involvement in the production of hyaluronic
acid (Bastow et al., 2008). Hyaluronic acid has good lubricating
properties that reduce friction between joints, tendons and
other tissues, providing good protection and sliding surfaces
(Morgese et al., 2018; Marian et al., 2021). Due to excessive force
or inflammation of the carpal joint, etc., the hyaluronic acid in
the carpal joint continues to decrease and the pressure in the
carpal tunnel increases. Increased pressure in the carpal tunnel is

a common mechanism of CTS. Because glucuronic acid-mediated
production of hyaluronic acid may be able to reduce the occurrence
of CTS. In a systematic review, it was also noted that hyaluronic acid
injections significantly relieved pain in CTS and enhanced median
nerve function (Urits et al., 2020). Another observational study also
suggests that hyaluronic acid injectionsmay have a therapeutic effect
in mild or moderate CTS (Su et al., 2021).

4.2 Causal relationship between
cysteinylglycine disulfide levels and CTS

The results of this MR study suggest a negative association
between cysteinylglycine disulfide and CTS. However, there
are limited observational findings to confirm this relationship.
Prolonged compression of the median nerve in CTS leads to
nerve ischemia and hypoxia, which is considered a significant
cause of CTS (Sud and Freeland, 2005). The ischemic-hypoxic
injury results in oxidative stress in the median nerve, leading
to the symptoms of CTS. An observational study showed a
strong correlation between CTS and antioxidant, indicating
that increased total oxidative stress and oxidative stress indices,
along with decreased total antioxidant status, may contribute
to fibrosis through disrupted signaling patterns in the tendon
sheath and median nerve (Demirkol et al., 2012). Another study
revealed that oxidative stress in the subsynovial connective tissue is
associated with CTS and its symptoms (Kim et al., 2010). Therefore,
antioxidant therapy might be able to reduce the occurrence of
CTS. Cysteine glycine disulfide, which is a metabolic breakdown
product of cysteine, plays a crucial role as an antioxidant and
helps cells combat oxidative stress (Wei et al., 2020). It acts as an
important cellular antioxidant, maintaining a balance between the
production and scavenging of free radicals to protect neurons from
oxidative damage (Gao et al., 2020).Therefore, in the future, cysteine
glycine disulfide could be investigated as a potential therapeutic
agent for the treatment of CTS.

4.3 Causal relationship between AMP to
phosphate ratio and CTS

This study shows that AMP to phosphate ratio is negatively
correlated with CTS. Previous studies have reported that AMP
has a regulatory role in the nervous system, where it affects
neurotransmitter release and neuronal excitability, thereby
modulating neurotransmission and neural function (Bading,
2017). AMP can activate adenosine monophosphate protein kinase
(AMPK)during cellular hypoxia, andAMPK is an important cellular
energy sensor and regulator that plays a key role in cellular energy
metabolism (Alnaaim et al., 2023). When the cellular energy level
decreases, AMPK is activated by AMP, which initiates a series of
regulatory mechanisms to increase cellular energy production and
decrease energy expenditure, thereby maintaining cellular energy
homeostasis (Wang et al., 2023). CTS is caused by hypoxia of the
median nerve due to the carpal tunnel squeezing the median nerve.
Thus, the activation ofAMPKbyAMPduringmedian nerve hypoxia
may be able to participate in the regulation of the median nerve to
achieve its protective effect. Phosphate is an inorganic salt that plays
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FIGURE 2
77 metabolites with IVW as the primary outcome forest plot. Legend: Figure 2 presents a forest plot displaying the results of the inverse variance
weighted (IVW) analysis for 77 metabolites.

an important role in organisms, participating in energymetabolism,
DNA and RNA synthesis, and so on (Gaire and Choi, 2021). If the
concentration of phosphate is too high, it can lead to phosphate

deposition may lead to carpal tunnel stenosis and CTS (Atreya and
Saba, 2022). Therefore, AMP to phosphate ratio may also be useful
as a metabolic marker for the study of CTS.
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FIGURE 3
Plot of metabolites with significant presence after FDR correction. Legend: Figure 3 displays a scatter plot of metabolites with significant presence after
false discovery rate (FDR) correction.

4.4 Potential causal relationships between
74 metabolites (ratios) and CTS

In the present study, we also identified 74 metabolites as
potential protective or risk factors for carpal tunnel syndrome.
Ascorbic acid 2-sulfate, Glycochenodeoxycholate and Histidine to
glutamine ratio may be potential protective factors. Analysis by
metabolic analysts showed that Ascorbic acid 2-sulfate, a metabolite
of vitamin C, has antioxidant and anti-inflammatory effects and
helps protect cells from oxidative stress. Glycochenodeoxycholate, a
metabolite of bile acids, maymaintain bile acid homeostasis, protect
hepatic function, and reduce the carpal tunnel syndrome Normal
levels of Histidine to glutamine ratio may help maintain amino acid
metabolic homeostasis, reduce neuronal dysfunction, and decrease
the risk of carpal tunnel syndrome. On the other hand, metabolites
such as n-acetylaspartate (NAA) levels, ceramide (d18:1/16:0), and
ethylmalonate may be considered as potential risk factors. Changes
in levels of n-acetylaspartate (NAA), a metabolite in neurons and
glial cells may reflect neuronal damage and correlate with the
pathogenesis of carpal tunnel syndrome. Ceramide (d18:1/16:0)
is a lipid metabolite, and increases may cause apoptosis and an
inflammatory response, exacerbating damage to nerve and muscle
tissue and increasing the risk of carpal tunnel syndrome. Abnormal
levels of ethylmalonate may lead to metabolic disturbances,

increase intracellular oxidative stress and inflammatory responses,
affecting the development of carpal tunnel syndrome. In addition,
compounds such as X-21470 levels, X-22771 levels, Methyl indole-
3-acetate levels, X-23739 levels, and Sucrose levels may be related
to the regulation of metabolic pathways in certain organisms, and
their physiological significance needs to be further investigated.The
mechanisms of action and interrelationships of these metabolites
are important for a better understanding of the pathogenesis and
treatment of carpal tunnel syndrome.

4.5 Strengths and limitations

Our study marks a significant advancement in understanding
CTS by being the first to analyze its causal relationship with
metabolomics using MR. This approach allowed us to genetically
identify glucuronate, the ratio of AMP to phosphate, and
cysteinylglycine disulfide levels as a protective factor against CTS.
The strength of MR lies in its ability to minimize confounding
factors and reduce reverse causation, as gene variants are randomly
assigned at conception and remain independent of subsequent
lifestyle and environmental influences. To ensure the robustness
of our findings, we utilized metabolic biomarker GWAS data from
the Genome-Wide Association Studies (GWAS) Catalog database
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and genetic variation data for CTS, the FinnGen database. These
carefully selected instrumental variables enhance the credibility of
our MR analysis. We also employed MR-Egger regression and MR-
PRESSO to address potential issues like horizontal pleiotropy and
heterogeneity.

However, our study is not without limitations. The limited
number of SNPs, resulting in the reduced stability of this study’s
findings regarding the AMP to phosphate ratio and cysteinylglycine
disulfide levels, may be attributed to the relatively small sample size,
which covered only 8,299 of the 1,400 metabolites. To enhance the
reliability of the causal relationship in future research, it is advisable
to expand the sample size beyond 1,400 metabolites. Although
SNPs were used in this study to correlate with metabolite levels,
other factors also influence metabolite levels, such as environmental
influences, dietary habits, and lifestyle choices also play a significant
role in determining metabolite concentrations. So it is possible that
other factors may further influence CTS. Therefore, future causal
relationships between metabolites and CTS will require multicenter
clinical studies to further validate their relationship.

5 Conclusion

In summary, the results of this study suggest that the identified
glucuronate, the ratio of AMP to phosphate, and cysteinylglycine
disulfide levels can be considered as metabolic biomarkers for CTS
screening and prevention in future clinical practice, as well as
candidate molecules for future mechanism exploration and drug
target selection.
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