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Introduction: Liver cancer, particularly Hepatocellular carcinoma (HCC),
remains a significant global health concern due to its high prevalence and
heterogeneous nature. Despite the existence of approved drugs for HCC
treatment, the scarcity of predictive biomarkers limits their effective utilization.
Integrating diverse data types to revolutionize drug response prediction,
ultimately enabling personalized HCC management.

Method: In this study, we developed multiple supervised machine learning
models to predict treatment response. These models utilized classifiers such
as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN),
support vector machines (SVM), and random forests (RF) using a comprehensive
set of molecular, biochemical, and immunohistochemical features as targets of
three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set
of performance metrics for the complete and reduced models were reported
including accuracy, precision, recall (sensitivity), specificity, and the Matthews
Correlation Coefficient (MCC).

Results and Discussion: Notably, (NN) achieved the best prediction accuracy
where the combinedmodel usingmolecular and biochemical features exhibited
exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105
and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from
three cross-validation iterations. Also, found seven molecular features, seven
biochemical features, and one immunohistochemistry feature as promising
biomarkers of treatment response. This comprehensive method has the

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences
https://doi.org/10.3389/fmolb.2024.1430794
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1430794&domain=pdf&date_stamp=2024-10-12
mailto:drmarwa_matboly@med.asu.edu.eg
mailto:drmarwa_matboly@med.asu.edu.eg
mailto:ibrahim.youssef@eng1.cu.edu.eg
mailto:ibrahim.youssef@eng1.cu.edu.eg
https://doi.org/10.3389/fmolb.2024.1430794
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1430794/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1430794/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1430794/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1430794/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1430794/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1430794/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Matboli et al. 10.3389/fmolb.2024.1430794

potential to significantly advance personalized HCC therapy by allowing for
more precise drug response estimation and assisting in the identification of
effective treatment strategies.
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1 Introduction

Hepatocellular carcinoma (HCC) is a deadly form of liver
cancer, ranking fifth among the most commonly diagnosed
malignancies worldwide and being the third leading cause of
cancer-related deaths (Sung et al., 2021). In Egypt specifically, HCC
remains the most prevalent cancer and the primary cause of
cancer-related mortality, resulting in approximately 26,000 deaths
annually (Omar et al., 2023). HCC arises due to repeated cycles
of inflammation, leading to the progression of fibrosis, cirrhosis,
and ultimately, the development of cancer (Piñero et al., 2020).
Patients with chronic liver conditions, such as viral hepatitis, and
even those with alcoholic and nonalcoholic fatty liver disease or
metabolic syndromes, are at a higher risk of developing HCC
(Chidambaranathan-Reghupaty et al., 2021).Unfortunately, the lack
of effective biomarkers for early detection, limited understanding
of HCC’s heterogeneity, and therapeutic resistance contribute
to the high mortality rates (Tunissiolli et al., 2017). Despite the
availability of various treatment options such as surgical resection,
targeted immune therapies, and radiofrequency ablation, patients
with unresectable HCC face significant unmet medical needs and
experience a poor prognosis (Xing et al., 2021; Llovet et al., 2022).

Numerous RNA biomarker subtypes, such as Circular RNAs
(circRNAs), microRNAs (miRNAs), and long noncoding RNAs
(lncRNAs), have demonstrated their potential as diagnostic and
prognostic biomarkers in HCC (Tan et al., 2019; Jiang et al., 2019).
Particularly, these biomarkers are involved in many HCC-related
pathways such as autophagy, apoptosis, cell cycle regulation,
and immune checkpoints (Takamura et al., 2011; Lee et al., 2018).
CircRNAs, predominantly located in the cytoplasm and exhibiting
relative stability, function as miRNA sponges or protein scaffolds,
thereby facilitating protein-protein interactions (Shi et al., 2021).
They play a significant role in the initiation and progression of
HCC (Su et al., 2019). Dysregulation of lncRNA has been observed
in various cancer types, where it can either suppress or promote
tumorigenesis and tumor development (Kang et al., 2019). LncRNA
exerts its influence through interactions with DNA, RNA, and
proteins, as well as by acting as microRNA sponges (Huang et al.,
2020). Moreover, they play a crucial role in tumor progression
and contribute to the malignant phenotypes observed in HCC,
including proliferation, invasion, and migration (Unfried et al.,
2021). Considering the complexity of the RNA landscape, which
involves various splicing forms, alternative polyadenylation, and
chimeric RNAs, the incorporation of multiple RNA types could
enhance the performance of diagnostic and prognostic panels
(Eun et al., 2023; Fu et al., 2022; Schlosser et al., 2022).

RNA extracted from malignant growths has great potential
as a valuable resource for determining drug efficacy in various

cancer forms (Fang et al., 2023). Despite previous endeavors
falling short of desired outcomes for clinical implementation,
there remains a persistent interest in exploring novel avenues
(Zhang H. Y. et al., 2023; Zhang J. et al., 2023). Presently, the
technique of immunohistochemistry (IHC) has emerged as a
promising tool for assessing the presence ofHCC such as glutathione
S-transferase pi (GSTP), proliferating cell nuclear antigen (PCNA),
and tumor necrosis factor (TNF), indicating that integrating
protein expression data with mRNA may offer a more effective
means of predicting drug response (Márquez-Quiroga et al., 2022;
Stärkel et al., 2015; Feng et al., 2022).

Our research endeavors were extensively conducted on animal
models, aiming to identify effective drugs for HCC. During our
studies, we explored diverse therapeutic approaches, including the
utilization of proton-pump inhibitors (PPIs) such as Pantoprazole.
Pantoprazole has garnered attention as a promising therapeutic
strategy for gastric cancer, showing the ability to enhance sensitivity
to antitumor drugs, attenuate liver tumorigenesis, and modulate
autophagy in rat models (Zhang et al., 2019; Bridoux et al.,
2022; Kim et al., 2022; Matboli et al., 2019). Furthermore, our
investigations delved into the anticancer effects of natural
compounds, with a specific focus on triggering cancer cell death
(Zaghloul et al., 2017; Kooti et al., 2017). Hesperidin, a flavanone
glycoside commonly found in citrus fruits, emerged as a prominent
candidate as it exhibited anti-inflammatory, anti-carcinogenic,
antioxidative, and lipid-lowering effects (Banjerdpongchai et al.,
2016). Moreover, it has demonstrated an antigenotoxic effect
by counteracting DNA damage induced by hydrogen peroxide
(Fernández-Bedmar et al., 2017). Importantly, hesperidin has
exhibited inhibitory effects on the development of various
cancer types, including tongue, esophageal, and colon cancers
(Tanaka and Sugie, 2007; Aggarwal et al., 2020). Additionally,
Cyanidin 3-glycoside (Cyan), a notable anthocyanidin found in
plants and fruits, has been associated with multiple beneficial
properties, such as anti-aging, anti-oxidative, anti-inflammatory,
vascular relaxation, antiproliferative, and anti-inflammatory effects
(Safdar et al., 2023; Mirmalek et al., 2023). Moreover, Cyan has
suppressed the progression of breast, lung, and liver cancers
(Yin et al., 2019; Chen et al., 2021). To gain comprehensive insights,
we employed a panel of mRNA signatures involved in HCC
pathogenesis and their epigenetic regulators complemented by
biochemical, histological, and immunohistochemistry analyses,
these comprehensive evaluations provided valuable indications
of the biological actions and potential clinical benefits of our
therapeutic candidates.

Recently, the advent of artificial intelligence (AI) has enhanced
all possible aspects of clinical care for HCC. AI holds the potential
to revolutionize HCC management by addressing key challenges
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in several crucial areas by enhancing the prediction of future
HCC risk in patients, improving the accuracy of diagnosis, and
refining prognostication for patients already diagnosed with HCC
while predicting their response to specific drugs (Calderaro et al.,
2022). The primary objective of our study is to develop a machine-
learning (ML) model that utilizes a comprehensive set of molecular,
biochemical, and IHC features derived from HCC rat models in
order to predict drug response.

2 Materials and methods

2.1 Chemicals and drugs

Diethylnitrosamine (DEN) with a purity of 99.0% and
acetamidofluorene (2-AAF)with a purity of 98%were acquired from
Sigma Aldrich (St. Louis, MO, United States) with CAS numbers 55-
18-5 and 53-96-3, respectively. Hesperidin was also obtained from
Sigma Aldrich, while Cyan was purchased from (Earth Natural
Supplements in Colorado Springs, United States). Pantoprazole was
supplied from (Controloc; Takeda GmbH, Oranienburg, Germany).

2.2 Experimental protocol

One hundred and thirty male Wistar rats, weighing between
190 and 200 g, were procured from the animal house of Nile
Pharmaceuticals in Cairo, Egypt. The rats were housed in
a controlled environment with temperatures maintained at
22°C–24°C, following a twelve-hour light-dark cycle. They were
provided with standard rat chow and had access to tap water,
allowing them to acclimate for 1 week. Ethical approval was
obtained from the Ain Shams Research Ethics Committee, Faculty
of Medicine, Egypt, FMASU MD 32/2016. In accordance with the
guidelines of the Declaration of Helsinki. Before each injection, the
weight of each rat was measured to ensure accurate calculation
of the drug dosage. To induce hepatic pre-cancerous legions
(HPCL), the rats were intraperitoneally injected with DEN+2‐AAF.
DEN was administered intraperitoneally once a week for three
consecutive weeks at a dose of 100 mg/kg, followed by a one-week
rest period. Subsequently, 2‐AAF was injected intraperitoneally
at a dose of 300 mg/kg (Hasanin et al., 2021a). The rats were
then divided randomly into eleven groups: I) The control group
(10 rats) received intraperitoneal injections of 0.9% NaCl. II)
The HPCL group (12 rats) received intraperitoneal injections of
DEN+2‐AAF. III) The Hesperidin groups (12 rats each) included
Hesperidin-50, Hesperidin-100, and Hesperidin-200. These rats
were injected with DEN+2‐AAF for HPCL induction and then
treated with hesperidin at doses of 50, 100, and 200 mg/kg/day,
respectively, for four consecutive days weekly for 16 weeks. IV)
The Cyan groups (12 rats each) included Cyan-10, Cyan-20,
and Cyan-30. They were injected with DEN+2‐AAF for PCL
induction and subsequently treated with Cyan at doses of 10, 20,
and 30 mg/kg/day, respectively, for four consecutive days weekly
for 16 weeks. V) The Pantoprazole groups (12 rats each) included
Pantoprazole-25, Pantoprazole-50, and Pantoprazole-100. These
rats were injected with DEN+2‐AAF for HPCL induction and
then treated with Pantoprazole intraperitoneally at doses of 25, 50,

and 100 mg/kg/day, respectively, for three consecutive days weekly
for 4 weeks (Figure 1).

2.3 Blood sample and liver tissue
assessment

At the end of the experiment, the rats were anesthetized with
urethane (1.2 g/kg; intraperitoneal injection) dissolved in distilled
water. The blood was obtained from the retroorbital vein and
incubated for approximately 30 min to allow clotting. Subsequently,
the samples were centrifuged at 5,000 rpm for 20 min to separate
the serum. The livers were carefully dissected. Specifically, the right
lobe of each liver was removed and sliced into longitudinal sections
measuring 2–4 mm in thickness. These sections were preserved in
10% formalin for the histopathological and immunohistochemical
examinations. The remaining liver lobes and sera samples were
promptly frozen at −80°C for liver function tests and RNA
extraction.

2.4 Biochemical analysis

Quantitative analysis of serum biomarkers was conducted to
assess various parameters including alanine transaminase (ALT),
aspartate transaminase (AST), total cholesterol (TC), triglycerides
(TG), HDL cholesterol (HDL-C), and LDL cholesterol (LDL-C),
alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT),
total bilirubin (T. Bilirubin), direct bilirubin (D. Bilirubin),
albumin using commercially available kits and an automated
Beckman Coulter AU680 autoanalyzer (Beckman Coulter Inc., CA).
Additionally, the levels of alpha-fetoprotein (AFP) were determined
using an ELISA kit (Abcam cat no. ab108838, Cambridge, MA,
United States).

2.5 Molecular markers selection

We used the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/gds/?term=) to find differentially
expressed genes (DEGs) using the keyword “Hepatocellular
Carcinoma,” We collected datasets that fulfilled our criteria, which
involved having tissue samples related to hepatocellular carcinoma
(HCC) along with normal tissue samples for comparison. Moreover,
we verified that each dataset had an adequate sample size to ensure
the reliability of our statistical analysis, and chose the GSE141090,
GSE24600, GSE38199, GSE49515, and GSE41804 datasets (details
in Supplementary Table S2), then we applied GEO2R/Limma R
package tool to find significant DEGs, the P values less than 0.05
were considered significant with log twofold change (LogFC) value
≥ 1 or ≤ − 1, using the adjustment method of Benjamini and
Hochberg (false discovery rate) (Supplementary Table S1). Based
on our interest in cell cycle progression, autophagy, metastasis,
and apoptosis, we selected BCL2 Associated X (BAX), Autophagy
Related 16 Like 1 (ATG16-L1), Cyclin E mRNA, Tumor Protein
P53 (P53), Ras-related in brain11 gene (RAB11), and Tubulin
gamma 1 (TUBG1). The expression ATLAS (https://www.ebi.ac.
uk/gxa/home) in addition to The Cancer Proteome Atlas (TCPA)
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FIGURE 1
The chart summarizes the experimental design of the study.

TABLE 1 Features and their number for each data type.

Molecular
(14 features)

Biochemical
(12 features)

IHC (3
features)

1. lncRNA-RP11-513I15.6 1. ALT 1. GSTP

2. miR-125b 2. AST 2. PCNA

3. miR-1289 3. ALP 3. TNF

4. lncRNA-RP11-583F2.2 4. GGT

5. miR-1262 5. T. Bilirubin

6. BAX mRNA 6. D. Bilirubin

7. Cyclin E mRNA 7. AFP

8. ATG16-L1 8. Albumin

9. lncRNA-MALAT 9. TC

10. P53 mRNA 10. TG

11. RAB11 mRNA 11. HDL-C

12. miR-106b 12. LDL-C

13. circ_0001345

14. TUBG mRNA

(available at https://www.tcpaportal.org/) databases were used
to confirm the differential expression of the selected genes in
HCC (Supplementary Figure S2). Using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and the Reactome databases
we performed pathway analysis for the selected genes using

TABLE 2 Number of samples per control, disease model, and
treatment drugs.

Condition Number of samples

Control (Healthy) 35

HPCL (Disease model; untreated) 35

Hesperidin-50 12

Hesperidin-100 12

Hesperidin-200 12

Cyan-10 12

Cyan-20 12

Cyan-30 12

Pantoprazole-25 12

Pantoprazole-50 12

Pantoprazole-100 12

the Enricher database (https://maayanlab.cloud/Enrichr/). Then
we selected the epigenetic regulators of the DEGS, firstly, we
retrieved the miRNAs (miR-125b-1-3p, miR‐1262, miR‐1298,
and miR-106b) that interact with the selected DEGs using the
mirwalk database (available at http://mirwalk.umm.uni-heidelberg.
de/) and the RNA22 database (available at https://cm.jefferson.
edu/rna22/Interactive/) (Supplementary Figure S3). Moreover,
we chose the LncRNAs (lncRNA-RP11-513I15.6, lncRNA-RP11-
583F2.2, and lncRNA-MALAT) based on our previous studies
on HCC, (Matboli et al., 2019; Hasanin et al., 2020; Zabady et al.,

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1430794
https://www.tcpaportal.org/
https://maayanlab.cloud/Enrichr/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://cm.jefferson.edu/rna22/Interactive/
https://cm.jefferson.edu/rna22/Interactive/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Matboli et al. 10.3389/fmolb.2024.1430794

TABLE 3 Predictive models according to predictors data type.

Model Data type

1 Molecular

2 Biochemical

3 IHC

4 Molecular + Biochemical

5 Molecular + IHC

6 Biochemical + IHC

7 Molecular + Biochemical + IHC

FIGURE 2
The number of responsive and non-responsive samples.

2022; Matboli et al., 2021; Hasanin et al., 2021b) their differential
expression in HCC confirmed by the TANTRIC database
(available at https://www.tanric.org/), and their interaction with
miRNA verified by the RNA22 database (available at https://cm.
jefferson.edu/rna22/Interactive/) (Supplementary Figures S4, S5).
The hsa_circ_0001345 was chosen based on our previous
study that validated its role in autophagy in HCC
(Zabady et al., 2022).

2.6 Total RNA extraction and real-time PCR

The mRNA expression of TUBG1, RAB11A, ATG16-L1,
BAX, and P53, as well as the lncRNAs lncRNA-RP11-513I15.6,

lncRNA-RP11-583F2.2, and lncRNA-MALAT, was determined
using the RT (Omar et al., 2023) SYBR Green ROX real-time
quantitative polymerase chain reaction (qPCR) Mastermix and
Quantitect SYBR Green Mastermix Kit (Qiagen, Düsseldorf,
Germany), specific primers provided by Qiagen (QT00176519,
PPR42379A, PM00597373, UPFH0540166, UPFR1074538, SBRN-
027Z, LPH05247A, LPH24879A, and SBH0655633) were used in
conjunction with the Step One Plus™ System (Applied Biosystems
Inc., Foster City, CA, United States). β-actin (PM00480207)
was utilized as the endogenous control. For miRNA expression
analysis in the liver tissue, we followed the miScript primer
assay and miScript SYBR Green kit protocol from Qiagen
(Düsseldorf, Germany) to investigate the expression of miR-
125b-1-3p, miR‐1262, miR‐1298, and miR-106b_1 (YI04102304,
SBH0386397, SBR1207111, and SI05465957). The endogenous
control used was RNU-6 (SI03956260). To obtain the targeted
circRNA junction sequence, we referred to the CircInteractome
database, and a custom-designed primer assay from the primer-
blast database was used for amplification (Zabady et al., 2022;
Dudekula et al., 2016; Ye et al., 2012). The PCR program consisted
of an initial denaturation step at 95°C for 15 min, followed by
40 cycles of denaturation at 94°C for 10 s, annealing at 55°C for
30 s, and extension at 70°C for 34 s. Each reaction was performed
in duplicate. To quantify the expression of the target molecules,
we employed the 2−ΔΔCt method (Livak and Schmittgen, 2001).
The expression levels of the target genes were normalized against
the housekeeping gene for each sample and compared to a
reference sample.

2.7 Histological and immunohistochemical
examination

Liver samples were obtained from all animal groups and
were treated with 10% neutral formaldehyde for 24 h for fixation.
The samples were then dehydrated and embedded in paraffin
blocks. Thin sections of 5 μm thickness were prepared and
subjected to hematoxylin-eosin (H&E) staining to examine potential
histopathological alterations. To capture the images, an Olympus
BX50 Light microscope from Japan was utilized. Following routine
dewaxing with xylene and hydration through a graded ethanol
series, the sections underwent a 15-min incubation with a 3%
hydrogen peroxide solution at room temperature to neutralize
endogenous peroxidase activity. Subsequently, the sections were
washed with gently running tap water, followed by rinsing with
phosphate-buffered saline (PBS). Primary antibodies were then
applied to the sections and incubated overnight at 4°C. The specific
antibodies used included a rabbit polyclonal antibody against GST-P
(catalog AB106268; Abcam, Cambridge, MA) at a dilution of 1/250,
anti-PCNA (SantaCruzBiotechnology, SantaCruz, CA) at a dilution
of 1/400, and anti-TNF-α (Cat. No. NB600–587, Novus Biologicals,
Littleton, CO, United States) at a dilution of 1/200, with incubation
conducted at room temperature for 2 h. After rinsing with PBS, the
sections were incubated with a biotinylated secondary antibody for
30 min at room temperature. The peroxidase activity was visualized
using a 3,3′-Diaminobenzidine solution (Vector Laboratories,
Inc., Burlingame, CA), and counterstaining was performed with
hematoxylin. To quantify the GST-P-positive area, images were
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FIGURE 3
Photomicrographs of liver sections stained with H&E. (A) The Control group shows normal hepatic architecture as hepatocytes are arranged radially
around the central vein, the structure of the hepatic sinus was clear and there was no pathological change. (B) HPCL Group shows massive destruction
of liver architecture with infiltration of inflammatory cells and hemorrhagic area. (C–K) Treated groups; (C) hesperidin-50 Group, (D) hesperidin-100
Group, (E) hesperidin-200 Group, (F) Cyan-10 Group, (G) Cyan-20 Group, (H) Cyan-30 Group, (I) Pantoprazole-25 Group, (J) Pantoprazole-50 Group,
and (K) Pantoprazole-100 Group. (magnification: (A–K): × 100).

captured using a charge-coupled device (CCD) camera connected
to a Windows computer. For PCNA expression level calculation,
the number of PCNA-positive hepatocytes was determined by
counting 1,000 cells in each case, and the results were presented
as a percentage (number of PCNA-positive hepatocytes/1,000
hepatocytes) at × 100 magnification. The area percentage of
immunostaining for TNF-α was measured using the Leica Qwin
500 C image analyzer. Measurements were obtained from 10 non-
overlapping low-power fields per section in each group.

2.8 Statistical analysis

The statistical analysis was conducted using SPSS 26.0 software.
Continuous variables were reported as mean ± standard deviation
(SD), following the verification of their normal distribution using
the Shapiro-Wilk test. One-way analysis of variance (ANOVA) with
Tukey post hoc test was employed to compare differences between
groups. A p-value below 0.05 was considered statistically significant.

TheChi-square test was employed to compare the categorical data of
inflammation grades and fibrosis stages as the grade of 0 indicates no
foci, grade 1 signifies less than 2 foci per 200x field of view, grade 2
indicates 2-4 foci per 200x field of view, and grade 3 represents more
than 4 foci per 200x field of view. On the other hand, the fibrosis
stage is assessed based on the location and extent of fibrotic changes.
A stage of 0 indicates no fibrosis, stage 1 represents fibrosis around
the sinusoids or portal areas, stage 2 signifies the presence of fibrosis
around both the sinusoids and portal/periportal regions, and stage
3 indicates bridging fibrosis (Kleiner et al., 2005).

3 Machine learning models

3.1 Data

One of the goals of this study is to build a machine-learning
predictive model to estimate the treatment response based on a
set of observational measurements of the treated samples. Let Xi ∈
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FIGURE 4
Photomicrographs of rats’ liver sections immunohistochemically stained with glutathione S transferase-P (GST-P) antibody. (A) The control group
shows a negative reaction. (B, C) HPCL Group shows the massive distribution of large positive stained areas occupying most of the section. (D–L)
Treated groups; (D) hesperidin-50 Group, (E) hesperidin-100 Group, (F) hesperidin-200 Group, (G) Cyan-10 Group, (H) Cyan-20 Group, (I) Cyan-30
Group, (J) Pantoprazole-25 Group, (K) Pantoprazole-50 Group, and (L) Pantoprazole-100 Group. (M) A bar chart depicts the levels of expression of
GST-P across the different animal groups. (magnification: (A–L):× 40).

R+n×pi be a set of one type of measurements, where this type i ∈
{Molecular, Biochemical, IHC} (Table 1), R+ is the non-negative
real numbers, n is the number of samples (Table 2), and pi is the

number of features per type i (Table 1), and let Y ∈ Nn×2 be the
treatment response, where N is the non-negative integers. Response
Y is determined by two features: inflammation grade and fibrosis
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FIGURE 5
Photomicrographs of rats’ liver sections immunohistochemically stained with PCNA show brown stained nucleus indicating a positive immune reaction
of hepatic cells scattered in between negatively stained hepatic parenchymal cells. (A) The control group shows a negative reaction. (B) HPCL Group
shows a massive distribution of positively stained cells occupying most of the section. (C) Hesperidin-50 Group, (D) hesperidin-100 Group, (E)
hesperidin-200 Group, (F) Cyan-10 Group, (G) Cyan-20 Group, (H) Cyan-30 Group, (I) Pantoprazole-25 Group, (J) Pantoprazole-50 Group, (K)
Pantoprazole-100 Group. (magnification: (A–K): × 100). (L) A bar chart depicts the levels of expression of PCNA across the different animal groups.

stage. Values less than or equal to two for both of the response
features indicate a successful treatment. So, a samplewill be classified
as responsive (binary 1) when both values of the inflammation
grade and the fibrosis stage are ≤ 2; otherwise the sample will be
labeled unresponsive (binary 0). According to histopathological
inflammation scores less than 2 mean no or minimal inflammation
(Castro-Gil et al., 2021). Moreover, according to our animal model
experiments, the baseline stage (lowest degree) of fibrosis captured
in our model was 3. So we considered less than or equal to 2 as an
improvement of liver fibrosis (Mak and Mei, 2017).

3.2 Predictive models

We built several supervised machine learning models using the
classifiers logistic regression (LR), k-nearest neighbors (kNN), neural
networks (NN), support vector machines (SVM), and random forests
(RF)topredictthetreatmentresponse.Foreachclassifier,wetestedseven
models (Table 3),where themaindifferenceamongthemis thedata type
of the features used as predictors. Such distinctions in predictors can
assess the differential predictive power of these models based on the
utilized data type. In addition to the seven models listed in Table 3
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TABLE 7 Features kept for the reduced models are listed under the
“Included features” column, while the discarded features are listed
under the “Excluded features” column.

Model Included
features

Excluded
features

Feature Feature

Molecular
Included: 2
Excluded: 12

Total: 14

MiR-1289
TUBG mRNA

miR-125b
lncRNA-RP11-
513I15.6
lncRNA-RP11-
583F2.2
Cyclin E mRNA
lncRNA-MALAT
miR-106b
miR-1262
BAX mRNA
ATG16-L1
P53 mRNA
RAB11 mRNA
circ_0001345

Biochemical
Included: 2
Excluded: 10

Total: 12

ALT
TG

AST
ALP
GGT
T. Bilirubin
D. Bilirubin
AFP
Albumin
TC
HDL-C
LDL-C

IHC
Included: 1
Excluded: 2

Total: 3

GSTP PCNA
TNF

per classifier, we constructed another seven corresponding models,
which we designated as “reduced”models.We used the greedy forward
sequential feature selection (SFS) approach with random forests as the
estimator to pick up the smallest set of features that are the most
representative of the model. This reduction in the number of features
can reduce model complexity and computation time while enhancing
model interpretability.

The LR classifier had the maximum number of iterations for
convergence set to 1,00,000 with a stopping tolerance of 0.0001. The
number of neighbors for the kNNclassifierwas 5withuniformweights.
TheNNclassificationwasdoneusing themulti-layer perceptron (MLP)
classifier with two hidden layers of a few numbers of neurons (5, 3) to
avoid overfitting, themaximumnumber of convergence iterations to be
200, and the “lbfgs” optimizer as the solver.Theparameters for the SVM
classifier were the regularization parameter (C) with a value of 1 and a
tolerance of 0.0001 for the stopping criterion. The RF classifier had 100
treeswith amaximumdepth of 10 for each tree.The SFS approach used
an RF estimator in a forward direction with parameters of 0.00001 for
the stopping criterion and cross-validation of 5 iterations.

3.3 Cross-validation and class balancing

We split data into two disjoint, exclusive sets. The first set
was used to train the machine learning model, while the second

set was used to test the model’s predictive performance. The test
set represented unseen samples for the trained model to avoid
overfitting. This splitting process was repeated k times to perform a
k-fold cross-validation (kCV) assessment, where every single sample
was used once for testing the model’s ability to classify the unseen
data. This study contains groups of data representing different
treatment drugs, one or more controls, and a disease model (no
treatment). We did not follow the strategy of leave-one-group-out
to mitigate the problem of under-representing a group which would
increase the misclassification rate. Hence, we divided each group
into k subsets, where at each CV iteration, only one subset is used
for testing. To do so, assume that si is the index of sample s and i =
{1, 2, 3, … , n}, where n is the total number of the study samples.
The function mod (si,k) uses the mod operator to get the integer
remainder of dividing si by k, where the output of (mod (si,k) + 1)
∈ {1, 2, 3, … , k}. So, for the kth CV iteration, the samples that give
the result (mod (si,k) + 1) = k will be used for testing the model and
all the other left samples will be used for the model learning phase.
This approach preserves stratified sampling at each CV iteration.

Our data contains two classes in accordance with the treatment
response: non-responsive and responsive, with a relative ratio of
1:3.56, respectively, as shown in Figure 2. We used the Synthetic
Minority Oversampling Technique (SMOTE) to sample up the
undersampled class to have classes of equal size in order tominimize
the classifier bias.Theupsampling processwas performed only in the
training phase, and not on the tested samples.

3.4 Identification of potential treatment
biomarkers

To study the potential for a certain feature to be a treatment
response biomarker for a specific drug, we screened each feature
against the control and against the disease model for each drug
separately. We used the non-parametric, two-sided Wilcoxon rank-
sum test for independent samples to test whether two sets of data
come from the same population. The null hypothesis, Ho, is that
both sets come from the same population, while the alternative
hypothesis, H1, is that they come from two different populations.
For comparing the data of one feature following a certain treatment
against the data of the same feature for the control case, rejectingHo
is a bad sign for that feature to be a potential biomarker for using
that treatment drug, but failure to rejectHo could be a good sign for
a potential biomarker since in the latter case the treatment made
the values of this feature post-treatment close to those values for
the control. On the other hand, in the case of comparing against the
disease model, rejecting Ho is a good sign for a potential biomarker
since the test indicates two different populations: the disease model
population and the post-treatment population.

3.5 Software packages

Python 3.7 was used as the programming language for
processing the data of this study. We used many Python-based
packages and modules as well to ease the processing pipeline.
“NumPy” (version 1.20.3) and “pandas” (version 1.3.5) were used
to read data from files, store them in data structures such as
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TABLE 8 Model prediction using multivariate LR for both the complete models and the reduced models.

Model LR

Metric Complete (All features) Reduced model (SFS)

Molecular

Accuracy 0.9644 ∓ 0.0135 0.9664 ∓ 0.0135

Precision 0.9792 ∓ 0.0295 0.9722 ∓ 0.0260

Recall 0.9787 ∓ 0.0174 0.9858 ∓ 0.0201

Specificity 0.9333 ∓ 0.0943 0.9056 ∓ 0.0820

MCC 0.9075 ∓ 0.0345 0.9064 ∓ 0.0332

Biochemical

Accuracy 0.8935 ∓ 0.0337 0.9438 ∓ 0.0082

Precision 0.9200 ∓ 0.0549 0.9718 ∓ 0.0259

Recall 0.9500 ∓ 0.0196 0.9574 ∓ 0.0301

Specificity 0.7111 ∓ 0.1858 0.9056 ∓ 0.0820

MCC 0.6864 ∓ 0.0983 0.8461 ∓ 0.0277

IHC

Accuracy 0.9494 ∓ 0.0138 0.9607 ∓ 0.0076

Precision 0.9792 ∓ 0.0295 0.9721 ∓ 0.0259

Recall 0.9574 ∓ 0.0347 0.9787 ∓ 0.0174

Specificity 0.9333 ∓ 0.0943 0.9056 ∓ 0.0820

MCC 0.8668 ∓ 0.0317 0.8891 ∓ 0.0169

Molecular-biochemical

Accuracy 0.9496 ∓ 0.0271 0.9664 ∓ 0.0135

Precision 0.9594 ∓ 0.0429 0.9722 ∓ 0.0260

Recall 0.9787 ∓ 0.0174 0.9858 ∓ 0.0201

Specificity 0.8611 ∓ 0.1416 0.9056 ∓ 0.0820

MCC 0.8580 ∓ 0.0721 0.9064 ∓ 0.0332

Molecular-IHC

Accuracy 0.9664 ∓ 0.0135 0.9664 ∓ 0.0135

Precision 0.9792 ∓ 0.0295 0.9722 ∓ 0.0260

Recall 0.9787 ∓ 0.0174 0.9858 ∓ 0.0201

Specificity 0.9333 ∓ 0.0943 0.9056 ∓ 0.0820

MCC 0.9075 ∓ 0.0345 0.9064 ∓ 0.0332

Biochemical-IHC

Accuracy 0.9215 ∓ 0.0152 0.9607 ∓ 0.0076

Precision 0.9330 ∓ 0.0392 0.9721 ∓ 0.0259

Recall 0.9716 ∓ 0.0265 0.9787 ∓ 0.0174

Specificity 0.7556 ∓ 0.1293 0.9056 ∓ 0.0820

MCC 0.7721 ∓0.0331 0.8891 ∓ 0.0169

(Continued on the following page)
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TABLE 8 (Continued) Model prediction using multivariate LR for both the complete models and the reduced models.

Model LR

Metric Complete (All features) Reduced model (SFS)

Molecular-biochemical-IHC

Accuracy 0.9441 ∓0.0341 0.9664 ∓ 0.0135

Precision 0.9535 ∓ 0.0511 0.9722 ∓ 0.0260

Recall 0.9787 ∓ 0.0174 0.9858 ∓ 0.0201

Specificity 0.8389 ∓ 0.1723 0.9056 ∓ 0.0820

MCC 0.8423 ∓ 0.0911 0.9064 ∓ 0.0332

Results are shown in the format (average accuracy ∓ variance) for all the k-folds used to cross-validate the models. We used k = 3 for this study. Note that recall is also the sensitivity metric. LR,
logestic regression; SFS, sequential feature selection; MCC, matthews correlation coefficient.

DataFrames, and manipulate data. The machine learning models
were built using “scikit-learn” (version 1.0.2) besides splitting the
data into iterations of disjoint training and testing samples for cross-
validating the results. The package “statsmodels” (version 0.13.2)
was incorporated to get the statistical significance for univariate
regression models and to correct for the multiple hypothesis
tests via the false discovery rate (FDR) approach. Under-sampled
classes were up-sampled using the SyntheticMinorityOversampling
Technique (SMOTE) implemented in the package “imbalanced-
learn” (version 0.11.0). The latter package also was used to construct
the processing pipeline across all the predictive models. The
Wilcoxon rank-sum test was employed from the package “SciPy”
(version 1.7.3). Figures were generated with the help of the package
“matplotlib” (version 3.5.0).

4 Results

4.1 Biochemical analysis of serum samples

We first assessed the expression of hepatic damage markers in
the sera. The HPCL group had a significant increase in ALP, ALT,
AST, GGT, T. Bilirubin, D. Bilirubin, andAlbumin, in addition to the
lipid profile (TC, TG, HDL-C, and LDL-C) and the AFP, the tumor
marker, in comparison to the control group (p < 0.05). However, the
nine treatment groups showed a remarkable decrease in the levels of
hepatic damage markers (ALT, AST, ALP, GGT, T. Bilirubin, and D.
Bilirubin) and improving the lipid profilemarkers (TC, TG, HDL-C,
and LDL-C) in addition to decrease the AFP compared to the HPLC
group. This indicates that the treatments were effective in mitigating
hepatic damage and normalizing the lipid profile (Table 4).

4.2 Differential expression analysis of
hepatic molecular markers

The relative expression of BAX, ATG16-L1, P53, and RAB11
mRNAs significantly declined after HPCL induction while TUBG
and Cyclin E mRNAs significantly elevated compared to the normal
group. Moreover, there was an obvious dysregulation in the relative

expression of various non-coding RNA molecules in the HPCL
group compared to the Normal group, including microRNAs; as
miR-125b, miR-1289, and miR-1262 were significantly decreased,
in contrast, miR-106b was significantly increased compared to the
normal group. Interestingly, all lncRNAs displayed a significant
increase in relative expression in the HPCL group. However, the
relative expression of circ_0001345 showed a significant decrease.
The treatments with either Hesperidin, Cyan, or Pantoprazole
demonstrated a modulation effect on the expression pattern of
mRNA molecules (Table 5).

4.3 Histopathological and
immunohistochemical evaluation

The histopathological analysis of liver sections depicted distinct
histological features among the various experimental groups. The
control group exhibited a normal liver structure with the absence
of any pathological changes (Figure 3A). However, the HPCL
group displayed significant liver damage, characterized by extensive
destruction of liver architecture, infiltration of inflammatory cells,
and the presence of hemorrhagic areas (Figure 3B). In groups
treated with hesperidin and cyan, there were confluent lesions
of inflammatory cells infiltrating different areas, including the
intralobular, periductal, and perivascular regions (Figures 3C–H).
Focal lymphocytic infiltration was observed around portal triads
and as individual lesions in some sections treated with hesperidin-
100 and Pantoprazole-50 (Figures 3G, J). Conversely, no notable
inflammatory lesions were observed in the sections treated with
hesperidin-200 and cyan-30 (Figures 3E, H) and Pantoprazole-100
(Figure 3K). The immunohistochemical analysis of liver sections
from rats revealed distinct patterns of staining when GST-P
antibody was applied. In the control group, no positive reaction was
observed. However, in the HPCL group, a substantial distribution
of large areas stained positive was evident, occupying a significant
portion of the liver section. Upon treatment, the different groups
displayed varying results. In the hesperidin-50 group, multiple
scattered lesions with positive staining were observed. Similar
patterns were seen in the treated groups. These lesions varied in
size, ranging from large positive stained nodules in Hesperidin-
50 and Pantoprazole-25 groups to small positive hepatic nodules
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TABLE 9 Model prediction using kNN for both the complete models and the reduced models.

Model kNN

Metric Complete (All features) Reduced model (SFS)

Molecular

Accuracy 0.9776 ∓ 0.0077 0.9720 ∓ 0.0156

Precision 0.9787 ∓ 0.0174 0.9792 ∓ 0.0295

Recall 0.9929 ∓ 0.0100 0.9858 ∓ 0.0100

Specificity 0.9278 ∓ 0.0550 0.9333 ∓ 0.0943

MCC 0.9363 ∓ 0.0180 0.9223 ∓ 0.0398

Biochemical

Accuracy 0.9157 ∓ 0.0139 0.9607 ∓ 0.0158

Precision 0.9705 ∓ 0.0270 0.9650 ∓ 0.0194

Recall 0.9214 ∓ 0.0257 0.9858 ∓ 0.0201

Specificity 0.9056 ∓ 0.0820 0.8778 ∓ 0.0550

MCC 0.7785 ∓ 0.0388 0.8874 ∓ 0.0430

IHC

Accuracy 0.9213 ∓ 0.0085 0.9268 ∓ 0.0446

Precision 0.9711 ∓ 0.0264 0.9721 ∓ 0.0259

Recall 0.9288 ∓ 0.0357 0.9362 ∓ 0.0757

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.7935 ∓ 0.0199 0.8223 ∓0.0834

Molecular-biochemical

Accuracy 0.9663 ∓ 0.0003 0.9720 ∓ 0.0295

Precision 0.9858 ∓ 0.0201 0.9792 ∓ 0.0242

Recall 0.9716 ∓ 0.0201 0.9858 ∓ 0.0100

Specificity 0.9556 ∓ 0.0629 0.9333 ∓ 0.0943

MCC 0.9076 ∓ 0.0024 0.9223 ∓ 0.0398

Molecular-IHC

Accuracy 0.9663 ∓ 0.0003 0.9720 ∓ 0.0156

Precision 0.9787 ∓ 0.0174 0.9792 ∓ 0.0295

Recall 0.9787 ∓ 0.0174 0.9858 ∓ 0.0100

Specificity 0.9278 ∓ 0.0550 0.9333 ∓ 0.0943

MCC 0.9041 ∓ 0.0065 0.9223 ∓ 0.0398

Biochemical-IHC

Accuracy 0.9495 ∓ 0.0134 0.9325 ∓ 0.0367

Precision 0.9787 ∓ 0.0301 0.9721 ∓ 0.0259

Recall 0.9571 ∓ 0.0170 0.9433 ∓ 0.0658

Specificity 0.9333 ∓ 0.0943 0.9056 ∓ 0.0820

MCC 0.8629 ∓ 0.0361 0.8315 ∓ 0.0706

(Continued on the following page)
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TABLE 9 (Continued) Model prediction using kNN for both the complete models and the reduced models.

Model kNN

Metric Complete (All features) Reduced model (SFS)

Molecular-biochemical-IHC

Accuracy 0.9663 ∓ 0.0138 0.9720 ∓ 0.0156

Precision 0.9858 ∓ 0.0201 0.9792 ∓ 0.0295

Recall 0.9716 ∓ 0.0265 0.9858 ∓ 0.0100

Specificity 0.9556 ∓ 0.0629 0.9333 ∓ 0.0943

MCC 0.9089 ∓ 0.0348 0.9223 ∓ 0.0398

Results are shown in the format (average accuracy ∓ variance) for all the k-folds used to cross-validate the models. We used k = 3 for this study. Note that recall is also the sensitivity metric.
kNN, k-nearest neighbors; SFS, sequential feature selection; MCC, matthews correlation coefficient.

of different sizes in Hesperidin-100, Cyan-10, and Pantoprazole-50
groups. Additionally, some groups displayed foci and collections of
brown-stained cells scattered within the negatively stained hepatic
parenchyma in Hesperidin-200, Cyan-20, Cyan-30, Pantoprazole-
50, and Pantoprazole-100 groups (Figure 4) (Table 6). The results of
the PCNA immunohistochemical analysis indicated that there was
a higher expression of PCNA in the HPCL group when compared
to the control group (Figures 5A, B). Furthermore, when examining
liver sections from rats treated with different doses, it was observed
that there was a decrease in the number of nuclei that exhibited
positive staining for PCNA (Figures 5C–L).

5 Machine learning-based analysis

5.1 Prediction of the treatment response
using the machine learning models

Table 7 shows the features included in and excluded from the
reduced models based on their importance to the classification
process using the greedy SFS approach. Only two molecular features
(miR-1289 and TUBG mRNA), two biochemical features (ALT and
TG), and one IHC feature (GSTP) are kept.

A set of performance metrics for the complete and reduced
models can be found in Tables 8–12 for the LR, kNN, NN, RF,
and SVM classifiers; respectively. These metrics are accuracy,
precision, recall (sensitivity), specificity, and the Matthews
Correlation Coefficient (MCC). The MCC provides unbiased,
more accurate evaluation for binary classification problems,
especially for the cases of unbalanced data (Chicco and Jurman,
2020). Although we used the SMOTE technique to even the
number of samples between the two classification classes, it is
advised to still use the MCC to compare performance between
the different machine learning models. We used k = 3 for this
study. Complete results for each iteration for each classifier can
be found in Supplementary Files S2–S6.

Using each data type alone (Molecular, Biochemical, IHC) in
both the complete and reduced models, and generally speaking for
the different classifiers, the molecular model gave the best MCC
values, while theworst performance came from the biochemical data

for the LR and kNN classifiers, and from the IHC data for the NN,
RF, and SVM classifiers. For the reduced models, the MCC values
for the molecular models were close to those from the complete
models, and they were better than those of the complete models for
the biochemical and IHC data for all the classifiers except the SVM
classifier.

Integrating two or all the data types in one model for the
case of the complete models, generally, degraded the performance
compared to the best accuracy by any of the single-type models. On
the other hand, adding the molecular data to either the biochemical
data or the IHC data enhanced the performance compared to either
of their individual cases. A few cases of integrating more than one
data type demonstrated being slightly superior to the performance
of the best individual data type such as combining themolecular and
biochemical or molecular and IHC data types with the NN classifier.

In most cases, the reduced models combining the molecular
data type showed consistent performance comparable to the reduced
molecular model, because the greedy SFS approach favored the
important molecular features over those from the biochemical and
IHC features, emphasizing the stronger relationship between the
phenotype and the genotypic features.

Figure 6 shows the receiver operating characteristics (ROC)
curve (Figure 2A) and the confusion matrix (Figure 2B) for the
reduced model using the RF classifier and the molecular features.
The average area under the ROC curve (AUC) is 0.96 ∓ 0.04
coming from three cross-validation iterations. Moreover, this
model successfully predicted 138 responsive (positive) samples
out of 139 samples (true positives) and 36 non-responsive
(negative) samples out of 39 samples (true negatives). All the
ROC curves and confusion matrices for all the models can be
found in the Supplementary Figures S6, S7 in Supplementary 1.

5.2 Potential biomarkers identification

Tables 13–15 show the hypothesis testing results for the
molecular, biochemical, and IHCdata types, respectively, comparing
the individual features of each data type against the control and
against the disease model. These tables do not show the results
for all the features, but the results for features with positive or
negative promise to be biomarkers. Complete results can be found
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TABLE 10 Model prediction using NN for both the complete models and the reduced models.

Model NN

Metric Complete (All features) Reduced model (SFS)

Molecular

Accuracy 0.9777 ∓ 0.0208 0.9718 ∓ 0.0081

Precision 0.9722 ∓ 0.0260 0.9928 ∓ 0.0102

Recall 1.0000 ∓ 0.0000 0.9716 ∓ 0.0201

Specificity 0.9056 ∓ 0.0820 0.9778 ∓ 0.0314

MCC 0.9378 ∓ 0.0551 0.9224 ∓ 0.0234

Biochemical

Accuracy 0.9440 ∓ 0.0284 0.9720 ∓ 0.0156

Precision 0.9709 ∓ 0.0271 0.9722 ∓ 0.0260

Recall 0.9568 ∓ 0.0174 0.9929 ∓ 0.0100

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.8436 ∓ 0.0768 0.9213 ∓ 0.0391

IHC

Accuracy 0.9327 ∓ 0.0236 0.9664 ∓ 0.0135

Precision 0.9712 ∓ 0.0272 0.9721 ∓ 0.0259

Recall 0.9426 ∓ 0.0359 0.9858 ∓ 0.0100

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.8210 ∓ 0.0532 0.9040 ∓ 0.0350

Molecular-biochemical

Accuracy 0.9832 ∓ 0.0136 0.9718 ∓ 0.0081

Precision 0.9858 ∓ 0.0201 0.9928 ∓ 0.0102

Recall 0.9929 ∓ 0.0100 0.9787 ∓ 0.0174

Specificity 0.9556 ∓ 0.0629 0.9778 ∓ 0.0314

MCC 0.9538 ∓ 0.0364 0.9224 ∓ 0.0234

Molecular-IHC

Accuracy 0.9832 ∓ 0.0136 0.9718 ∓ 0.0081

Precision 0.9858 ∓ 0.0201 0.9928 ∓ 0.0102

Recall 0.9929 ∓ 0.0100 0.9716 ∓ 0.0201

Specificity 0.9556 ∓ 0.0629 0.9778 ∓ 0.0314

MCC 0.9538 ∓ 0.0364 0.9224 ∓ 0.0234

Biochemical-IHC

Accuracy 0.8930 ∓ 0.0293 0.9325 ∓ 0.0367

Precision 0.9117 ∓ 0.0222 0.9721 ∓ 0.0259

Recall 0.9571 ∓ 0.0170 0.9433 ∓ 0.0658

Specificity 0.6556 ∓ 0.1227 0.9056 ∓ 0.0820

MCC 0.6595 ∓ 0.1170 0.8315 ∓ 0.0706
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TABLE 10 (Continued) Model prediction using NN for both the complete models and the reduced models.

Model NN

Metric Complete (All features) Reduced model (SFS)

Molecular-biochemical-IHC

Accuracy 0.9776 ∓ 0.0077 0.9718 ∓ 0.0081

Precision 0.9789 ∓ 0.0174 0.9928 ∓ 0.0102

Recall 0.9929 ∓ 0.0100 0.9716 ∓ 0.0201

Specificity 0.9278 ∓ 0.0550 0.9778 ∓ 0.0314

MCC 0.9363 ∓ 0.0180 0.9224 ∓ 0.0234

Results are shown in the format (average accuracy ∓ variance) for all the k-folds used to cross-validate the models. We used k = 3 for this study. Note that recall is also the sensitivity metric. NN,
neural networks; SFS, sequential feature selection; MCC, matthews correlation coefficient.

in the Supplementary Files S7–S12. To summarize the number of
occurrences for each treatment drug as either an effective or
ineffective biomarker, Table 16 shows these numbers across the three
data types. Generally speaking, increasing the dose enhances the
chance for a drug to be effective.

6 Discussion

The field of precision medicine has been enriched by recent
advancements in pharmacogenomics, providing a wealth of diverse
data types. Analyzing these data has aided in identifying unique
cellular sensitivity and resistance patterns of different targets to
numerous chemical compounds. One of the key goals of cancer
research is to uncover the genomic and molecular characteristics
responsible for specific clinical outcomes (Aubrecht et al., 2013).
Predictive machine learning models with gene expression features
offer an opportunity to explore the impact of molecular features
on treatment response, enhancing our understanding of cancer
vulnerabilities and enabling the development of predictive models
for drug responsiveness. In this study, we employed bioinformatics
and machine learning techniques to select robust features from
a set of 14 molecular, 12 biochemical, and 3 IHC markers to
predict the response to three different drugs (Hesperidin, Cyan, and
Pantoprazole) at varying dosages in an HCC rat model.

In our study, we chose three drugs (hesperidin, Pantoprazole,
and cyan) due to their established hepatoprotective properties,
which include anti-inflammatory and antiapoptotic effects.
Hesperidin exhibits anti-cancer effects by inducing cell death
in hepatocellular carcinoma HepG2 cells through caspase-
independent pathways, primarily by activating the ERK1/2
pathway (Yumnam et al., 2014). Moreover, it induces apoptosis by
increasing the accumulation of reactive oxygen species (ROS) and
activating the apoptosis signal-regulating kinase 1/Jun N-terminal
kinase (ASK1/JNK) pathway (Xia et al., 2018). Additionally,
hesperidin inhibits calcium/calmodulin-dependent protein kinase
IV (CAMKIV), thereby activating the caspase-3-dependent
intrinsic pathway and upregulating the pro-apoptotic protein Bax,
which contributes to its anti-apoptotic and anticancer properties
(Naz et al., 2019). Recent evidence suggests that hesperidin induces

apoptosis in HeLa cells by involving the endoplasmic reticulum
stress pathway and arresting the cell cycle at the G0/G1 phase
through the downregulation of cyclin D1, cyclin E1, and cyclin-
dependent kinase 2 (Cdk2) at the protein level (Wang et al., 2015).
Cyan effectively inhibits hepatic gluconeogenesis by reducing the
expression of gluconeogenic genes. This inhibition is achieved
through the phosphorylation and inactivation of coactivators
CRTC2 and HDAC5 by AMPK. Although Cyan does not directly
interact with AMPK, it activates AMPK via the adiponectin
receptor signaling pathway, as evidenced by experiments involving
the knockdown of adiponectin receptor genes. Furthermore,
Cyan increases cellular AMP levels in hepatocytes, and oral
administration of Cyan inmice leads to elevated plasma adiponectin
concentrations, collectively contributing to AMPK activation
(Jia et al., 2022). Additionally, Cyan exhibits potent antioxidant
properties and induces cellular senescence and apoptosis in
hepatocarcinoma cells under oxidative stress conditions. Cyan
enhances the expression of senescence-associated β-galactosidase
and key markers of cellular senescence, namely P16, P21, and
P53. Tan et al. (2020) found that Cyan exerted a protective effect
on HepG2 cells against oxidative damage induced by H2O2
by reducing reactive radicals. Additionally, Cyan enhanced the
expression of important antioxidant enzymes such as SOD, CAT,
and GPx. Moreover, Cyan demonstrates a regulatory effect on cell
survival and apoptosis by decreasing the levels of the pro-apoptotic
protein Bax and increasing the levels of the anti-apoptotic protein
Bcl-2 in HepG2 cells (Panritdum et al., 2024). In experiments
using LX-2 cells and mouse hepatic stellate cells (pHSCs), Lu
et al. demonstrated that pantoprazole dose-dependently notably
alleviated liver damage, reduced collagen buildup and inflammation,
and inhibited the expression of fibrosis-related genes like Col1a1,
Acta2, Tgfβ1, and Mmp-2. Through transcriptome analysis and
subsequent validation in pantoprazole-treated LX-2 cells, they
found that pantoprazole hindered the expression of Yes-associated
protein (YAP) and its downstream targets, such as CTGF, ID1,
survivin, CYR61, and GLI2. By manipulating YAP expression
levels, they demonstrated that PPZ downregulated hepatic
fibrogenic gene expression via YAP. Furthermore, pantoprazole
facilitated the degradation and ubiquitination of YAP via the
proteasome, inhibiting HSC activation. PPZ also disrupted the
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TABLE 11 Model prediction using RF for both the complete models and the reduced models.

Model RF

Metric Complete (All features) Reduced model (SFS)

Molecular

Accuracy 0.9777 ∓ 0.0208 0.9776 ∓ 0.0077

Precision 0.9792 ∓ 0.0295 0.9858 ∓ 0.0201

Recall 0.9929 ∓ 0.0100 0.9858 ∓ 0.0100

Specificity 0.9333 ∓ 0.0943 0.9556 ∓ 0.0629

MCC 0.9388 ∓ 0.0553 0.9373 ∓ 0.0187

Biochemical

Accuracy 0.9325 ∓ 0.0142 0.9494 ∓ 0.0277

Precision 0.9716 ∓ 0.0258 0.9722 ∓ 0.0260

Recall 0.9433 ∓ 0.0401 0.9645 ∓ 0.0501

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.8210 ∓ 0.0401 0.8692 ∓ 0.0626

IHC

Accuracy 0.9213 ∓ 0.0290 0.9100 ∓ 0.0578

Precision 0.9715 ∓ 0.0265 0.9716 ∓ 0.0265

Recall 0.9288 ∓ 0.0556 0.9146 ∓ 0.0900

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.7999 ∓ 0.0489 0.7894 ∓ 0.1000

Molecular-biochemical

Accuracy 0.9777 ∓ 0.0208 0.9858 ∓ 0.0077

Precision 0.9792 ∓ 0.0295 0.9750 ∓ 0.0201

Recall 0.9929 ∓ 0.0100 0.9858 ∓ 0.0100

Specificity 0.9333 ∓ 0.0943 0.9556 ∓ 0.0629

MCC 0.9388 ∓ 0.0553 0.9373 ∓ 0.0187

Molecular-IHC

Accuracy 0.9777 ∓ 0.0208 0.9776 ∓ 0.0077

Precision 0.9792 ∓ 0.0295 0.9858 ∓ 0.0201

Recall 0.9929 ∓ 0.0100 0.9858 ∓ 0.0100

Specificity 0.9333 ∓ 0.0943 0.9556 ∓ 0.0629

MCC 0.9388 ∓ 0.0553 0.9373 ∓ 0.0187

Biochemical-IHC

Accuracy 0.9664 ∓ 0.0135 0.9326 ∓ 0.0138

Precision 0.9721 ∓ 0.0259 0.9715 ∓ 0.0265

Recall 0.9858 ∓ 0.0100 0.9429 ∓ 0.0359

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9040 ∓ 0.0350 0.8202 ∓ 0.0224
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TABLE 11 (Continued) Model prediction using RF for both the complete models and the reduced models.

Model RF

Metric Complete (All features) Reduced model (SFS)

Molecular-biochemical-IHC

Accuracy 0.9777 ∓ 0.0208 0.9776 ∓ 0.0077

Precision 0.9792 ∓ 0.0295 0.9858 ∓ 0.0201

Recall 0.9929 ∓ 0.0100 0.9858 ∓ 0.0100

Specificity 0.9333 ∓ 0.0943 0.9556 ∓ 0.0629

MCC 0.9388 ∓ 0.0553 0.9373 ∓ 0.0187

Results are shown in the format (average accuracy ∓ variance) for all the k-folds used to cross-validate the models. We used k = 3 for this study. Note that recall is also the sensitivity metric. RF,
random forest; SFS, sequential feature selection; MCC, matthews correlation coefficient.

interaction between the deubiquitinating enzyme OTUB2 and
YAP, leading to YAP destabilization and impeding hepatic fibrosis
progression (Lu et al., 2021).

Additionally, these drugs have demonstrated efficacy in
regulating exosome production and autophagy in HCC. Exosomes
are now acknowledged as vital facilitators of communication
between cells, and their miRNAs, which are involved in cell
proliferation andmetastasis, play essential roles in the progression of
HCC (Mathieu et al., 2019; Zhang et al., 2021). Exosomes stimulate
intercellular autophagy to eliminate the negative effects caused by
cancer-causing agents, while autophagy, in turn, regulates both
the biogenesis and degradation of exosomes (Bunggulawa et al.,
2018). Previous research conducted by our team has shown that
hesperidin treatment induces the formation of multiple hepatic
vacuoles at various stages of autophagosome development. Our
findings revealed the gradual emergence of multilamellar bodies,
which are specific autophagic vacuoles composed of concentric
membrane layers enclosing cellular organelles. Hesperidin has
been found to enhance the activity of autophagy in hepatocytes.
Additionally, it downregulates exosomal RAB11A mRNA and
upregulates exosomal miR-1298, resulting in protective effects on
the liver in rat models (Hasanin et al., 2020). Pantoprazole primarily
targets gastric H+/K+ ATPases and V-ATPases (Spugnini et al.,
2015). Its anti-neoplastic effects are attributed to the inhibition of V-
ATPase activity, leading to cytosolic acidification and alkalization of
endosomal and lysosomal compartments (De Milito et al., 2012).
Our previous study proved that Pantoprazole administration
reduces the expression of GST-P and PCNA, significantly decreases
exosomal RAB11A mRNA levels, along with downregulating
exosomal Lnc-RNA-RP11-513I15.6, which were found to be
elevated in the HCC animal model (Matboli et al., 2019). The
beneficial effects of Anthocyanins, including cyan, involve various
signaling pathways such as MAPK, NF-κB, AMPK, and Wnt/β-
catenin, as well as critical cellular processes including apoptosis and
autophagy (Li et al., 2017). Previous research has demonstrated
that cyan exhibits a protective effect against high glucose-
induced podocyte dysfunction by improving autophagy, reducing
apoptosis, and suppressing epithelial-mesenchymal transition
through the activation of the SIRT1/AMPK pathway (Wang et al.,
2021). Moreover, cyan-enhanced autophagy reduces apoptosis in

primary human dermal fibroblasts by mitigating oxidative stress,
suggesting a potential mechanism for protection against UVA
light-induced damage (Wu et al., 2019).

Most cases of HCC arise from prolonged inflammation in
the liver, leading to disruptions in various cellular signaling
pathways. These changes in the liver environment disrupt the
equilibrium between cell proliferation and cell death, ultimately
increasing the likelihood of malignant transformation. Over
90% of HCC cases arise in the presence of hepatic injury and
inflammation. The risk factors associated with HCC trigger
an unresolved inflammatory response characterized by the
infiltration of macrophages and immature myeloid cells, as well
as dysregulated cytokine production, and this perpetuates a
wound-healing response, leading to the progressive development
of fibrosis, cirrhosis, and ultimately HCC (Keenan et al., 2019).
During the premalignant stage of hepatocarcinogenesis, chronic
activation of inflammatory signaling pathways generates reactive
oxygen species (ROS) and reactive nitrogen species (NOS)
(Refolo et al., 2020). This chronic inflammation, characterized
by the infiltration of macrophages and immature myeloid cells
and dysregulated cytokine production, is considered a primary
trigger for the development and progression of HCC. In the
premalignant environment, inflammatory cells, including stromal
cells, produce various molecules such as cytokines, growth factors,
chemokines, prostaglandins, and proangiogenic factors (Yu et al.,
2018). Autophagy has a significant relationship with inflammation
in HCC (Yu et al., 2017). In the early stages of hepatocarcinogenesis,
autophagy helps alleviate oxidative stress, prevents genomic
instability, and limits uncontrolled inflammation, thereby playing
a crucial role in tumor suppression, however, as HCC progresses
and autophagy increases, it becomes relevant to poor prognosis
and is associated with tumor cell survival under conditions that
typically induce cell death, such as hypoxia and nutrient deprivation
(Sun et al., 2013). In addition, autophagy deficiency in macrophages
can lead to the production of inflammatory and fibrogenic factors
(Sun et al., 2021). The depletion of Kupffer cells has been shown to
rescue the tumor-promoting effect of autophagy deficiency during
the preneoplastic stage. This suggests that autophagy regulates
inflammation and fibrosis-promoting effects, potentially through
themodulation ofNF-κB-associated pathways and the production of
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TABLE 12 Model prediction using SVM classification for both the complete models and the reduced models.

Model SVM

Metric Complete (All features) Reduced model (SFS)

Molecular

Accuracy 0.9777 ∓ 0.0208 0.9777 ∓ 0.0208

Precision 0.9722 ∓ 0.0260 0.9722 ∓ 0.0260

Recall 1.0000 ∓ 0.0000 1.0000 ∓ 0.0000

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9378 ∓ 0.0551 0.9378 ∓ 0.0551

Biochemical

Accuracy 0.9777 ∓ 0.0208 0.9607 ∓ 0.0287

Precision 0.9722 ∓ 0.0260 0.9718 ∓ 0.0259

Recall 1.0000 ∓ 0.0000 0.9787 ∓ 0.0301

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9378 ∓ 0.0551 0.8910 ∓ 0.0808

IHC

Accuracy 0.9720 ∓ 0.0156 0.9607 ∓ 0.0076

Precision 0.9722 ∓ 0.0260 0.9721 ∓ 0.0259

Recall 0.9929 ∓ 0.0100 0.9787 ∓ 0.0174

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9213 ∓ 0.0391 0.8891 ∓ 0.0169

Molecular-biochemical

Accuracy 0.9777 ∓ 0.0208 0.9777 ∓ 0.0208

Precision 0.9722 ∓ 0.0260 0.9722 ∓ 0.0260

Recall 1.0000 ∓ 0.0000 1.0000 ∓ 0.0000

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9378 ∓ 0.0551 0.9378 ∓ 0.0551

Molecular-IHC

Accuracy 0.9777 ∓ 0.0208 0.9777 ∓ 0.0208

Precision 0.9665 ∓ 0.0260 0.9722 ∓ 0.0260

Recall 1.0000 ∓ 0.0000 1.0000 ∓ 0.0000

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9378 ∓ 0.0551 0.9378 ∓ 0.0551

Biochemical-IHC

Accuracy 0.9777 ∓ 0.0208 0.9664 ∓ 0.0135

Precision 0.9722 ∓ 0.0260 0.9721 ∓ 0.0259

Recall 1.0000 ∓ 0.0000 0.9858 ∓ 0.0100

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9378 ∓ 0.0551 0.9040 ∓ 0.0350
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TABLE 12 (Continued) Model prediction using SVM classification for both the complete models and the reduced models.

Model SVM

Metric Complete (All features) Reduced model (SFS)

Molecular-biochemical-IHC

Accuracy 0.9777 ∓ 0.0208 0.9777 ∓ 0.0208

Precision 0.9722 ∓ 0.0260 0.9722 ∓ 0.0260

Recall 1.0000 ∓ 0.0000 1.0000 ∓ 0.0000

Specificity 0.9056 ∓ 0.0820 0.9056 ∓ 0.0820

MCC 0.9378 ∓ 0.0551 0.9378 ∓ 0.0551

Results are shown in the format (average accuracy ∓ variance) for all the k-folds used to cross-validate the models. We used k = 3 for this study. Note that recall is also the sensitivity metric.
SVM, support vector machines; SFS, sequential feature selection; MCC, matthews correlation coefficient.

FIGURE 6
(A) The Receiver Operating Characteristics (ROC) curve, and (B) the confusion matrix for the reduced model with the random forest (RF) classifier using
the molecular data type.

cytokines such as IL1α/β (Sun et al., 2017). Therefore, the interplay
between autophagy and inflammation is a critical aspect of HCC
progression and may offer new insights for targeted therapeutic
strategies.

ATG16-L1, an essential protein in autophagy, plays a crucial
role in HCC, its deficiency leads to decreased bacterial clearance
and abnormal interleukin-1β production, fostering inflammation
and carcinogenesis (Peantum et al., 2018). The ATG16-L1 p.T300A
polymorphism emerged as a significant risk factor for HCC in
cirrhotic patients (Reuken et al., 2019). Studies using a mouse
model showed that increased ATG16L1 activation is required to
prevent the progression of steatohepatitis and the onset of HCC.
Furthermore, the overexpression of ATG16-L1 suppressed NF-
κB and IL6 signaling pathways, suggesting its potential role in
mitigating HCC development (Okada et al., 2017). RAB11A serves
as a target molecule involved in various microRNA-mediated tumor
suppression processes. Zhang et al. proved that RAB11A is involved

in HCC progression by regulating the expression of MMP2 by
activating the PI3K/AKT signaling pathway (Zhang et al., 2020).The
overexpression of cyclin E inHCC is believed to play a crucial role in
promoting cell proliferation and survival (Zhou et al., 2003). Cyclin
E1 and cyclin E2, which interact with cyclin-dependent kinase 2
(Cdk2), are known to stimulate cell cycle progression and initiation
of HCC (Sonntag et al., 2018). Chen et al. provided evidence
showing that TUBG1 exhibited substantial upregulation in both
non-alcoholic fatty liver disease (NAFLD) and HCC tissues. This
suggests that TUBG1 serves as a carcinogenic factor contributing to
the development of NAFLD andHCC (Chen et al., 2022). Apoptosis
induction triggered by oncogene activation, DNA damage, and
senescence is a recognized mechanism during chronic liver damage,
crucial for cancer prevention (Zhang et al., 2016). The proteins BAX
and BAK control the choice between cell survival andmitochondrial
apoptosis.Thus, assessing the regulation of BAX/BAK can anticipate
cellular predisposition to apoptosis (Funk et al., 2020). p53 plays an
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TABLE 13 Molecular data: Statistically assessing the difference between values of a feature post-treatment against the control and against the disease
model. Only statistically insignificant differences are shown. Similar behavior to the control case is a positive sign, while similarity to the disease model
is not favorable. q-values are after using the false discovery rate (FDR) approach to correct for multiple hypotheses.

Case Gene Drug Statistics, P-value, q-value

Drug vs. Control (similar populations: q > α)

lncRNA-RP11-513I15.6

Hesperidin-200 1.252823, 0.210270, 0.270347

Cyan-10 −1.120947, 0.262311, 0.295099

Cyan-20 1.384699, 0.166145, 0.249217

Pantoprazole-100 0.989071, 0.322629, 0.322629

miR-125b
Hesperidin-50 −1.945172, 0.051754, 0.051754

Pantoprazole-25 −1.945172, 0.051754, 0.051754

LNC-RP11-583F2.2
Hesperidin-100 −1.252823, 0.210270, 0.236554

pantoprazole-50 −0.659380, 0.509651, 0.509651

lncRNA-MALAT
hesperidin-200 −1.582513, 0.113532, 0.127724

Cyan-30 0.065938, 0.947427, 0.947427

RAB11 mRNA Hesperidin-50 −1.813296, 0.069786, 0.069786

miR-106b cyan -30 0.989071, 0.322629, 0.322629

TUBG mRNA cyan -30 −1.846265, 0.064854, 0.064854

Drug vs. HPCL (similar populations: q > α) BAX mRNA Hesperidin-50 −1.905256, 0.056747, 0.056747

essential role in promoting growth arrest and inducing cell death.
The inactivation or loss of functional p53 is a necessary condition for
oncogenesis, as it allows for uncontrolled growth and proliferation.
This is a prevalent abnormality observed in various human cancers,
including HCC (Luo et al., 2021).

Furthermore, our investigation revealed dysregulated
expression levels of various mRNA fragments in the HCC rat
model. Notably, Cyclin E and TUBG mRNAs showed increased
expression, while BAX,ATG16-L1, P53, and RAB11mRNA exhibited
downregulation. The administration of the drugs resulted in the
modulation of these expression disturbances. Importantly, previous
research, including our own, has highlighted the significance of
these biomarkers in HCC pathogenesis. For instance, RAB11A and
ATG16L1 are core genes involved in autophagy, and their interaction
suggests a novel model for autophagosome biogenesis. The BAX
mRNA serves as a central regulator of cell death and mitochondrial
dysfunction. The loss of tumor suppressor p53, often observed in
tumors, leads to defects in the cell cycle and hampers the ability to
respond to DNA damage or oncogene dysregulation, ultimately
inducing apoptosis or cellular senescence. Cyclin E contributes
to increased proliferative drive favoring hepatocarcinogenesis.
Moreover, cyclin E and p53 have been reported to inversely regulate
each other’s expression, possibly mediated by miR-34 (Pok et al.,
2013). The overexpression of γ-TUBG has been identified as a
characteristic feature of thyroid, breast, and liver cancers it also
can induce carcinogenesis (Niu et al., 2009; Hořejší et al., 2012).

Abnormal expression of non-coding RNAs (such as miRNAs,
lncRNAs, and cicRNA) has been detected in HCC regulation and

linked to critical aspects of cell invasion, metastasis, and drug
resistance. In our study, we observed significant disruptions in
the expression of non-coding RNAs following the induction of
HCC. Notably, circ_0001345 showed a pronounced decrease in
expression, accompanied by an upregulation of miR-106b, while
other miRNAs (miR-1262, miR-125b, and miR-1289) exhibited
downregulation. Additionally, all examined lncRNAs (lncRNA-
MALAT, lncRNA-RP11-513I15.6, and lncRNA-RP11-583F2.2)
displayed downregulation. Interestingly, the administration of the
drugs resulted in the restoration of these expression disruptions.

Regarding the biochemical analysis, we observed in the HPCL
considerable elevation in liver destructive markers, indicating liver
damage. Additionally, the serum lipid profile displayed significant
alterations, particularly a significant decrease in HDLC levels.
The AFP, a well-established biomarker used for HCC screening,
diagnosis, prognostication, and therapeutic evaluation, (Hu et al.,
2022) showed a striking increase. However, following drug
administration, we observed enhanced biochemical and AFP levels.
This was accompanied by a decrease in fibrotic and inflammatory
states, as well as a significant reduction in the percentage area of
GSTP foci, PCNA expression, and TNF levels, particularly with
higher drug doses.

Machine learning algorithms a branch of AI are increasingly
being employed for personalized predictions of drug responses
(Vadapalli et al., 2022). These algorithms facilitate the integration
of data from diverse sources in a statistically meaningful
manner, allowing for the identification of predictive biomarkers
(Yamanishi et al., 2012; Rampášek et al., 2019). A critical aspect of
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TABLE 14 Biochemical data: Statistically assessing the difference between values of a feature post-treatment against the control and against the
disease model. Only statistically insignificant differences are shown. Similar behavior to the control case is a positive sign, while similarity to the disease
model is not favorable. q-values are after using the false discovery rate (FDR) approach to correct for multiple hypotheses.

Case Gene Drug Statistic, p_value, q_value

Drug vs. Control (similar populations: q > α)

AST Pantoprazole-100 −1.780327, 0.075022, 0.075022

ALP Pantoprazole-100 −0.197814, 0.843190, 0.843190

Albumin

Hesperidin-200 0.065938, 0.947427, 0.947427

Cyan-30 −1.384699, 0.166145, 0.186913

Pantoprazole-100 −1.714389, 0.086457, 0.111159

TC
Hesperidin-200 −1.087978, 0.276605, 0.276605

Pantoprazole-100 −1.714389, 0.086457, 0.097264

TG

Hesperidin-200 −0.989071, 0.322629, 0.414808

Cyan-30 −0.791257, 0.428794, 0.428794

Pantoprazole-100 −0.857195, 0.391337, 0.428794

HDL-C

Hesperidin-50 1.978141, 0.047913, 0.061602

Cyan-10 1.186885, 0.235273, 0.264682

Pantoprazole-25 1.055009, 0.291421, 0.291421

LDL-C Pantoprazole-100 −0.923133, 0.355938, 0.355938

Drug vs. HPCL (similar populations: q > α)

AST
Cyan-10 1.847521, 0.064672, 0.072756

Pantoprazole-25 1.645448, 0.099877, 0.099877

HDL-C Hesperidin-200 −0.635085, 0.525373, 0.525373

LDL-C

Hesperidin-50 0.057735, 0.953960, 0.953960

Cyan-10 −0.346410, 0.729034, 0.820164

Pantoprazole-25 −0.404145, 0.686106, 0.820164

TABLE 15 IHC data: Statistically assessing the difference between values of a feature post-treatment against the control and against the disease model.
Only statistically insignificant differences are shown. Similar behavior to the control case is a positive sign, while similarity to the disease model is not
favorable. q-values are after using the false discovery rate (FDR) approach to correct for multiple hypotheses.

Case Gene Drug Statistic, p_value, q_value

Drug vs. Control (similar populations: q > α) TNF Pantoprazole-100 −1.681420, 0.092681, 0.092681

Drug vs. HPCL (similar populations: q > α) None None None

this process is how data from multiple sources are harmoniously
integrated to enhance the overall prediction performance of drug
responses. In alignment with this concept, various approaches
have been developed for drug response prediction by leveraging
prior knowledge based on genomic and molecular profiles
(Stanfield et al., 2017; Cichonska et al., 2018). These approaches
aim to exploit the wealth of information embedded in biological
systems to refine predictions. This is vital for aiding clinicians

in determining the most efficient and least harmful therapeutic
choices, facilitating a more intelligent selection and monitoring
of patients participating in clinical trials, and contributing to the
ongoing evolution of personalized medicine (Simon, 2013; Relling
and Evans, 2015; Aronson and Rehm, 2015). In this context, we
built predictive models using three different types of signatures,
encompassing molecular, biochemical, and IHC features. One of
the primary objectives was to assess which signature type might
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TABLE 16 Summary for how many times a treatment drug showed
potential for being a treatment response biomarker and howmany times
it showed incapability. Numbers are displayed in the format (molecular,
biochemical, IHC).

Drug Potentially
effective

Potentially
ineffective

Hesperidin-50 3: (2, 1, 0) 2: (1, 1, 0)

Hesperidin-100 1: (1, 0, 0) 0: (0, 0, 0)

Hesperidin-200 5: (2, 3, 0) 1: (0, 1, 0)

Cyan-10 2: (1, 1, 0) 2: (0, 2, 0)

Cyan-20 1: (1, 0, 0) 0: (0, 0, 0)

Cyan-30 5: (3, 2, 0) 0: (0, 0, 0)

Pantoprazole-25 2: (1, 1, 0) 2: (0, 2, 0)

Pantoprazole-50 3: (1, 0, 0) 0: (0, 0, 0)

Pantoprazole-100 8: (1, 6, 1) 0: (0, 0, 0)

be predictive of treatment response in ML models. In addition to
the complete models, we constructed several reduced models by
employing the greedy forward sequential feature selection (SFS)
approach with random forests as the estimator, we aimed to identify
the smallest set of features that best represent each model. The
selected molecular features were miR-1289 and TUBG mRNA,
while the biochemical features included ALT and TG, and the IHC
features comprised GSTP.

Our study showed that the molecular model consistently
achieved the highest MCC values when considering each data type
individually—Molecular, Biochemical, and IHC—in both complete
and reduced models across various classifiers. In reduced models,
MCC values for molecular models closely resemble those of
complete models and outperform them in the case of biochemical
and IHC data across all classifiers except SVM. Integrating multiple
data types in complete models generally diminishes performance
compared to single-type models. However, integrating molecular
data with either biochemical or IHC data enhanced performance
compared to individual cases, and in some instances, combining
multiple data types slightly improves performance over the best
individual data type, such as with the NN classifier. Reduced models
combining molecular data consistently perform well, as the greedy
SFS approach favored the important molecular features over IHC
andbiochemical features. Also, theROCcurve and confusionmatrix
for the reduced model employing the RF classifier with molecular
features showed an average AUC of 0.96 ± 0.04 from three cross-
validation iterations. Additionally, this model accurately predicts
138 responsive and 36 non-responsive samples out of the total
samples highlighting its robustness.

Furthermore, we employed a rigorous analysis approach to
select potential biomarkers that exhibit promising treatment
responses, closely resembling the normal response. We focused
on features with p-values exceeding the predetermined alpha
threshold when comparing individual features of each data type

against the control group, meaning that the control samples
and the feature samples might come from the same population.
These features were considered highly promising due to their
ability to bring the treatment response closer to that of the
normal response. The results revealed a total of seven highly
promising molecular responses within our drug spectrum that
exhibited statistically insignificant results when compared to the
control model. Among these responses, three were lncRNAs, two
were miRNAs, and two were mRNAs. Specifically, lncRNA-RP11-
513I15.6 demonstrated its potential as a marker for Hesperidin-
200, Cyan (at 10 and 20 mg doses), and Pantoprazole-100. MiR-
125b showcased promise for Hesperidin-50 and Pantoprazole-
25, while LNC-RP11-583F2.2 exhibited potential for Hesperidin-
100 and pantoprazole-50. Furthermore, lncRNA-MALAT displayed
significant associations with Hesperidin-200 and Cyan-30, miR-
125b was linked to Hesperidin-50 and Pantoprazole-25, miR-
106b showed potential with Cyan-30, and TUBG mRNA displayed
promise with Cyan-30. Notably, RAB11 mRNA exhibited an
interesting response when treated with Hesperidin-50.

In addition to these molecular markers, seven biochemical
markers showed as highly predictive candidates (AST, ALP,
Albumin, TC, TG, HDL-C, LDL-C) and TNF as important IHC
biomarkers. These findings highlight the potential significance of a
comprehensive approach that combinesmultiple types ofmarkers to
better understand drug response. A particularly noteworthy finding
is that increasing the dosage of the administered drug enhances the
likelihood of achieving effective results.

Prior studies have examined the connections between
genomic profiles and drug response (Barretina et al., 2012;
Garnett et al., 2012). Numerous algorithms for predicting drug
sensitivity have been put forth like logistic regression that
recognized as a comparative method in multiple studies in drug
sensitivity predictions (Daemen et al., 2013; Menden et al., 2013;
Costello et al., 2014; Kim et al., 2012). Zeng et al. (2022) developed
artificial intelligence models utilizing digital histological images
that demonstrate the capability to predict the activation of multiple
immune and inflammatory gene signatures with an AUC > 0.8.
Riddick et al. (2011) developed a multistep algorithm to predict
in vitro drug sensitivity using gene expression data from the
NCI60 panel. Their approach, tested on 19 breast cancer cell lines,
involved feature selection, elimination of outlying cell lines, and
training random forest regression models. The authors concluded
that their algorithm surpassed existing techniques in predicting
drug sensitivity. Daemen et al. (2013) drug sensitivity data for
138 drugs and molecular profiles from 70 breast cancer cell lines.
This data was utilized to train models that classify samples into
two categories: those responding well to treatment and those
responding poorly. Subsequently, the models were validated using
independent patient-derived data, focusing on two drugs commonly
employed in breast cancer treatment tamoxifen and valproic acid.
In ovarian cancer, Chen et al. (2015) demonstrated the possible
significance of a 61-transcript expression pattern in anticipating a
patient’s reaction to platinum-taxane chemotherapy. Importantly,
when this expression pattern was integrated with the BRCA1/2
mutation status, a conventional prognostic marker in this context, it
resulted in improved patient stratification based on clinical response.

While current models cannot fully replicate the complexities of
human disease, significant progress has been made in developing
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HCC animal models (Fornari et al., 2022). These models are
essential for foundational research, enabling more convenient and
effective studies of disease mechanisms, therapeutic targets, and
drug screening (Liao et al., 2024). The creation of models capable
of monitoring the onset, progression, and reversibility of drug-
induced toxicity remains a crucial objective, as they are invaluable
for designing safer and more effective drugs (Blidisel et al., 2021).

This study has limitations due to the small sample size, and
our investigation concentrated on a restricted selection of drugs,
potentially not capturing the full array of therapeutic options for
HCC. Future inquiries encompassing a wider variety of medications
and treatment approaches could offer a more thorough insight
into effective treatment methodologies for this intricate condition.
Further studies are imperative to evaluate the efficacy of the chosen
mRNA-miRNA-LncRNA-Circ-RNA inHCCwith diverse etiologies.
Since we solely examined these molecular markers in animal
specimens, it’s essential to corroborate these findings through
multicenter clinical trials involving human subjects. Expanding our
research to include human samples will significantly enhance the
relevance and applicability of our findings. We recommend more
studies to be held in this context to significantly enhance the
relevance and applicability of our findings. Training our current
machine learningmodels on preclinical datasets and validating them
using human clinical data will allow us to assess and refine the
models’ predictive performance in a real-world setting.

7 Conclusion

In conclusion, our study introduces a machine-learning
algorithm capable of accurately predicting the treatment response
to three distinct drugs: Pantoprazole, Cyan, and Hesperidin.
Our approach involved a comprehensive panel that incorporated
traditional HCC biochemical, molecular, and IHC features.
This integration of multiple markers not only enhanced the
reliability and accuracy of the panel but also ensured cost-
effectiveness and speed by utilizing RT-PCR in addition to
conventional testingmethods instead ofmore expensive high-profile
approaches (Cohen et al., 2018).
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