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The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant
challenges worldwide, including diverse clinical outcomes and prolonged post-
recovery symptoms known as Long COVID or Post-COVID-19 syndrome.
Emerging evidence suggests a crucial role of metabolic reprogramming in
the infection’s long-term consequences. This study employs a novel approach
utilizing machine learning (ML) and explainable artificial intelligence (XAI)
to analyze metabolic alterations in COVID-19 and Post-COVID-19 patients.
Samples were taken from a cohort of 142 COVID-19, 48 Post-COVID-19,
and 38 control patients, comprising 111 identified metabolites. Traditional
analysis methods, like PCA and PLS-DA, were compared with ML techniques,
particularly eXtreme Gradient Boosting (XGBoost) enhanced by SHAP (SHapley
Additive exPlanations) values for explainability. XGBoost, combined with
SHAP, outperformed traditional methods, demonstrating superior predictive
performance and providing new insights into themetabolic basis of the disease’s
progression and aftermath. The analysis revealedmetabolomic subgroupswithin
the COVID-19 and Post-COVID-19 conditions, suggesting heterogeneous
metabolic responses to the infection and its long-term impacts. Key metabolic
signatures in Post-COVID-19 include taurine, glutamine, alpha-Ketoglutaric
acid, and LysoPC a C16:0. This study highlights the potential of integrating ML
and XAI for a fine-grained description inmetabolomics research, offering amore
detailed understanding of metabolic anomalies in COVID-19 and Post-COVID-
19 conditions.
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Introduction

The COVID-19 pandemic, caused by the coronavirus SARS-
CoV-2, has presented a formidable challenge to global health
systems. As of March 2024, the number of confirmed COVID-
19 cases has surpassed 770 million (WHO Coronavirus). The
wide spectrum of symptoms, varying from mild to severe
respiratory distress and multi-organ dysfunction (Zhao et al.,
2022), underscores the need for a comprehensive systemic
understanding of the disease’s pathophysiology and the factors
contributing to its diverse clinical outcomes (Al Sulaiman et al.,
2023; Reyes et al., 2022). In addition to the immediate health
impacts, the COVID-19 pandemic has highlighted the long-lasting
effects and challenges in the post-recovery phase. Many individuals
who have recovered from COVID-19 have reported a wide range
of persistent symptoms and health issues (Khodeir et al., 2021;
Galván-Tejada et al., 2020). Common symptoms following recovery
include persistent fatigue, shortness of breath, cough, joint and
chest pain, brain fog, depression, and anxiety (Phetsouphanh et al.,
2022; CDC, 2023). Moreover, the full extent of these symptoms
and their long-term consequences remain uncharacterized. The
post-recovery symptoms, often referred to as “Post-COVID-
19”or “Long COVID-19”syndrome, can persist for weeks or
up to 2 years after the initial infection (Ballouz et al., 2023).
Although certain mechanisms, viral persistence (Chen B. et al.,
2023), immune dysregulation (Phetsouphanh et al., 2022), and
organ damage (Iqbal et al., 2023), have been identified as potentially
involved in Post-COVID-19 symptoms, their exact understanding
remains incomplete. One emblematic factor accompanying the
post-symptoms is metabolic reprogramming at the systemic
level. Emerging evidence suggests the long-term consequences of
COVID-19 may be linked to systemic metabolic reprogramming
during infection, affecting pathways related to amino acids,
glucose, cholesterol, fatty acids, among others (Chen P. et al.,
2023). This metabolic disruption alters energy production and
immune regulation, pointing to a need for further research
to understand these changes and develop specific therapeutic
interventions.

Metabolomics offers a comprehensive and unbiased view of
the biochemical alterations occurring during viral infections,
portraying the complex interactions between the viral pathogen
and the host response (Manchester and Anisha Anand, 2017;
Palmer, 2022). Notably, this approach has been proven successful
in uncovering distinct metabolic signatures associated with various
infectious diseases (Rahman and Schellhorn, 2023), including
COVID-19 and Post-COVID-19.

Under statistical-based approaches, several studies have
contributed to characterizing the convoluted metabolic changes
across COVID-19 progression over the diverse SARS-CoV-2
variants; severity andmorbiditymarkers have been identified related
to the progression to the immune over activation, particularly the
relation of tryptophan and Kynurenine, the transformation of L-
tryptophan, and the rise of the levels of taurochenodeoxycholic,
propylparaben, 20-hydroxyeicosatetraenoic acid, acid 3-sulfate, and
glucuronate (Thomas et al., 2020; Chen et al., 2021; Mangge et al.,
2021; Lawler et al., 2021; Kimhofer et al., 2020; Ceballos et al.,
2022; Li et al., 2023; Abdallah et al., 2024; Cyprian et al., 2023).
Several plasma pro-inflammatory biomarkers showed a significant

correlation with deregulated metabolites and metabolic signatures
(Chen P. et al., 2023; López-Hernández et al., 2021; Martínez-
Gómez et al., 2022; Shen et al., 2020; Pang et al., 2021a; Ghini et al.,
2023). Post-COVID-19 metabolic characterization showed a
relation between the symptomatology and increased levels of
several species of phosphatidylcholines and sphingomyelins (López-
Hernández et al., 2023a). In addition, the leukocyte metabolism is
altered, affecting long-lasting immunity, dyslipidemia, and energy
metabolism dysregulation; there is a decrease in the cortisol
and metabolites of mitochondrial dysfunction (Tsilingiris et al.,
2023; Fanelli et al., 2024; Ansone et al., 2024). Contrastingly,
some reports show a normalization in the metabolic levels
as the infection clears out (López-Hernández et al., 2023a;
Liptak et al., 2022). Despite the valuable endeavors, metabolome
characterization is hidden under tangled layers of information
with high dimensionality and nonlinear interaction nature
(Tebani et al., 2018).

Traditionally, linear dimensionality reduction methods are used
to identify low-dimensional embedding spaces in metabolomic
data. Among these methods, PCA (Principal Component
Analysis) and its supervised counterpart the PLS-DA (Partial
Least Square Discriminant Analysis) (Ruiz-Perez et al., 2020)
are the most frequent. Despite their importance, these methods
exhibit significant limitations when it comes to uncovering and
analyzing nonlinear interactions, which are often crucial in
differentiating intricate groups, such as control versus disease
phenotype (Shiokawa et al., 2018). Alternatively, differential
expression analysis applied in metabolic concentrations is a well-
established technique to identify metabolites with significant
statistical differences expressed between or among clinical
groups. This latter strategy detects the over-representation of
features within a class identified by the magnitudes of these
changes using p-values. As a result, it falls short in detecting
complex interactions. To overcome this limitation, some non-
supervised and supervised machine learning algorithms have
been suggested to take into account the linear and non-linear
interactions emerging from metabolome data. For instance,
Uniform Manifold Approximation and Projection (UMAP),
an unsupervised reduction method in multidimensional data,
captures the complex topology of high-dimensional spaces and
effectively reduces it to a lower-dimensional representation. This
approach provides superior projections and enhanced cluster
separation in handling intricate data structures compared to
other dimensional reduction methods such as PCA, t-SNE,
or autoencoders (McInnes et al., 2018). However, features with
low variable magnitude typically have a reduced impact on
these low-dimensional projections due to their dependence
on distance metrics, even though they can be informative for
phenotype classification. Furthermore, supervisedmachine learning
algorithms, like eXtreme Gradient Boosting (XGBoost) (Chen and
Guestrin, 2016), have emerged as a solution to identify those
variables that play an important role in classifying groups of
multidimensional data. This classification algorithm is insensitive
to feature magnitude variations, capable of discerning subtle and
or complex patterns, transcending the limitations of traditional
methods and over-representation biases. The insensitivity of
XGBoost to feature magnitude means that it does not require
extensive data preprocessing to normalize or to scale the features,
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making it more robust and easier to apply due to its tree-based
method. Notably, by combining this approach with the SHAP
(SHapley Additive exPlanations) method, XGBoost goes beyond
detecting the high and low magnitudes of metabolites to classify a
phenotype.

Particularly, SHAP values are a tool used in Explainable
Artificial Intelligence (XAI) to interpret machine learning models
by showing how much each feature (metabolite) contributes to the
model’s final prediction (phenotype class, like healthy or COVID).
Drawing from game theory, SHAP values treat each feature as a
player in a game, contributing to the outcome. They calculate the
importance of each feature by adding and removing features for
each instance (sample) and observing changes in the prediction.
This process, done across all possible feature combinations and
instances, determines the individual impact of each feature on
the prediction (Lundberg and Lee, 2017). In the end, a SHAP
value matrix is generated where each row represents an instance
from the dataset, and each column represents a feature. The values
within the matrix show the contribution of each feature to the
prediction for each instance (Lundberg et al., 2020). SHAP values
can be used to rank the importance of each feature in making
predictions (global explainability) by averaging their contributions
across all instances or to elucidate how individual predictions
are derived (local explainability) by showing the contribution of
each feature for a specific instance. This helps us understand how
each metabolite influences the model’s decision for each sample
and overall (Lundberg et al., 2020).

Interestingly, SHAP matrix (a.k.a. local explainability) can
be employed for supervised clustering to create explainable
embeddings (Lundberg et al., 2020).Thus, for ametabolomedataset,
each sample’smultidimensionalmetabolic profile can be represented
in a reduced dimensional space while preserving the explainability
of individual features for the prediction (Lundberg and Lee, 2017).
As we show in this paper, these explainable embedding spaces
are unbiased by the magnitude or scale of the variables when
we use XGBoost (Filho, 2023; Is Normalization necessary). In this
type of explainable embedding, similarities between samples are
determined by the importance of the weight for classification rather
than the original values (Chen and Guestrin, 2016; Lundberg et al.,
2020). While explainable embeddings have been employed in
metabolomics (Bifarin, 2023), they have never been used before in
COVID-19 or Post-COVID-19 studies to the best of our knowledge.
Therefore, there is a need to use these new approaches to identify
novel groups related to Post-COVID-19, particularly in areas where
traditional unsupervised methods reach their limits.

In the context of understanding metabolic anomalies between
COVID-19 and Post-COVID-19 phenotypes, the objective of
the study is to contrast the biomarkers obtained from previous
studies already published (López-Hernández et al., 2021; López-
Hernández et al., 2023b) with advanced machine learning
algorithms combinedwith analyses of global and local explainability.
Altogether, allowed us to conduct a detailed and multifaceted
exploration of metabolites distinguishing both phenotypes. Our
analysis not only suggests potential biomarkers through differential
expression analysis but also contributes to the understanding
of metabolic alterations by combining machine learning and
Explainable Artificial Intelligence (XAI).

Results

Overview of the analysis and cohort study

To extend the list of metabolites that serve as biomarkers
to differentiate normal, COVID-19, and Post-COVID-19 samples
far beyond those identified by linear methods, we implemented
some machine learning algorithms onto a public dataset. Figure 1
illustrates a comprehensive workflow of this study’s analytical
process, breaking it down into traditional analysis and machine
learning approaches. The metabolomics data were obtained from
previous reports and are freely available in these references
(López-Hernández et al., 2021; López-Hernández et al., 2023b). In
summary, selected data comprises 111 identified metabolites across
three classes: 142 COVID samples, 48 post-COVID samples, and
38 control samples (See methods: Data). Our analytical workflow
is divided into three main branches. In the first one, we combine
classical linear and nonlinear dimensionality reduction methods
to explore potential features differentiating each clinical group.
Dimensional reduction techniques such as PCA (unsupervised),
PLS-DA (supervised), and UMAP (unsupervised) are applied to the
data in this section.

Additionally, we conducted complementary traditional
approaches to identify over-represented markers, particularly
differential expression analysis using Earth Mover’s Distance
(EMD) and heatmaps of hierarchical clustering using both the
raw data and the Z-score standardized data. The second branch is
devoted to implementing supervised machine-learning algorithms
to classify clinical data. We assessed four classification methods
(Logistic Regression, Support Vector Machine, Random Forest,
and XGBoost) and selected the best performance. Once we
selected the model with the best performance, we carefully and
extensively surveyed the importance of the global explainability of
each feature through the application of SHAP. The calculation of
SHAP values offers a means to interpret the model by assigning a
mean weight of feature importance that is not biased by the scale
of the data.

The third approach focuses on nonlinear dimensionality
reduction and clustering analysis to explore the local explainability
of the data. To achieve this goal, we proceeded as follows. Starting
from the model with the best performance, we trained it through
binary classification between pairs of conditions complemented
by a post hoc analysis using SHAP values. Afterward, we utilized
nonlinear dimensionality reduction via UMAP to elucidate local
explanations, providing insights into the formation of subgroups
within the high-dimensional SHAP values data. To identify samples
containing a set of metabolites with similar classification weights for
each subgroup, we applied the Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) algorithm.
Having identified each subgroup, the final step involved formulating
decision rules for each. To this end, we conducted a multi-
class classification of these clusters with XGBoost and obtained
their SHAP values. To understand the specific decision rules for
each subgroup, we used the dependency plot (SHAP value vs.
original magnitude, for example, see Supplementary Figure S1).
In the following sections, we present the results obtained for
each analysis.
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FIGURE 1
Schematic representation of various analytical approaches applied to the integrated metabolome data. The acronyms and their respective meanings
are: PCA: Principal Component Analysis - An unsupervised method that transforms the original variables into a new set of variables called principal
components. PLS-DA: Partial Least Squares Discriminant Analysis - A supervised technique that seeks to find a linear combination of features that best
separates two or more classes in a dataset. UMAP: Uniform Manifold Approximation and Projection - A non-linear dimensionality reduction technique
that works well for clustering and visual representation of high-dimensional datasets. EMD: Earth Mover’s Distance - A measure of the distance
between two probability distributions, conceptualized as the minimum “work” needed to transform one distribution into another. It is also employed as
a measure for differential expression by clusters. HCA: Hierarchical Clustering Analysis - A method of cluster analysis which seeks to build a hierarchy
of clusters. XAI: Explainable Artificial Intelligence - A branch of AI that aims to make the decision-making process of machine learning models
transparent and understandable. XGBOOST: Extreme Gradient Boosting - A highly efficient and scalable implementation of gradient boosting that
works for both regression and classification problems. RF: Random Forest - An ensemble method that builds multiple decision trees for robust
classification and regression outputs. SVM: Support Vector Machine - A powerful classifier that finds the optimal hyperplane for categorizing data into
two distinct classes. LogReg: Logistic Regression - A statistical model that estimates probabilities of binary outcomes based on input features,
adaptable to multiclass problems. SHAPS: SHapley Additive exPlanations - A method to explain individual predictions of any machine learning model by
computing the contribution of each feature to every prediction. HDBSCAN: Hierarchical Density-Based Spatial Clustering of Applications with Noise -
An advanced clustering algorithm that identifies clusters of varying shapes and sizes from a dataset.

Limited discrimination by traditional
methods in metabolic profiling

Utilizing PCA, the inherent variance within the dataset was
initially assessed. As displayed in Figure 2A, the CONTROL,
COVID-19, and POST-COVID-19 samples exhibited overlapping
regions, emphasizing the complexity of the metabolic patterns
using this method alone. Despite PC1 accounting for 16.3%
of the variance and PC2 capturing an additional 7.4%, these
components did not offer a comprehensive separation of the
groups. Similarly, the PLS-DA attempted to maximize the
discrimination between the predetermined groups (Figure 2B).
While it highlighted some tendencies, the results still
showed overlaps, indicating that linear methods, such as
PCA and PLS-DA, might not be sufficient to capture the
intricate variations present in the metabolic distributions.
Different normalization/transformation strategies showed
similar trends (Supplementary Figure S2).

On the other hand, we discerned distinct clustering
patterns among the three groups (CONTROL, COVID-19,
and POST-COVID-19) when one applied UMAP dimensional
reduction (Figure 2C). With UMAP, data points representing the
COVID-19 group predominantly occupied the lower left quadrant,
exhibiting amore dispersed and non-linear distribution. In contrast,
the CONTROL group’s data points seemed to concentrate around
the center, exhibiting a tighter clustering pattern with sporadic
overlap with the group, the POST-COVID-19 group manifested
an elongated cluster formation extending towards the upper right
quadrant. Notably, while there was some overlap between the
COVID-19 and POST-COVID-19 groups, the latter’s data points
were distinctly separate from the CONTROL group. This result
suggests that non-linear projection could contribute to a better
separation of the data.

Finally, with the purpose of comparing our results with those
obtained through traditional approaches, we used unsupervised
clustering by hierarchical analysis on both the raw and
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FIGURE 2
Traditional metabolic Analysis across CONTROL, COVID-19, and Post-COVID-19 States. (A) Principal Component Analysis (PCA) scores plot
representing the metabolic profiles across samples, with the percentage of variance denoted by PC1 and PC2. (B) Partial Least Squares-Discriminant
Analysis (PLS-DA) scores plot suggesting the metabolic tendencies of the CONTROL, COVID-19, and Post-COVID-19 groups, with variance represented
by Component 1 and Component 2. For PCA and PLS-DA data, median normalization, log transformation, and Pareto scaling were used. (C) Uniform
Manifold Approximation and Projection (UMAP) visualization of metabolomic data across different conditions. Each point represents an individual
sample. The color coding corresponds to the three conditions: CONTROL (green), COVID-19 (red), and POST-COVID-19 (blue). The distinct clustering
of samples indicates metabolic differences among the groups (D) Heatmap derived from Earth Movers Distance (EMD) analysis illustrating the
differential expression of metabolites across the CONTROL, COVID-19, and POST-COVID-19 groups. Displayed values represent the EMD, with positive
numbers indicating a higher distribution cost relative to other groups and negative numbers indicating a lower cost. Colors range from blue (lower
EMD cost) to red (higher EMD cost), reflecting the magnitude and direction of metabolite level changes among the 40 most expressed metabolites.

standardized data (Supplementary Figures S5, S6, respectively).
In Supplementary Figure S5, as expected based on the raw
data, the high magnitude values of glucose and lactic acid
metabolites dominate the manifold, serving as the reference point
for the Ward method in this clustering approach, and there
is no clear clustering of the three phenotypes. In contrast, in

Supplementary Figure S6, Z-score scaling of the raw data improves
the clustering of the three samples, although it is not sufficient
to clearly cluster the structure of the three phenotypes. Neither
of these options, raw or standardized z-score data, has a better
cluster structure than UMAP. This is due to the Ward method,
which assumes that centroid-based algorithms fit well when the
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data structure is inherently clustered in spherical shapes with
Gaussian distributions. Instead, UMAP estimates the local structure
of high-dimensional data by constructing a set of local proximity
functions that resemble density functions, capturing complicated
non-linear shapes of the manifold far beyond just spherical
shapes. However, dimensionality reduction methods, including
UMAP, are sensitive to high-abundance metabolites, which
can overshadow less abundant ones, affecting low-dimensional
embeddings. Therefore, the UMAP’s class separation (Figure 2C)
might be driven by a few dominant metabolites, such as glucose
and lactic acid (Supplementary Figure S5). To enhance the study
with respect to dominant variables, we employed differential
expression analysis to identify high-abundance metabolites in class
distinctions, offering a complementary analysis to dimensionality
reduction methods.

Differential metabolite expression using
Earth Mover’s distance (EMD)

Complementing our dimensionality reduction analyses, EMD
(one vs. all strategy) was utilized to capture the spectrum of
metabolic variations, providing a measure of the distributional
shifts between metabolites per condition. EMD revealed distinct
patterns of metabolite variations across the three conditions:
CONTROL, COVID-19, and POST-COVID-19 (Figure 2D). In
the CONTROL group, several metabolites, including aspartic
acid, serine, and LysoPC(18:1), were found to be more prevalent,
as indicated by the positive EMD values. The COVID-19 group
showed that Arginine and glutamine levels exhibited significantly
lower levels of arginine and glutamine, which may reflect
metabolic disturbances due to the viral infection. Citrulline
and threonine also showed reduced levels in this group. In the
POST-COVID-19 phase, the metabolite profile did not fully
revert to that of the CONTROL group. Some metabolites, like
proline and trans-hydroxyproline, approached the baseline levels
observed in the CONTROL group, while others, such as glycine
and carnitine, remained altered. Several metabolites clustered
together in terms of their expression patterns; for instance,
lactic acid, leucine, alpha-ketoglutaric acid, and glutamic acid
showed a synchronous increase in the COVID-19 group and a
subsequent decline in the POST-COVID-19 phase, potentially
pointing towards a coordinated metabolic response or shared
biochemical pathway. EMD captured metabolic differences that the
linear analysis like PCA and PLS-DA, did not detect, it revealed
distributional differences between conditions that informed on
metabolites overlooked by linear analyses (as shown in the limited
intersections in Supplementary Figure S3).

Although the EMD matches dissimilarity between the
metabolome distributions between groups ignoring if there is
a linear or nonlinear dependency, it relies on the magnitude
and dispersion on the metabolome distribution. This approach
highlights the hidden information beneath the linear dependence
space in which the PCA and PLS-DA stay. Moreover, to address
class disparities that are not discernible through conventional
methodologies sensitive to magnitude, it is imperative to integrate
additional analytical strategies that are not magnitude-sensitive,
such as ML approaches.

Evaluation of multiclass machine learning
models and XAI

Despite our preceding analyses were insightful to identify
metabolites distinguishing the phenotypes, these methods have the
predisposition to emphasize features with higher/lower magnitudes;
this can inadvertently overshadow subtler but crucial differences
in the metabolites (Evans et al., 2020). Recognizing this limitation,
we transitioned to machine learning (ML) models, aiming to
harness their ability to predict and classify without unduly favoring
dominant features. To this end, we employed 4 different machine
learning algorithms, XGBoost, Random Forest (RF), Support Vector
Machine (SVM), and Logistic Regression (LogReg), to more
precisely identify metabolites whose concentrations can distinguish
the physiological stages of the individuals. As shown in Figure 3, the
XGBoost model had the highest predictive performance in the ROC
curves with amicro andmacro Area Under the Curve (AUC) of 0.99
over the other ML models (Table 1).

To describe our best model’s explainability, we explored
the XGBoost model’s decision-making process by obtaining its
SHAP values. Figure 4 provides a comprehensive SHAP analysis.
Figure 4A underscores the overall influence of each metabolite
in the model when classifying each physiological group. As
the same figure shows, the most important variables to classify
the groups are the Kynurenine/Tryptophan and Lactate/Pyruvate
ratios, PC(36:6), Taurine, Glutamine, Phenylalanine, LysoPC(26:0),
Spermidine, Tryptophan, Glucose, LysoPC(16:0) and Sarcosine
emerging as top salient features. In Figure 4B, individual sample-
level SHAP values are portrayed across three categories: COVID-19,
CONTROLs, and Post-COVID-19. In each category, the XGBoost
showed different important metabolites with its SHAP explanations.
In CONTROLS, the top metabolites based on the SHAPs are
Kynurenine/Tryptophan and the Lactate/Pyruvate ratio. In addition,
LysoPC(18:2), Glucose, Decadienylcarnitine, and Kynurenine. For
COVID-19, the most influential metabolites to distinguish this
class from the other are: PC(36:6), Spermidine, Tryptophan,
Phenylalanine, and the Kynurenine/Tryptophan, Lactate/Pyruvate
ratios. Lastly, for patients with POST-COVID-19 symptoms, the
key metabolites differentiating from the other stages are Taurine,
Glutamine, LysoPC(16:0), Lactate/Pyruvate, and Sarcosine.

These findings are supported by a body of research that
underscores the importance of someof thesemetabolites inCOVID-
19. For instance, Ghini et al. identified significant alterations
in metabolites such as Glycine and Glutamine in COVID-19
patients (Ghini et al., 2022). Further, Correia et al. found significant
metabolic disturbances, including the Phenylalanine, Tyrosine,
Lactate, Tryptophan, which change depending on the disease
severity (Correia et al., 2022), similarly Jia et al. found glutamine,
glutamate, arginine, ornithine, kynurenine and tryptophan
(Jia et al., 2022), Song et al. also found increases in various forms
of LysoPCs (Song et al., 2020).

Metabolomic profiling and binary model
interpretation using SHAP values

To better understand how the best machine learning model
algorithm (XGBoost) classifies each physiological group and find
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FIGURE 3
Receiver Operating Characteristic (ROC) curves for different machine learning models predicting three classes: “CONTROLs”, “COVID-19”, and
“POST-COVID-19”. Four algorithms were evaluated: XGBoost, Random Forest, SVM, and Logistic Regression. The curves depict the true positive rate
(Sensitivity) against the false positive rate (1-Specificity) for each class. The diagonal dashed line represents the line of no discrimination. AUC (Area
Under the Curve) values are provided for micro and macro average ROC curves, as well as individual class ROC curves, Blue: CONTROLs, Red:
COVID-19, Green: POST-COVID-19.

the most important metabolites that explain the classification, we
proceeded to build XGBoost models for all binary classification
between pairs of conditions (CONTROLS vs. COVID-19,
CONTROLS vs. POST-COVID-19 and COVID-19 vs. POST-
COVID-19). This strategy provided insights into the mean weight
of feature importance (global explanations), asserting its robustness
against data scale biases. Adopting explainable artificial intelligence
(XAI) techniques facilitated a more transparent interpretation of
our machine learning models.

Performance metrics of the XGBoost models for each pairwise
comparison showed an average of optimal classification similar to
the multiclass model (Supplementary Table S1). Figure 5 shows the
visualization of the SHAP values derived from binary XGBoost
models for the three comparisons. Panel A depicts the SHAP
values when comparing CONTROL to COVID-19 samples. Our
model suggests that Phenylalanine, the Kynurenine/Tryptophan
ratio, and Decadienylcarnitine deploy notable distinctions between
the two groups. Similarly, Panel B depicts the SHAP values for
CONTROLandPOST-COVID-19samples.Inthiscase,LysoPC(16:0),

Glucose, Taurine, and the ratio Lactate/Pyruvate emerge as significant
metabolites distinguishing these two groups. Lastly, Panel C compares
COVID-19 and POST-COVID-19 samples, revealingmetabolites like
Glutamine/Glutamate, Taurine, Lactic acid, and alpha-ketoglutaric
acid as crucial discriminators. Figure 5 also showed a striking
heterogeneity within the metabolic profiles of individuals across
the CONTROL, COVID-19, and POST-COVID-19 groups. This
heterogeneity is illustrated by the spread and overlap of SHAP value
distributions, signifying the varied influence of individualmetabolites
on the model’s predictions (local explainability). For example, within
the CONTROL vs. COVID-19 comparison, the spread of data points
in the COVID-19 group across higher SHAP values for metabolites
like Phenylalanine and Kynurenine indicates a diverse metabolic
response to the infection (Figure 5A). Similarly, within the Control vs.
POST-COVID-19 comparison, the POST-COVID-19 group shows
a range of SHAP values for metabolites such as Taurine and
LysoPC(16:0), reflecting the varied trajectories of metabolic recovery
or persisting alterations post-infection (Figure 5B). This metabolic
diversity underscores the complex nonlinear relationships and the
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FIGURE 4
SHAP value analysis of an XGBoost model trained on metabolite data for multiclass classification. (A) Average magnitude of SHAP values for each
metabolite, indicating their overall importance in the model (Global explainability). (B) Dot plots representing individual SHAP values (Local
explainability) for each comparison following the Local explainability uses a ‘one vs. all’ approach. For instance, at the top we show the Global
explainability of the CONTROLS vs. the rest of the samples (COVID-19 and POST-COVID-19). Colors denote the relative concentration of metabolites,
with blue indicating low and pink indicating high concentrations. For example, positive SHAP values for a sample (indicated by a dot) reflect the
importance of a feature in classifying a specific category, such as distinguishing ‘CONTROLS’ from other sample groups, including COVID-19 and
POST-COVID-19.”

utility ofmachine learningmodels in capturing and interpreting these
differences at an individual level, as with the intersections shown in
Figure 5D and Supplementary Table S2.

Metabolic subgroup discovery using
explainable embeddings with UMAP and
SHAPley values

Building upon the insights gained from the SHAP analysis,
which highlighted the specific metabolic influence on our XGBoost

model’s predictions and inferable heterogeneity, we explored at
a deeper level the metabolic rules that potentially underlie the
classes in our data. To achieve a finer-granular explanation of
metabolic profiles, we utilized a supervised SHAP-based clustering
strategy to define a set of decision rules capable of dissecting
the local explainability of the data (Chmiel et al., 2021) (See
Methods). As a result, several sub-groups of metabolites with
similar contributions in the classificationwere discerned, facilitating
a deeper understanding of disease progression and its metabolic
footprint. This rigorous approach culminated in the derivation of
sub-group decision rules.
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FIGURE 5
SHAP values of metabolites from binary XGBoost models for distinct group combinations. 3D plots demonstrate SHAP value comparisons between
groups: (A) CONTROL vs. COVID-19, (B) CONTROL vs. POST-COVID-19, and (C) COVID-19 vs. POST-COVID-19. Each blue or red dot represents a
CONTROL, COVID-19 or POST-COVID-19 according to the respective panel. The y-axis displays the SHAP values, the x-axis ranks the metabolites by
their importance to the model and the z-axis shows the metabolites’ original values. Higher SHAP values suggest a greater positive influence on the
prediction classification, whereas lower values indicate a negative influence. (D) UpSet plot visualizing the intersection of metabolites among three
comparisons: CONTROL vs. COVID-19, CONTROL vs. POST-COVID-19, and COVID-19 vs. POST-COVID-19.

Figure 6A shows eight discernible metabolic clusters from
CONTROL vs. COVID-19. Notably, although specific metabolic
markers were predominant in most clusters (such as the
kynurenine/tryptophan ratio, kynurenine, and phenylalanine levels,
initially identified in our multiclass machine learning model), each
cluster features a characteristics combination and concentration
of metabolites. CONTROL vs. POST-COVID-19 showed five
metabolic clusters (Figure 6B). These clusters showed distinct
markers, with some showing pronounced levels of taurine and
glucose concentrations, which emphasized the importance of these
2 metabolites. Notably, 3 of the 5 clusters were associated with
POST-COVID-19, but showed no difference using the number
of symptoms (Supplementary Figure S4). For COVID-19 vs. POST-
COVID-19 (Figure 6C), we observed nine clusters.Metabolites such
as alpha-Ketoglutaric acid, taurine, and the lactate/pyruvate ratio
characterized the clusters, notably 3 of the 4 clusters characterized by
POST-COVID-19 patients showed greater distance fromCOVID-19
clusters, indicating the heterogeneity of the disease.

Overall, the combination of UMAP and SHAP values for the
interpretability of the data allowed us to draw two main results.
First, at higher levels of resolution, there is heterogeneity in
the compositions of the samples, even when they are classified
in the same clinical group. Second, as expected, each group

inside the physiological class has different rules of classification
given by concentrations of a few sets of metabolites. These last
classification rules contribute to selecting those metabolites for
achieving global or local classification with potential application
in future studies. Thus, our analysis can analyze the composition
of different physiological groups within each of the COVID-19
patient classes andpostulate the rules contributing to theirmetabolic
classifications.

Discussion

In confronting the monumental health crisis posed by COVID-
19 and its sequelae, a thorough understanding of its metabolic
implications provides valuable information. Our investigation
highlights the complex interplay of metabolites during and
post-infection by employing a multi-modal analytical approach,
encompassing metabolomics and advanced machine learning
techniques. Linear methods alone cannot fully parse the complex
nature of metabolic dysregulation across CONTROL, COVID-
19, and Post-COVID-19 conditions. (van der Maaten et al.,
2009). For example, in UMAP and EMD analyses, we observed
clearer demarcations between health states; this reinforces that
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FIGURE 6
Discrimination and subgroup classification employing UMAP and HDBSCAN on SHAP value distributions from XGBoost models. Each point represents a
sample color-coded by distinct metabolic clusters. (A) CONTROL vs. COVID-19 with 8 clusters, (B) CONTROL VS POST-COVID-19 with 5 clusters, and
(C) COVID-19 VS POSTCOVID-19 with 9 clusters. Note: Cluster −1 consists of samples that were not dense enough to be classified into a group with
HDBSCAN and are classified as noise samples. Clusters are annotated with the most influential features contributing to the subgrouping. The unit of
concentration for each numerical value is micromoles as the original data. The right panels show a color-coded binary classification of samples of their
original groups.

COVID-19’s metabolic disruption cannot be described linearly
(Ghojogh et al., 2021). Furthermore, the persistence of certain
metabolomic imbalances in the Post-COVID-19 phase underscores

the enduring nature of the viral impact, which could potentially
inform the etiology of long-lasting symptoms experienced
by patients (Liptak et al., 2022).
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89 XGBoost with SHAP explainability avoided the pitfalls of

magnitude biases and improved its explicability. The data analysis
discussed here offers a refined metabolic landscape, accentuating
subtle yet influential metabolites such as PC(36:6) and Taurine
across the COVID-19 and Post-COVID-19 states. The emergence
of XGBoost’s superior predictive performance, with AUC scores
attaining near-perfect metrics, reflects its adeptness at modeling
complex, high-dimensional data. This not only validates the
algorithm’s application in high-throughput metabolomics data but
also demonstrates its potential in clinical settings for evaluating
disease trajectories, such as differentiating states of a healthy
state or Post-COVID-19, as it has been proven in other diseases
(Guan et al., 2023; Roberts et al., 2021; Hogan et al., 2021; Yi et al.,
2023; Moore and Bell, 2022; Cao et al., 2023). As a result, we
concluded that our approach identified some metabolites reported
in the previous analysis (López-Hernández et al., 2023b), but also
other metabolites that were not previously determined as important
in the classification. This is the case of LysoPC(26:0), PC(36:6),
and alpha-Ketoglutaric acid (Supplementary Table S3); the latter has
been found that lower levels in COVID-19 patients may have a
higher risk of unfavorable outcomes (Sánchez et al., 2023).

By identifying the most influential metabolites in our
classifications, SHAP values have highlighted key metabolites that
may play crucial roles in the pathogenesis of COVID-19 and
Post-COVID-19 syndrome. According to the SHAP values, the
disrupted metabolomic profile of acute COVID-19 (see Figures 4B,
5A) is primarily associated with metabolites participating in
the immune response and energy metabolism based on our
top metabolites found, for example, elevated SHAP values for
metabolites such as Kynurenine, a by-product of the tryptophan
metabolism pathway, suggest activation of indoleamine 2,3-
dioxygenase (IDO) due to inflammation (Kim et al., 2015). Notably,
Kynurenine, a metabolite that reflects the general inflammatory
status in the body, has been associated as a severity and mortality
marker during acute SARS-CoV-2 infection (Lawler et al., 2021;
Abdallah et al., 2024). According to our results, Kynurenine has a
differential down-production on COVID-19 subjects respect the
other groups. It has been hypothesized that the Kynurenine pathway
is responsible for some long-term effects of COVID-19 subjects like
neuropathogenesis (Dehhaghi et al., 2024). Moreover, our findings
suggest the effects are more related to intense transition prior to
activation of the pathway, which produces immunosuppressive
metabolites with lasting effects.

In the post-COVID-19 phase, SHAP values indicate a distinct
shift inmetabolite significance, withTaurine and glutamine standing
out (see Figures 4B, 5B). Persistently altered levels of these amino
acids point towards a sustained immune challenge (Cruzat et al.,
2018) or a delayed return to homeostatic metabolic function post-
infection. The consistent impact of Taurine, known for its role in
bile salt formation and osmoregulation, may also reflect ongoing
oxidative stress and or a lack of cellular detoxification (Cruzat et al.,
2018; Baliou et al., 2021; Thirupathi et al., 2020; Wang et al., 2020;
Singh et al., 2023). Glutamine’s role in supporting immune cell
energy requirements could signal a protracted recovery phase where
the immune system remains engaged beyond the clearance of the
virus (Koufaris and Nicolaidou, 2021; Aydın et al., 2022; Shah et al.,
2020). Understanding these sustained metabolic changes is critical
for developing post-acute care strategies and could be integral in
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preventing long-term sequelae often observed in Post-COVID-19
syndrome patients. Our findings reinforce the observation that there
aremetabolic pathways that remain altered even in the post-recovery
phase (López-Hernández et al., 2023a), (López-Hernández et al.,
2023b). For instance, persistent fatigue, a hallmark of Long COVID-
19 (What Do et al., 2023), may be tied to the disruptions in energy-
related metabolites that we observed; in this instance, Taurine
supplementation could be used for patients that have lower levels
of this metabolite to counter its symptom (Kim et al., 2022).

Our supervised UMAP-SHAP-based clustering strategy (see
Figure 6) allowed for the discovery of intricate subgroups beyond
traditional analytical capacities by taking into account a low-
dimensional topology based on weight for classification instead of
magnitude-based methods. For example, PCA is a linear approach
biased in magnitude that fails to separate complex data into
groups even with different data preprocessing methods (Figure 2;
Supplementary Figure S2). Furthermore, PLS-DA, although a linear
supervisedmethod,doesnotachieveseparationin its low-dimensional
representations of the data (Supplementary Figure S2). Hierarchical
clustering (Supplementary Figure S5) shows no complete separation
and reveals a dominance of glucose and lactic acid in the high-
dimensional topology, also failing to separate the data. While
normalizing with z-scores results in a better cluster structure of
phenotypes (Supplementary Figure S6), it is not superior to the
obtained with UMAP (Figure 2C). However, UMAP, which is based
on densities based on Euclidean distances, achieves better separation
of phenotypes, although this low-dimensional representation is
dominated by certain variables. Thus, we concluded that UMAP-
SHAP-based clustering strategy creates a low-dimensional manifold
capable of separating phenotype classes. It is without a bias by
magnitude and taking into account the importance for classification.

This novel methodological approach eschews simple distance
metrics, instead emphasizing the discriminative importance of
metabolites as determined by their contribution to the model’s
predictive accuracy. This machine-learning analysis reveals the
diversity in the metabolic response to SARS-CoV-2 infection
and the varied recovery patterns, which are often homogenized
in broader analyses. In the comparison between CONTROL
and COVID-19 samples, we observed eight distinct metabolic
clusters (see Figure 6A). Each subgroup within the COVID-19
group displayed unique metabolic derangements, indicating the
possibility of different viral response phenotypes or stages of
disease progression. Normally, COVID-19 is classified using the
WHO classification, which ranges from asymptomatic to critical
illness (Clinical Spectrum), but a more detailed subclassification
could be used to improve treatments. The CONTROL vs Post-
COVID-19 (see Figure 6B) analysis presented five metabolic
clusters with two key metabolites, Taurine and glucose, standing
out in their altered levels. The prominence of these metabolites
in certain clusters suggests potential pathways that could be
investigated for therapeutic interventions. Interestingly, themajority
of post-COVID-19-specific clusters did not correlate with the
symptomatology (See Supplementary Figure S4), an observation
that points to the complex and possibly nonlinear relationship
between metabolic alterations and clinical manifestations of post-
COVID-19 syndrome. Additionally, we hypothesized that the
previous could be due to inter-subject differences within each
group that were not controlled or understood. The variation

within Post-COVID-19 clusters indicates possible subtypes
of long-term sequelae, underlining the need for personalized
approaches in managing these patients. A similar strategy has been
applied by Cooper et al. (2021) to COVID-19 symptomatology;
Cooper identified 16 different clusters of symptoms, emphasizing
the complex heterogeneity of the disease and the necessity for
individualized therapeutic strategies using a holistic approach.
For future studies, it will be essential to closely correlate these
metabolic subgroups with clinical outcomes and symptomatology.
Prospective studies, including longitudinal sampling and in-depth
phenotyping, are needed to confirm the stability and clinical
relevance of these metabolic clusters. Moreover, integrating multi-
omics data such as genomics, proteomics, and transcriptomics could
offer a systems biology perspective, providing amore comprehensive
understanding of the pathophysiological mechanisms at play.

Our study, however, is not without limitations. The reliance
on two datasets may introduce biases specific to the population
sample. Also, metabolic responses are known to be influenced by
a variety of factors, including diet, medication, and comorbidities,
which were not controlled for in the datasets. Although we could
not separate the confusing variables to provide causation of the
symptomatology for COVID-19 and long-COVID-19 subjects, the
associations found allows us to dig deeper into the metabolome
to provide clearance of the non-linear solid relationships within
the heterogeneous data. On the other hand, there is a fundamental
need to associate the three physiological stages (healthy, COVID-
19 and Post-COVID) with diligent metadata compilation so that
the models can account for parameters like patient information,
clinical variables, and diet. Our results showed rough associations,
these are not limited by the methodology but by the availability of
the data. We are aware that separation within groups needs to be
takenwith caution. Nonetheless, there are differences attached to the
disease’s clinical evolution. Future research should aim to replicate
these findings across diverse cohorts to ensure the generalizability
of the metabolic signatures identified for subtyping.

In closing, our investigation offers a robust analytical framework
that provides a comprehensive metabolic viewpoint on COVID-
19 and its prolonged impact. The application of machine learning
models to metabolomics is an approach that holds great promise
for elucidating the multifaceted nature of infectious diseases and its
long-term consequences.

Methods

Data collection

Datasets were sourced from the Mendeley Database at the
following URLs:

• Dataset 1 https://data.mendeley.com/datasets/8zfdjsypd8/1
• Dataset 2 https://data.mendeley.com/datasets/7fnt3nfhdv/2.

Lopez et al. employed these datasets in two distinct studies to
pinpointbiomarkersanddiscernmetabolicalterations tied toCOVID-
19 and its post-infection phase (López-Hernández et al., 2021; López-
Hernández et al., 2023b). Both investigations utilized an identical
method to yield quantitative readings for 111 metabolites in blood
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plasma, with the omission of carnitine C14:1 in the Post-COVID-19
dataset. To maintain the veracity of the original concentration values,
we did not normalize or scale the metabolite data before its use in the
machine learning models.

Our contribution is to present new computational strategies to
analyze metabolome data and explore new avenues of biological
interpretation, particularly starting from the metabolome data
reported by Yamilé et al. (López-Hernández et al., 2021; López-
Hernández et al., 2023b). In agreement with the source publication,
all the clinical studies and data acquisition were approved by an
ethics committee and granted for each data set used in this study.
More information about the ethical requirements for each study
should be directly requested from the corresponding author of the
original publications.

Principal component analysis (PCA), partial
least square discriminant analysis (PLS-DA)
and UMAP

PCA is a statistical technique that transforms the original
variables into a new set of uncorrelated variables known as principal
components. These components capture the majority of variance
present in the original dataset and in doing so, reveal dominant
patterns. PLS-DA, similar in spirit to PCA, is designed to find the
direction in the multivariate space that maximizes the separation
between classes or groups. It’s particularly suitable for datasets with
more variables than observations. PCA and PLS-DA were conducted
using the Metaboanalyst 5.0 software (Pang et al., 2021b). During
these analyses, we recognized the need for data normalization to
mitigate any artifacts, as these techniques perform worse without
normalization. As such, we tried multiple normalization procedures
to ascertain optimal parameters. The applied normalization
techniques encompassed median normalization, log transformation,
and Pareto scaling. The specific results of these procedures are
showcased in the Supplementary Figure S2. Also we applied UMAP
with default parameters to the raw data.

Differential expression analysis via Earth
Mover’s distance (EMD)

EMD offers a way to measure the “distance” between two
probability distributions over a region. It can be perceived as the
least amount of work needed to transform one distribution into the
other. To dissect differential expression in metabolite data, Earth
Mover’s Distance (EMD) was used. This method adeptly captures
differences in data distributions. The analysis was performed using
the “scprep” library in Python, contrasting EMD values across all the
datasets.Thederived EMDoutcomes rendered a ranked inventory of
metabolites, underscoring their relative expression shifts. A positive
value indicates that transforming the distribution of that metabolite
in the group corresponding to the column (COVID-19, CONTROL,
Post-COVID-19) into the distributions of themetabolite in the other
groups requiresmore “work.” Conversely, in general, a positive EMD
value means that it is elevated compared to the other groups, while
a negative value indicates that it has a decreased value.

Machine learning model implementation

Different machine learning models were used. The array of
machine learning algorithms we tapped into were:

• Random Forest (RF): An ensemble method that constructs
multiple decision trees during training and outputs the class
that is the mode of the classes for classification, or average
prediction for regression.

• XGBoost: An optimized gradient boosting library designed to
be highly efficient, flexible, and portable.

• Logistic Regression (LR): A regression analysis method
suited for prediction of outcome of a categorical
dependent variable based on one or more predictor
variables.

• Support Vector Machine (SVM): A supervised machine
learning algorithm which can be employed for both
classification or regression challenges.

Machine learning algorithms were implemented in Google
Colab with Python (v. 3.10). Random forest (RF), XGBoost, logistic
regression (LR), and support vector machine (SVM) were written
using scikit-learn package. To evaluate the performance of the
models, the dataset was split into training and testing sets, the
training set comprised 80% of the data, while the remaining 20%
was allocated for testing.

Model evaluation

Each model’s efficacy was estimated using a blend of cross-
validation and specific evaluation metrics. A 10-fold cross-
validation was executed on the training subset, with accuracy,
precision, recall, and F1 score computed through the cross_val_
score function from scikit-learn. Post cross-validation, models were
further appraised on the testing set using the aforementioned
metrics.The superiormodel was identified based on its performance
metrics, encapsulated by:

Accuracy = TP+TN
TP+TN+ FP+ FN

Precision = TP
TP+ FP

Recall = TP
TP+ FN

F1Score = 2× Precision×Recall
Precision+Recall

Hyperparameter tuning

In the domain of machine learning, the enhancement
of model performance is frequently achieved through a
meticulous process termed as hyperparameter optimization.
For our research, the optimization strategy employed was
using a combination of randomized search and cross-validation
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methodologies. Randomized search, distinct from the exhaustive
nature of grid search, offers an efficient exploration of the
hyperparameter space by examining a random subset of possible
parameter values, leading to faster convergence to optimal
values. Complementing this, cross-validation ensured that the
model’s evaluation was robust and unbiased by systematically
partitioning the dataset into training and validation subsets. For
specificity, the hyperparameters scrutinized for each predictive
algorithm were:

1. Random Forest (RF):
○ n_estimators: Reflecting the count of trees in the forest,

which determines the ensemble’s complexity and predictive
capability.

○ max_depth: Signifying the maximum number of levels
in each decision tree, thereby controlling the depth and
potential overfitting.

○ min_samples_split: Denoting the minimal count of data
points placed in a node before the node is split.

○ min_samples_leaf: The minimum number of data points
allowed in a leaf node.

2. XGBoost:
○ n_estimators: Corresponding to the total count of

sequential trees to be modeled.
○ max_depth: Dictating how deeply each tree can grow

during any boosting round.
○ learning_rate: Adjusting the contribution of each tree to the

final outcome.
○ subsample: The fraction of samples used for fitting the

individual base learners.
3. Support Vector Machine (SVM):
○ C: Regularization parameter that determines the trade-off

between achieving a low margin and ensuring the classifier
segments most of the data points correctly.

○ kernel: Specifies the type of hyperplane utilized to
separate the data.

○ gamma: Parameter for non-linear hyperplanes,
determining the curve’s fit to the data.

4. Logistic Regression:
○ C: Inverse regularization strength, which can prevent

potential overfitting.
○ penalty: Denoting the norm utilized in the penalization.
○ solver: Algorithmic approach employed for

optimization problems.

Shapley values

Shapley Additive exPlanations (SHAP) facilitates local
prediction interpretations by ascertaining the importance
of each metabolomic feature per sample prediction. As a
robust post hoc IML method, SHAP extends comprehensive
global model insights. Rooted in the cooperative game
theory methodology of Shapley values (Lundberg and
Lee, 2017; Cooper et al., 2021), SHAP offers a fair approach
to apportion rewards within a cooperative game. In this
context, the game represents the machine learning model,
and the Shapley value fairly describes each metabolomic

feature’s contribution to the outcome. We computed the
Shapley values via the shapTreeExplainer, using the Python
SHAP package.

Supervised clustering using local
explanations and manifold learning

This section was accomplished through four steps (Figure 1,
Section Subgroup discovery). First, we select a pairwise comparison
and calculate the SHAP values of all metabolites from a XGBoost
model. Then, by considering all the local explanations of all
metabolites for all the patients (SHAP values matrix), we visualized
their topological structure into a low-dimensional space through
UMAP. Posteriorly, in this reduced space, we calculated the number
of clusters through Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN). Finally, having identified
the clusters of samples, we trained a multiclass XGBoost model
and identified the set of metabolites and their rules to classify
each cluster. Then, for the decision rules for each cluster, we used
dependence plots to illustrate the concentration of metabolites
(original concentration values) versus their corresponding SHAP
values, along with clusters. This was done to determine decision
rules for operators such as lower than (<), or higher than (>),
or its combination (for non-linear interactions) of metabolite
concentrations (Supplementary Figure S1). We determined the top
variables for each cluster until the cluster of interest showed no clear
separation in the dependence plot.
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