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Background: Breast cancer (BC) is a significant cause of morbidity and mortality
in women. Although the important role of metabolism in the molecular
pathogenesis of BC is known, there is still a need for robust metabolomic
biomarkers and predictive models that will enable the detection and prognosis
of BC. This study aims to identify targeted metabolomic biomarker candidates
based on explainable artificial intelligence (XAI) for the specific detection of BC.

Methods: Data obtained after targeted metabolomics analyses using plasma
samples from BC patients (n = 102) and healthy controls (n = 99) were used.
Machine learning (ML) models based on raw data were developed, then feature
selection methods were applied, and the results were compared. SHapley
Additive exPlanations (SHAP), an XAI method, was used to clinically explain the
decisions of the optimal model in BC prediction.

Results: The results revealed that variable selection increased the performance
of ML models in BC classification, and the optimal model was obtained with
the logistic regression (LR) classifier after support vector machine (SVM)-
SHAP-based feature selection. SHAP annotations of the LR model revealed
that Leucine, isoleucine, L-alloisoleucine, norleucine, and homoserine acids
were the most important potential BC diagnostic biomarkers. Combining the
identified metabolite markers provided robust BC classification measures with
precision, recall, and specificity of 89.50%, 88.38%, and 83.67%, respectively.
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Conclusion: In conclusion, this study adds valuable information to the discovery
of BC biomarkers and underscores the potential of targeted metabolomics-
based diagnostic advances in the management of BC.

KEYWORDS

breast cancer, metabolomics, feature selection, explainable artificial intelligence,
prognostic model

1 Introduction

The GLOBOCAN 2020 report highlights breast cancer (BC)
as the global cancer with the highest incidence worldwide
(Rahimzadeh et al., 2021). This report is underscored by its
alarming mortality rates, accounting for 685,000 deaths in
2020 and establishing it as the foremost cause of cancer-related
mortality in women. Representing 11% of all cancer cases,
breast cancer diagnoses in women totaled approximately 2.3
million. A notable escalation of 20% in prevalence and a 14%
increase in global mortality rates have been observed since the
2008 report (Kashyap et al., 2022).

Projections from global breast cancer surveillance studies
indicate a looming 40% rise in new cases, surpassing three million,
with a simultaneous 50% surge in breast cancer-related deaths,
reaching one million by 2040 (Arnold et al., 2022). In addition, BC
increases female deaths significantly in underdeveloped countries,
ranks fifth overall in cancer-related deaths, and is the primary
cause of death among women in these regions. In developed
countries, breast cancer ranks second after lung cancer in cancer-
related deaths (Cao et al., 2021).

While the average 5-year survival rate for BC at all stages hovers
around 90% (Siegel et al., 2018), the 5-year survival rate significantly
rises to nearly 99% for early-stage BC (comprising stages I and II).
Unfortunately, only 61% of patients receive an early-stage diagnosis
(DeSantis et al., 2017). Despite the demonstrated high sensitivity
(>90%) of various clinical and experimental imaging techniques in
diagnosing symptomatic BC patients, there remains a conspicuous
absence of an effective diagnostic tool for early-stage BC (EBC)
detection (Fiorica, 2016; Bonilla et al., 2017). Consequently, there
is an urgent demand for a detection method that ensures precise
and early diagnosis and screening, ultimately facilitating prompt
treatment and enhancing overall BC survival rates.

Examiningmetabolites within biological pathways offers crucial
insights into the functional phenotype of tumors. The exploration
of metabolic alterations in cancer cells dates back to the first half
of the 20th century, notably with Otto Warburg’s discovery of
aerobic glycolysis, now recognized as theWarburg effect, a prevalent
feature in various tumors (Tenori et al., 2015; Schwartz et al.,
2017). Furthermore, metabolites contribute essential information
that intersects with fields such as proteomics, transcriptomics,
and genomics, enhancing our systematic understanding of
biological systems.

Although numerous studies have shown promise in
investigating the metabolomic profile of BC, these findings require
additional validation before integration into clinical practice
(Tenori et al., 2015; Jobard et al., 2014; Tenori et al., 2012;
Oakman et al., 2011; Wei et al., 2013; Hart et al., 2017) Moreover,

existing research lacks an exploration of metabolomic biomarkers
for BC through the lens of explainable artificial intelligence (XAI).

Given the potential of the metabolomic approach and the
imperative for more comprehensive metabolomic investigations in
BC, our study seeks to identify potential biomarkers for early
BC detection. Additionally, we aim to develop an interpretable
prediction model using XAI to enhance the understanding of
metabolomic biomarkers in the context of BC.

2 Materials and methods

2.1 Dataset

This research utilized publicly available (open-access) targeted
metabolomics panel data to differentiate BC patients and healthy
controls (Jasbi et al., 2019). The study was conducted according to
the principles of the Declaration of Helsinki and was approved by
the Inonu University Health Sciences Non-Interventional Clinical
Research Ethics Committee (protocol code = 2024/5750). A total of
201 samples were included in the study, collected from individuals
who underwent an overnight fast; among them, 102 were BC
patients and 99 were healthy controls. Controls were matched with
BC patients based on age. The study aimed to identify potential
metabolic biomarkers through feature selection and explainable
artificial intelligence techniques, in addition to the development
of the ML prediction model that could increase sensitivity
and specificity in detecting the early stage of BC. A targeted
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
approach was used to examine the metabolomic panel. Further
information regarding sample preparation and the conditions of
liquid chromatography and mass spectrometry can be found in the
Supplementary Material (Jasbi et al., 2019).

2.2 Methods

Thousands In our study, ML methods were proposed for
the early diagnosis of BC. The SHapley Additive exPlanations
(SHAP) method was utilized to explain these proposed methods
and to attempt the determination of features effective in early BC
diagnosis. In this manner, SHAP values generated from the results
of classification algorithms were employed for feature selection.The
hyper-parameter optimization of the proposed models was carried
out using the Random Search (RS) method within the context of
nested cross-validation (nestedCV). In addition to SHAP, RS, and
nestedCVmethods, classification algorithms such as RandomForest
(RF), Gradient Boosted (GB), Logistic Regression (LR), and Support
Vector Machines (SVM) were employed in our study.
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2.3 Random forest

The RF algorithm is a popular ensemble learning technique
extensively employed in machine learning. It operates by
amalgamating numerous decision trees to construct a robust
predictive model. In an RF model, each decision tree is developed
by training on a subset of data, where different features are assessed
against varying examples. Subsequently, every tree generates its
individual predictions, and the collective prediction is determined
based on the average of these forecasts or the majority vote among
the classes. RF exhibits resilience against overfitting and tends to
exhibit superior performance particularly on extensive datasets.
Additionally, its utility extends to discerning the significance of
variables owing to its capability to gauge the relative importance
levels among features (Breiman, 2001; Yagin et al., 2024).

2.4 Gradient boosted

GB stands as a robust ML algorithm employed in constructing
predictivemodels. It achieves this by amalgamating various decision
trees, culminating in a potent predictivemodel. Each tree undergoes
sequential training, with a focus on rectifying errors that its
predecessor failed to address. Leveraging this sequential structure,
GB iteratively integrates new trees into training with the aim of error
minimization. The efficacy of GB is contingent upon meticulous
parameter adjustments; otherwise, it may lead to overfitting. Hence,
its application warrants careful consideration to attain a well-
balanced model (Yagin B. et al., 2023; Yagin F. H. et al., 2023).

2.5 Logistic regression

LR, despite its name implying regression, serves as a ML
algorithm predominantly employed in classification tasks. Its
primary function is to discriminate between two or more classes,
typically presenting its output in the form of a probability value.
Operating on a linear equation, LR models the correlation between
input features and output classes, with the equation’s outcome
transformed into a classification decision through a logistic
function. Throughout the training process, it employs optimization
techniques such as the maximum likelihood method or gradient
descent to ascertain the optimal parameters. Despite its advantages
in simplicity, interpretability, and swiftness, the efficacy of LR might
diminish in scenarios where it fails to discern linear boundaries,
encountering difficulty in capturing intricate relationships
(Khandezamin et al., 2020; Donisi et al., 2022; Dedeturk and
Akay, 2020).

2.6 Support vector machines

SVMs represent a potent ML algorithm extensively applied in
classification tasks. SVMs aim to delineate a decision boundary
between two classes and position data points optimally within these
bounds. The hallmark of SVMs lies in their ability to generalize
beyond the dataset, ensuring data points are segregated by the
widest possible margin along the decision boundary.This algorithm

operates by leveraging support vectors, which effectively facilitate
the clearest separation between distinct classes. Moreover, SVMs
exhibit efficacy in handling multidimensional datasets and possess
the capability to segregate datasets that lack linear separability
by mapping them onto high-er-dimensional spaces. Nevertheless,
while dealing with sizable datasets, SVMs encounter heightened
computational complexity, demanding precise parameter settings
(Sheykhmousa et al., 2020; Guo et al., 2021; Li and Sun, 2020).

2.7 Nested cross validation

nestedCV is a cross-validation technique employed to robustly
assess the performance of a model. This approach integrates a
two-tiered cross-validation framework. The outer loop segregates
the dataset into training and testing folds, while the inner
cross-validation structure is applied within each training fold.
Within the inner loop, each training fold is further divided into
smaller folds, utilized for hyper-parameter tuning or selection of
the model. Consequently, a model trained with optimal hyper-
parameters is derived for each test fold in the outer loop, and
an aggregated performance metric is computed by consolidating
performance evaluations. This method finds extensive application
in reliably conducting both hyper-parameter optimization and
performance evaluations of the model (Wainer and Cawley, 2021;
Yates et al., 2023; Hosseini et al., 2020).

2.8 Random search hyper-parameter
optimization

RS hyper-parameter optimization is a technique utilized to
enhance the performance of ML models by optimizing hyper-
parameters. This method involves a random selection of values
across hyper-parameters impacting the model’s performance. These
selections are made randomly throughout the potential value
distributions within a given hyper-parameter space. Through
repetitive training and testing iterations using these randomly
chosen hyper-parameter values, the objective is to maximize model
performance or minimize error rates. RS often proves more
efficient than Grid Search as it achieves favorable outcomes by
making fewer attempts via random selections, avoiding exhaustive
exploration of the entire hyper-parameter space. Particularly
effective with expansive hyper-parameter domains, it reduces
time investment, offering a more cost-effective approach. Widely
favored for its adaptability and time-saving attributes, this method
is widely preferred in machine learning applications (Bergstra
and Bengio, 2012; Villalobos-Arias and Quesada-López, 2021;
Bhat et al., 2018).

2.9 SHapley additive exPlanations

SHAP stands as an explainability technique utilized to
elucidate the predictions of ML models and comprehend feature
contributions. SHAP leverages Shapley values to assess the impact of
individual features on predictions, aggregating these contributions
to form the model’s output. Inspired by coalition games, Shapley
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values are employed to quantify each feature’s influence on
predictions, considering their interactions with other features.
This method furnishes an explanation value for each feature,
aiding in discerning the significance of features in understanding
the model’s predictions. Noteworthy is SHAP’s effectiveness in
handling large datasets and complex models, rendering the model’s
inner workings more comprehensible. Despite the additional
computational costs associated with SHAP, its interpretability
advantages and compliance with XAI principles make it a robust
option for biomarker discovery in this study. By leveraging SHAP’s
ability to provide a detailed breakdown of feature effects, we aim to
increase the transparency, reliability, and clinical relevance of our
predictive model for breast cancer diagnosis (Lundberg et al., 2020;
Bifarin, 2023; Zheng et al., 2023).

2.10 Proposed approach

In the initial phase of the proposed approach, the objective is to
conduct hyper-parameter optimization and compute SHAP values
utilizing the nestedCV method coupled with the random search
method for EBC diagnosis. Subsequently, the second stage involves
employing the SHAP values obtained in the first stage for feature
selection, followed by repeating the training procedures from the
initial phase. The flowchart illustrating the proposed approach is
depicted in Figure 1.

As shown in Figure 1, the proposedmodel employs two different
segmentation strategies: Inner CV and Outer CV. The Inner CV is
used to perform hyper-parameter optimization and select the most
suitable model. In this step, a 5-fold cross-validation is applied to
each training fold of the Outer CV. On the other hand, the Outer
CV is designed to assess the overall performance of the model and
estimate its generalization error. For this purpose, a 10-fold cross-
validation is performed on the entire dataset. Figure 1 demonstrates
that within the proposed system, an initial step involves internal
cross-validation to conduct hyper-parameter optimization through
random search. Following this phase, model training proceeds
using Outer CV, accompanied by the computation of SHAP values
for the models. Subsequently, model performance metrics are
computed based on the specified criteria. Should the model training
processes utilize the complete set of features, feature selection
is then implemented employing SHAP values, resulting in the
creation of a new dataset. The finalization of the proposed approach
entails reiteration of hyper-parameter optimization and training
processes utilizing the newly generated dataset. Subsequently, the
most significant features identified using the SHAP method were
analyzed in the context of breast cancer diagnosis. Following
this interpretative analysis, candidate features were selected for
biomarker development, culminating in the final design of the
biomarker.

2.11 Statistical analyses

The conformity of variables to normal distribution was
examined using visual (histogram and probability graphs) and
analytical (Shapiro-Wilk Test) methods. Descriptive statistics
were expressed as mean ± standard deviation for normally

distributed variables. Frequency (n) and percentage (%) values
were calculated for qualitative variables. Statistical analyses were
performed using SPSS 28.0 (IBMCorp., Armonk, NY,United States)
package program.

3 Results

3.1 Univariate statistical analyses

Table 1 presents the results regarding the patients’ clinical data.
The average age of patients in the BC group was higher at 54.637
± 10.384 years compared to 51.556 ± 12.334 years in the control
group.Among the BCpatients, the distribution ofmenopausal status
was as follows: 42.16% (43/102) were premenopausal, 5.88% (6/102)
were perimenopausal, and the majority, 51.96% (53/102), were
postmenopausal. Tumor laterality was predominantly observed in
the right breast (53.92%, 55/102), followed by the left breast (42.16%,
43/102), with 3.92% (4/102) of cases involving bilateral tumors.
The distribution of cancer stages showed that 23.53% (24/102) of
patients were diagnosed at Stage I, 41.18% (42/102) at Stage II,
and 35.29% (36/102) at Stage III. Regarding hormone receptor
status, 93.14% (95/102) of patients were estrogen receptor (ER)
positive, while only 6.86% (7/102) were ER negative. Progesterone
receptor (PR) positivity was observed in 86.27% (88/102) of
patients, with 13.73% (14/102) being PR negative. HER2 status was
negative in 67.65% (69/102) of patients, while 12.75% (13/102) were
borderline/intermediate, and 19.61% (20/102) were HER2 positive.
Subtype distribution revealed that the majority of patients were
ER/PR + HER2- (63.73%, 65/102), followed by ER/PR + HER2+
(17.65%, 18/102), ER/PR- HER2- (3.92%, 4/102), and ER/PR-
HER2+ (1.96%, 2/102). The subtype was unknown in 12.75%
(13/102) of cases. Furthermore, ductal carcinoma was the most
commonhistological type, present in 90.20% (92/102) of cases, while
lobular carcinoma and mixed ductal/lobular carcinoma accounted
for 7.84% (8/102) and 1.96% (2/102) (Table 1).

3.2 Model preparation and
hyper-parameter optimization

In our study, the proposed approach was implemented using
a dataset comprising 201 clinical records, encompassing 102 BC
patients and 99 control. The initial experimental phase involved
developing the classification and hyper-parameter optimization
stages of the proposed model utilizing Python’s sklearn library,
specifically leveraging the RandomizedSearchCV, StratifiedKFold,
and cross_val_score classes. StratifiedKFold was employed to
ensure a balanced representation of samples across various classes
within the folds. For inner cross-validation, a 5-fold setup was
adopted, whereas 10 folds were utilized for outer cross-validation.
The RandomizedSearchCV library facilitates random selections
within the provided hyper-parameter space and conducts a set
number of trials to identify the hyper-parameter configuration
that yields optimal results. Within the proposed approach, the
RandomizedSearchCV library was called 20 times. Adhering to the
nestedCV paradigm, for each externally created fold, an internal
cross-validation was executed with five folds to attain optimal
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FIGURE 1
Flowchart diagram of the proposed approach generated using nestedCV, random search and SHAP computation.

values.The classification phase of the proposed model encompassed
the utilization of four distinct classification methods: RF, GB, LR,
and SVM. The classification models were developed using sklearn
library of Python language. Table 2 delineates the optimized hyper-
parameters for eachmethod, the respective hyper-parameter spaces,
and the resultant optimal values obtained for each fold.

The function represented in Table 2 returned values within
specified ranges by taking the starting, ending, and increment values
of the specified range function, respectively. The “i” value employed
in this function denoted each element within the list generated
by the range function. Column “Optimum Hyper-Parameters for
Each Fold” in Table 2 showcased the optimal values obtained for
each external cross-validation, respectively.

3.3 Classification using all metabolite
features

In the subsequent phase of the experiment, the performance
metrics of the proposed classification methods were computed
utilizing the acquired optimal hyper-parameters. In this context,
accuracy, precision, recall, and specificity values for each fold were
computed for each method. To gauge the model’s robustness, the
standard deviation (std) of the performance values across folds was

also determined. Table 3 shows the interfold std values for each
metric and the average of the metric scores obtained in each fold.

According to the findings presented in Table 3, RF, GB, and
SVM exhibited the highest accuracy. However, when considering
robustness based on the standard deviation of accuracy across each
fold, LR emerged as the most robust method. Among the three
high-scoring methods, GB was deemed the most robust. Regarding
precision scores, RF not only attained the highest metric score
but also demonstrated the most resilience. SVM emerged as the
most successful method based on recall value, whereas LR displayed
the greatest robustness. In terms of specificity, LR showcased both
the highest performance and robustness. Upon comprehensive
evaluation, all classification algorithms showed their weakest
metric performance in specificity, with LR consistently displaying
the most robustness. However, an overall assessment indicates
no significant superiority of any classification method over the
others.

3.4 Computing SHAP values and
metabolite feature selection

For the classification models, subsequent to the measurement
of metric values, SHAP values were computed utilizing
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TABLE 1 Data analysis on patients’ clinical information.

Group

Control BC

Value Value

Age∗ 51.556 ± 12.334 54.637 ± 10.384

Menopause
Status∗∗

pre 43 (42.16%)

peri 6 (5.88%)

post 53 (51.96%)

Side∗∗

left 43 (42.16%)

right 55 (53.92%)

both 4 (3.92%)

Cancer stage∗∗

I 24 (23.53%)

II 42 (41.18%)

III 36 (35.29%)

ER_∗∗
- 7 (6.86%)

+ 95 (93.14%)

PR_∗∗
- 14 (13.73%)

+ 88 (86.27%)

Her2∗∗

- 69 (67.65%)

borderline(2+)/intermediate 13 (12.75%)

+ 20 (19.61%)

Sub type∗∗

ER/PR+ Her2+ 18 (17.65%)

ER/PR+ Her2- 65 (63.73%)

ER/PR- Her2+ 2 (1.96%)

ER/PR- Her2- 4 (3.92%)

Unknown 13 (12.75%)

Cancer type∗∗

Ductal 92 (90.20%)

Lobular 8 (7.84%)

both 2 (1.96%)

BC, breast cancer; ∗mean ± standard deviation; ∗∗n (%).

the SHAP Library in Python to gauge the feature impact
during the training of each classification model. The
importance of metabolite features, as per the obtained SHAP
values, is separately listed for each classification. Figure 2
illustrates the importance of the top 20 metabolite features
calculated using the SHAP method for each classification
model.

As depicted in Figure 2, the metabolite importance order varies
based on the classification method employed. Notably, according
to the SHAP values calculated using trained RF, SVM, and GB
models, the feature “glutamic acid” holds the utmost importance
for subjectivity. In the case of the trained LR model, “glutamic acid”
ranks as the fifthmost criticalmetabolite for BC.Additionally, across
all classifications, “glutamic acid,” “hypo-xanthine,” and “ornithine”
consistently rank among the top 20 metabolites. Leveraging the
data from Figure 2, metabolite biomarker selection was conducted
individually, resulting in the identification of the top 20 metabolites
for each trained model. The selected metabolite names are
detailed in Table 4.

3.5 Classification using selected metabolite
features

Following themetabolite feature selection based on SHAPvalues
derived separately from each trained RF, LR, GB, and SVM model,
the classification models underwent retraining, and subsequent
performance scores were computed. At this stage, rather than
employing traditional feature selection methods, we utilized the
explanations provided by the trained models to identify the most
influential features. In this context, SHAP values were calculated
separately for each trained model, and the features with the highest
SHAP values were selected for inclusion in the new model. Thus,
the SHAP method served a dual purpose in this study, facilitating
both feature selection and model interpretability. Similar to the
initial stage, the nestedCV method was employed, with five inner
folds and 10 outer folds. Model hyper-parameters were optimized
utilizing spaces in themodels, encompassing all metabolites. Table 5
shows the interfold std values for each metric and the average of the
metric scores obtained in each fold formodels trained using selected
metabolite features.

Upon examining the results presented in Table 4, it is evident
that the LR model, trained with selected metabolite features derived
from the SHAP values calculated from the trained SVM model,
outperforms other models across all metrics, excluding precision.
Notably, this model also exhibits the lowest std values for these
metrics. Comparatively, when contrasted with models utilizing all
metabolites, the selection of metabolites using SHAP values appears
to enhance model performance. To explore potential changes
in metabolite importance when only the 20 selected metabolite
features were employed, SHAP values were recalculated in the newly
trained models, elucidating the models. Consequently, models
trained in the initial stage, utilizing all metabolites, were also
explained utilizing the SHAP method, doubling as the feature
selection method. Figure 3 illustrates metabolite importance graphs
for each classification utilized as a feature se-lection method
in the first stage, alongside the model exhibiting the highest
accuracy in the second stage. Specifically, the importance graphs
for the RF, SVM, RF, and LR models trained in the second
stage were sequentially drawn for the RF, LR, GB, and SVM
models, respectively, trained using all metabolite features in the first
stage.

In Figure 3, following the feature selection, it is evident that
the importance of metabolite features alters within the trained
models. Notably, despite this variation, “glutamic acid” retained
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TABLE 2 Hyper-parameter space information and optimum hyper-parameter values for the pro-posed models.

Model name Hyper-parameter name Hyper-parameter space Optimum hyper-parameters for
each fold

Random Forest

n_estimators 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550 300, 400, 50, 200, 500, 50, 100, 350, 150, 300

max_depth 2, 5, 10, 15, 20 10, 6, 4, 8, 6, 8, 12, 8, 4, 4

min_samples_split 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 15, 5, 20, 20, 15, 15, 20, 20, 5, 15

Gradient Boosting

n_estimators 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550 300, 500, 500, 400, 400, 450, 200, 300, 250, 400

max_depth 2, 5, 10, 15, 20 5, 2, 5, 2, 15, 5, 2, 2, 5, 2

learning_rate i/10 for i in range(1, 31, 1) 0.8, 1.1, 1.3, 1.3, 1.5, 0.6, 0.3, 0.7, 0.8, 0.6

Logistic Regression
C 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25 0.625, 16, 1, 8, 8, 0.0625, 4, 0.03125, 8, 1

max_iter i for i in range (100, 1,501, 50) 100, 150, 300, 100, 150, 100, 500, 150, 150, 100

Support Vector Machine

C 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25 8, 8, 32, 8, 16, 32, 4, 32, 16, 16

max_iter i for i in range (100, 1,501, 50) 1,500, 300, 150, 550, 1,350, 350, 300, 250, 750,
1,150

TABLE 3 Performance values of proposed models calculated on the testing dataset.

Model
name

Accuracy Std of
accuracy

Precision Std of
precision

Recall Std of
recall

Specificity Std of
specificity

RF 84.50% 11.05 88.29% 7.62 82.22% 11.32 70.44% 21.79

LR 82.52% 10.80 83.52% 10.64 82.36% 10.97 79.55% 16.11

GB 84.50% 10.82 86.72% 9.06 82.22% 11.10 79.44% 21.81

SVM 84.50% 11.50 87.46% 8.81 84.26% 11.80 71.44% 21.52

its status as the most crucial metabolites across both models.
Moreover, it emerged as the second most importance metabolite in
the RF model and ranked sixth in importance in LR. Among the
other two metabolites common to all four models, “hypoxanthine”
consistently ranked ninth at worst in all models, while “ornithine”
held the seventh position in the least favourable scenario across
all models. Detailed examination of the model explanations using
SHAP is crucial. Therefore, SHAP waterfall plots for a selected
positive example are presented separately for each model in
Figure 4.

Upon examining these graphs, it is evident that the “glutamic
acid” feature holds significant importance across all models. This
finding aligns with the previously obtained summary SHAP plots,
reinforcing the assumption that this feature plays a crucial role in
model training.

In our study, to further investigate the explanations provided by
SHAP, we examined the correlation between the selected features.
For this purpose, Spearman Correlation coefficients were calculated
between each pair of features. A correlation coefficient between
−0.75 and 0.75 was considered to indicate no significant correlation,
while values between −0.75 and −1 or 0.75 and 1 were interpreted
as indicating a significant correlation. The features identified as

having a significant correlation based on these calculations are
presented in Table 6.

Based on the results of the correlation analysis, it was observed
that there was no correlation among any of the features selected
using SHAP values from the GB model. In contrast, there was a
correlation between two pairs of features selected using SHAP values
from the RF model, a correlation between six pairs of features
selected using SHAP values from the RF LRmodel, and a correlation
between seven pairs of features selected using SHAP values from
the RF model.

4 Discussion

There are some studies in the literature that describe biomarkers
for BC detection using targeted metabolomics technology, an
emerging field with significant diagnostic potential. However, these
studies, using slightly differentmethodologies, have yielded different
sets of biomarkers, creating diagnostic challenges in clinical practice.
Additionally, some studies have produced predictive prognostic
models after biomarker discovery, while others have not.
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FIGURE 2
Feature importance of classification models calculated using SHAP values.
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TABLE 4 Metabolite names that selected using SHAP values computed
by trained classification models.

Model name Selected metabolite names

RF 1-Methyladenosine, 7-ketocholesterol, Acetylcarnitine,
Adenosine, Alanine, Cystine, GDP, Glutamic acid,
Hypoxanthine, Inosine, Ornithine, Phenylalanine,

Pipecolinic acid, Pyroglutamic acid, Tyrosine, Adipic acid,
Suberic acid, Succinate, Urate, alpha-KG

LR Caffeine, Carnitine, Choline, Citrulline, Creatinine,
Cystine, Glutamic acid, Homoserine, Hypoxanthine,

Isoleucine, L-Alloisoleucine, Leucine, Lysine, Methionine,
Norleucine, Ornithine, Phenylalanine, Serine,

Tryptophan, Valine

GB 2-Aminoisobutyric acid, 3-Indolepropionic acid,
7-ketocholesterol, Acetylcarnitine, Acetylglucosamine,

Caffeine, Citrulline, Cystine, Glutamic acid,
Hypoxanthine, N,N′-Dicyclohexylurea,

N-Acetylethanolamine, Ornithine, Pyroglutamic acid,
Serine, Tryptophan, Uridine, Allantoin, Succinate, Urate

SVM Acetylcarnitine, Betaine, Caffeine, Carnitine, Citrulline,
Creatinine, Glutamic acid, Hippuric acid, Homoserine,
Hypoxanthine, Isoleucine, L-Alloisoleucine, Leucine,
Lysine, Norleucine, Ornithine, Phenylalanine, Proline,

Threonine, Tryptophan

The current study used open access data analysing plasma
samples fromBC patients (102 cases) and healthy controls (99 cases)
by targeted LC-MS/MS and found that identification of biomarker
metabolites/features in BC enables accurate BC classification. The
results of the study contribute to the existing literature by developing
sensitive BC biomarkers and a more comprehensive metabolomic
understanding of the pathogenic profile of BC.

In this study, SHAP was used as a feature selection tool due
to its unique additive nature and interpretive powers in high-risk,
clinical prediction modeling. SHAP values provide a consistent
and mathematically robust approach to quantify feature importance
by assigning an importance value to each feature according to
its contribution to model predictions, based on Shapley values
from cooperative game theory. Unlike traditional feature selection
methods, which often rely on global importance scores and may
obscure the contributions of features in specific cases, SHAP offers
sample-level interpretability. This approach allows us to capture the
individual impact of each feature across cases, making it possible
to distinguish not only which features are important on average,
but also their roles in each unique prediction. In addition, unlike
feature selection, SHAP allows us to understand how which levels
(high or low) of each biomarker candidate affect disease risk. Such
a level of granularity is important in biomedical research, where
understanding the distinct impact of biomarkers can be crucial for
patient-specific predictions and personalized treatment strategies.

Predictive models were built based on the original dataset
(without feature selection/biomarker discovery based on SHAP
values) and then predictive models were developed using these
candidate markers after feature selection based on SHAP values of
predictive models and evaluated in terms of sensitivity, recall and
specificity. After the feature selection/biomarker discovery process

based on SHAP values, the performance of ML models increased
significantly.

After biomarker discovery, the results of the optimal prediction
model (LR classifier after biomarker discovery based on SVM-
SHAP) that we integrated with SHAP, an XAI approach,
identified leucine, isoleucine, L-alloisoleucine, norleucine, and
homoserine acids as potential biomarkers for the early diagnosis
of BC, and ML models based on these metabolites showed
outstanding performance. These identified markers may not
only shed light on BC metabolism, but may also lead to
the development of new diagnostic approaches. When we
combined these metabolite markers, the precision, recall, and
specificity for BC classification were 89.50%, 88.38%, and 83.67%,
respectively.

Speers et al. reported that maternal embryonic leucine zipper
kinase (MELK) ex-pression was significantly higher in breast cancer
tissues compared to normal tissue and in TNBC compared to
non-TNBC tissue, and the authors reported that MELK RNA and
protein expression significantly correlated with radioresistance in
BC cell lines (Xie et al., 2023). Another study reported that leucine
deprivation inhibited cell proliferation and induced apoptosis of
MDA-MB-231 and MCF-7 BC cells (Xiao et al., 2016). Singh
et al. reported that leucine restriction was not sufficient to inhibit
mammalian target of rapamycin (mTOR) signaling in most BC cell
lines, but was associated with activation of the survival molecule
Akt, making leucine deprivation an undesirable approach for BC
therapy (Singh et al., 2011). In a biomarker discovery study,
the amino acid Isoleucine (AUROC ≥ 0.85) was identified as a
suitable candidate marker to diagnose and predict BC progression
(Eniu et al., 2019).

The content of several intracellular branched-chain amino
acids (BCAAs), including valine, leucine and isoleucine, has been
reported to decrease after oridonin treatment. The results of this
study suggest that oridonin has potent anti-tumor activity in vitro
and in vivo and has potential as an adjuvant to BC treatment
regimens. BCAAs are essential amino acids for the human body,
and tumor tissues take up BCAAs from surrounding tissues or
the bloodstream (Neinast et al., 2019). Therefore, high plasma
levels of BCAAs have been as-sociated with cancer development
(Mayers et al., 2014). Branched-chain amino acid transaminase 1
(BCAT1), which catalyzes the catabolism of essential BCAAs such
as leucine, isoleucine and valine, plays an important role in amino
acid metabolism. It can convert BCAAs into the corresponding
branched-chain α-keto acids and then into α-ketoglutarate by
transferring amino acids to produce glutamic acid, which can
further promote the growth of BC cells (Zhang and Han, 2017).
These branched-chain keto acids can be further oxidized to
form acetyl-CoA and/or succinyl-CoA to feed the TCA cycle or
contribute substrates to fatty acid synthesis (Mossmann et al.,
2018). In a study that found that intracellular BCAT1 expression
was significantly reduced after oridonin treatment, it was reported
that this may have reduced intracellular nutrient and energy
production. Since amino acids, including BCAAs, can also act
as upstream regulators of mTOR activity (Jung et al., 2021), the
authors also examined proteins involved in the mTOR signaling
pathway. Western blot analysis revealed that the expression of
mTOR, PI3K and AKT decreased significantly after oridonin
treatment.
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FIGURE 3
Metabolite importance of classification models calculated using SHAP values after feature selection.

The biomarkers identified in the current study in BC
management may not only facilitate treatment selection but also
play an important role in clinical decision-making processes.

Additionally, these molecular signatures may provide clinicians
with a nuanced understanding of the heterogeneous nature of
BC, allowing them to precisely tailor therapeutic interventions.
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FIGURE 4
Waterfall diagram of classification models calculated using SHAP values after feature selection.
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TABLE 6 Correlations between selected attributes according to SHAP
results obtained from trained Machine Learning models.

Model name Correlated
feature 1

Correlated
feature 2

LR Isoleucine L-Alloisoleucine

LR Isoleucine Leucine

LR Isoleucine Norleucine

LR L-Alloisoleucine Leucine

LR L-Alloisoleucine Norleucine

LR Leucine Norleucine

RF Pipecolinic acid Pyroglutamic acid

RF Adipic acid alpha-KG

SVM Homoserine Threonine

SVM Isoleucine L-Alloisoleucine

SVM Isoleucine Leucine

SVM Isoleucine Norleucine

SVM L-Alloisoleucine Leucine

SVM L-Alloisoleucine Norleucine

SVM Leucine Norleucine

Moreover, the biomarker-driven prediction model proposed
in this study may be promising in determining prognosis
by enabling the classification of patients into risk categories
and optimizing therapeutic strategies. Consequently, inte-
gration of biomarker profiling into routine clinical practice
may be beneficial in the personalized management of BC
and is important in targeted therapies and improved patient
outcomes.

5 Limitations

The primary limitation of this study is the lack of an
independent validation cohort, which limits the external validity
and generalizability of the developed predictive models. Although
we used nested cross-validation to address the lack of an external test
set and minimize the risk of overfitting, an independent validation
in a multicenter setting is important to confirm the applicability of
the model to larger populations. Future studies that include larger
and more diverse cohorts from multiple institutions may provide
a stronger basis for evaluating and improving the performance
of the model in different clinical settings. Moreover, the models
developed in this study primarily classify BC patients according to
their metabolomic profiles, which is consistent with the primary
aim of the study to accurately predict BC through the identification
of metabolomic biomarkers. Subsequent studies may benefit

from integrating patients’ clinical data and incorporating multi-
omics information to improve the predictive performance of the
models.

6 Conclusion

In biomarker discovery and prognostic prediction models, XAI
plays an important role in the fight against cancer. The application
of XAI applications in medicine has provided a great advantage in
obtaining fast and accurate diagnostic results and comprehensive
treatment planning. The findings of this study demonstrated the
usefulness of the targeted LC-MS/MS analysis-based method for
the discovery of BC biomarkers and underlined the importance of
hybrid interpretable prediction models combining ML and XAI.
In addition, it was determined that SHAP explanations allowed
obtaining clinical interpretations of the optimal model with the
highest performance in distinguishing BC and understanding
the effect of biomarker metabolites, which are the input of the
model, on BC.
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