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Introduction: Esophageal squamous cell carcinoma (ESCC) accounts for over
90% of all esophageal tumors. However, the molecular mechanism underlying
ESCC development and prognosis remains unclear, and there are still no
effectivemolecular biomarkers for diagnosing or predicting the clinical outcome
of patients with ESCC. Here, we used bioinformatics analysis to identify potential
biomarkers and therapeutic targets for ESCC.

Methodology:Differentially expressed genes (DEGs) between ESCC and normal
esophageal tissue sampleswere obtained by comprehensively analyzing publicly
available RNA-seq datasets from the TCGA and GTEX. Gene Ontology (GO)
annotation and Reactome pathway analysis identified the biological roles of
the DEGs. Moreover, the Cytoscape 3.10.1 platform and subsidiary tools such
as CytoHubba were used to visualize the DEGs’ protein-protein interaction
(PPI) network and identify hub genes, Furthermore our results are validated by
using Single-cell RNA analysis. Results: Identification of 2524 genes exhibiting
altered expression enriched in pathways including keratinization, epidermal
cell differentiation, G alpha(s) signaling events, and biological process of cell
proliferation and division, extracellular matrix (ECM) disassembly, and muscle
function. Moreover, upregulation of hallmarks E2F targets, G2M checkpoints,
and TNF signaling. CytoHubba revealed 20 hub genes that had a valuable
influence on the progression of ESCC in these patients. Among these, the
high expression levels of four genes, CDK1 MAD2L1, PLK1, and TOP2A, were
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associated with critical dependence for cell survival in ESCC cell lines, as
indicated by CRISPR dependency scores, gene expression data, and cell line
metadata. We also identify the molecules targeting these essential hub genes,
among which GSK461364 is a promising inhibitor of PLK1, BMS265246, and
Valrubicin inhibitors of CDK1 and TOP2A, respectively. Moreover, we identified
that elevated expression of MMP9 is associated with worse overall survival
in ESCC patients, which may serve as potential prognostic biomarker or
therapeutic target for ESCC. The single-cell RNA analysis showed MMP9 is
highly expressed in myeloid, fibroblast, and epithelial cells, but low in T cells,
endothelial cells, and B cells. This suggests MMP9’s role in tumor progression
and matrix remodeling, highlighting its potential as a prognostic marker and
therapeutic target.

Discussion: Our study identified key hub genes in ESCC, assessing their
potential as therapeutic targets and biomarkers through detailed expression
and dependency analyses. Notably, MMP9 emerged as a significant prognostic
marker with high expression correlating with poor survival, underscoring its
potential for targeted therapy. These findings enhance our understanding of
ESCC pathogenesis and highlight promising avenues for treatment.

KEYWORDS

esophageal squamous cell carcinoma, the Cancer Genome Atlas, differentially
expressed genes, protein-protein interaction, network analysis

1 Introduction

Cancer poses a significant threat to improving life expectancy
as it remains one of the leading causes of global deaths (Bray et al.,
2021). The preliminary data shows that it is the leading cause of
mortality before the age of 70 in most countries worldwide. Since
the last decade, cancer incidence and mortality rates have risen
sharply around the globe, with 19.3million new cases and 10million
cancer deaths worldwide in 2020 (Sung et al., 2021). It is estimated
that more than 1,670 people will die of cancer every day in the
United States by 2023 (Siegel et al., 2023). Among the malignancies
of the gastrointestinal (GI) tract, esophageal cancer (EC) accounts
for 3.2% of all the newly diagnosed cancer patients in the world,
which is behind colorectal (10.2%) and stomach (5.7%) cancer
(Bray et al., 2018). With an annual incidence of 572,000 & 47,000
and 509,000 & 42,000 deaths, EC is the 6th & 4th most common
cause of cancer-related deaths worldwide (Siegel et al., 2018), and
in India, respectively (Bray et al., 2018). Esophageal Squamous cell
carcinoma (ESCC) and Esophageal adenocarcinoma (EAC) are the
two most common kinds of EC, each with its own set of risk factors
and pathological characteristics (Rustgi and El-Serag, 2014). While
the ESCC arises from squamous epithelium, EAC is developed by
intestinal metaplastic epithelial cells. However, ESCC continues to
be themajor type of cancer inmanyAsian countries, including India
(80%) (Zhang et al., 2012). In contrast, the highest EAC instances
were reported in Northern and Western Europe, North America,
and Oceania (46% of the total global EAC cases (Rustgi and El-
Serag, 2014).

The mechanism underlying ESCC is complicated and embraces
a broad spectrum of hazards that contribute to its rapidly
increasing incidence. There are two primary types of risk factors:
inheritable and environmental factors. Environmental factors
include alcohol and tobacco consumption, low vegetable and fruit

intake, and low socioeconomic status (Sardana et al., 2018). As for
EAC, almost all cases are complicated by precancerous lesions
called Barrett’s esophagus, mainly derived from gastroesophageal
reflux disease, a common condition throughout the human
population (Coleman et al., 2018). Early-stage EC can be effectively
treated with curative surgery, except for advanced cases with
limited therapeutic strategies (Mocanu et al., 2015). Considering
the differences in underlying biology, prognosis, patterns
of recurrence, and response to currently available therapeis
(Lieberman et al., 1995; Siewert and Ott, 2007; Bandla et al.,
2012), these EAC and ESCC subtypes should not be treated
similarly for drug development and therapeutic interventions
(Cancer Genome Atlas Research Network et al., 2017), that may
result in low therapy response and poor patient prognosis. Given its
highly invasive nature and poor prognosis among gastrointestinal
malignancies, a majority of people die from ESCC, placing a heavy
burden on the international economy (Domper Arnal et al., 2015).
The 5-year overall survival (OS) rate for patients with ESCC remains
low at 10%–20% (Yu et al., 2016). In recent years, several molecular
biomarkers with potential value in predicting the development of
EC have been screened through high-throughput techniques, which
can also help to reveal the molecular characteristics of cancer cells
to predict the prognosis of patients (Yang et al., 2015). Despite these
clues, the molecular mechanisms underlying ESCC development
remain unclear, and there is a lack of effective molecular biomarkers
to diagnose and predict the prognosis of ESCC.

Exploring pathological mechanisms of diseases based on
bioinformatics theories has become an increasingly important
and effective method (Hernández et al., 2020). With bioinformatics
analysis, researchers can gain comprehensive knowledge regarding
the studied diseases from molecular data. More crucially, it
can provide novel insight leading to early diagnosis, definitive
treatment, and survival prediction (Keerthikumar, 2017). Previous
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research in bioinformatics has yielded some achievements in
ESCC knowledge, such as identifying associated genes and
pathways and altered methylation associated with ESCC pathology
(Peng et al., 2017; He et al., 2018). However, the analytical ability of
ESCC has been limited due to insufficient sample size and a lack of
in-depth evaluation of key genes that play a dominant role in the
malignant development of ESCC.

This study analyzed ESCC RNAseq databases from TCGA and
GTEX to identify DEGs between tumor and normal esophageal
tissues through an integrated analysis of the datasets. The main
biological functions of the identified DEGs were then explored
by Gene Ontology (GO) annotation, Reactome pathways analysis,
and msigDB cancer hallmark analysis. In addition, the protein-
protein interaction (PPI) network of DEGs was used to identify
the hub genes, which strongly influence pathogenesis. The core
of our approach lies in network construction. By weaving a
tapestry of interactions between DEGs, we identify “hub genes”
occupying central positions and exerting potential control over
cellular processes. To translate these insights into targeted therapy,
we integrate data fromDepMap, a comprehensive resourcemapping
genetic dependencies in cancer cells. This allows us to pinpoint hub
genes with pronounced vulnerabilities, offering promising targets
for drug intervention. Furthermore, by analyzing survival data
within TCGA, we explore the predictive potential of hub genes.
This investigation seeks to identify those whose expression levels
correlate with patient survival, potentially acting as early indicators
of disease progression or treatment response. By illuminating the
interplay between dysregulated pathways, central hub genes, and
their therapeutic and prognostic implications, this research strives
to unveil a roadmap for improved ESCC management. Our findings
can potentially guide the development of targeted therapies, enhance
predictive accuracy, and ultimately translate into better outcomes for
ESCC patients.

2 Methodology

2.1 Data collection and pre-processing

Gene expression data was retrieved from the UCSC Xena
platform using the UCSC Xena Tools R package. Specifically, the
RNA-Seq data sourced from the UCSC TOIL Recompute project
was extracted and analyzed. RSEM software package, including
TCGA, TARGET, and GTEX samples, was used to quantify the data.
The expression data included a cohort of 753 samples (TCGA: 91
tumors, 11 matched normal, GTEX: 651 normal). The Clinical and
survival data was obtained from cbioportal, incorporating relevant
clinical variables from TCGA pan-cancer and TCGA firehose
legacy datasets.

Before downstream analysis, the data was pre-processed to
ensure the accuracy of the results.The pre-processing steps included
the back-transformation of expected log-transformed count data
from Xena Toil to potential zeros, refining of data to include normal
samples from GTEX and primary tumor samples from TCGA,
exclusion of non-coding genes and omission of data retrieved from
the TARGET database. These data acquisition and pre-processing
steps yielded a curated dataset for investigating gene expression,
clinical characteristics, and survival outcomes in ESCC.

2.2 Identification of differentially expressed
genes

DEGs were identified between cancer and normal samples
using the limma package in R programming software (Ritchie et al.,
2015). Significant DEGs were selected based on log2 fold change
value ≥2 and p-value <0.05. Before analysis, potential outliers and
genes lacking expression across all samples were filtered out to
remove unwanted noise in the data. Normalization by upper quartile
function was executed, ensuring robust scaling across varying
library sizes. A contrast between gene expression profiles of TCGA
samples with GTEX normal tissues was made using specialized
Limma functions. Moreover, Voom transformation was applied
before model fitting to address technical and biological variations in
RNA-sequencing data. The data space was thus optimized, aligning
variance closer to the mean.

2.3 Gene set enrichment analysis

The Gene Enrichment Analysis (GSEA) of high-confidence
genes was done using cluster Profiler (Wu et al., 2021), and
msigDB enrichment (Subramanian et al., 2005; Liberzon et al.,
2015), in R programming software. Gene Ontology - Biological
Process (GO-BP) terms and Reactome pathways were analyzed
with a significant p-value cut off of <0.05. Using a cluster
Profiler, the enrichment of significant DEGs was assessed
through permutation tests. Furthermore, the msigDB was
employed for hallmark gene set enrichment analysis on filtered
DEGs, revealing broad functional themes relevant to the
disease context.

2.4 Construction of protein-protein
interaction network

A PPI of the genes enriched in GO-BP, Reactome pathways,
and cancer hallmark gene sets was constructed using the
STRING database v12.0 (Szklarczyk et al., 2011). The network of
identifiers was visualized using Cytoscape Visualization Software
version 3.10.1 (Shannon et al., 2003). In Cytoscape, the y file
algorithm layout was applied to reveal interconnectivity patterns
among interacting genes. The protein interaction data was
combined with curated gene sets to form a valuable resource
for exploring disease mechanisms and identifying therapeutic
targets.

2.5 Identification of hub genes

The CytoHubba plugin within Cytoscape was employed to
identify key genes within the PPI network (Shannon et al., 2003;
Chin et al., 2014). Genes were selected based on the bottleneck
algorithm embedded in CytoHubba (Przulj et al., 2004). Identifying
such bottleneck genes can reveal master regulators and key drivers
of cellular processes. Based on the bottleneck analysis, we selected
the top 20 ranked hub genes for further investigation.
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2.6 Cellular dependence and therapeutic
targeting of hub genes

The top 20 identified hub genes within the PPI network
were considered a starting point for developing novel therapeutic
strategies against ESCC. Hubs were filtered out depending on
ESCC survival and druggable dependencies, making them ideal
targets for therapeutic intervention. This was done using the
DepMapproject,acomprehensiveplatformofferinglarge-scalegenetic
perturbation data across multiple tumor types. Utilizing DepMap
23Q4 data (Tsherniak et al., 2017), we acquired critical datasets,
includingCRISPR dependency scores (“DepMap Public 23Q4+Score,
Chronos”),Geneexpressiondata,andCell linemetadata.Wenarrowed
our analysis to specific cell lines related to ESCC and the previously
identified hub genes. Subsequently, we accessed drug sensitivity data
through the DepMap portal, specifically the “PRISM Repurposing
Primary Screen,”whichprovides viability fractions for cancer cell lines
treated with various drug doses.The drcR and ggplot R packages were
utilizedtofit thedrugsensitivitydata forhubgenes intheESCCcontext
and visualize the fitted data, respectively. Hub genes exhibiting both
essentiality and druggable dependencies stand as prime candidates
for further preclinical and clinical studies, potentially leading to the
development of novel therapeutic strategies.

2.7 Survival analysis of hub genes

To assess hub gene predictability for patient outcomes in ESCC,
we conducted Cox regression analysis and Kaplan-Meier survival
analysis. Cox Regression Analysis - Both univariate and multivariate
Cox regression analyses were performed using the survival and
ezcox packages in R programming software. The method measured
the correlation between individual hub gene expression and overall
survival in ESCC patients. In the multivariate analysis, age, stage, and
gender served as covariates, controlling for potential confounders and
enhancing the robustness of assessing the independent prognostic
value of hub genes (Koletsi and Pandis, 2017).

Kaplan-Meier Survival Analysis - This method was implemented
using the survminer package in R programming software to
visualize the relationship between hub gene expression and patient
survival times (Goel et al., 2010). Patients were categorized into high
and low-expression groups based on the median expression level
of each hub gene. Kaplan-Meier curves were generated for each
group, depicting the proportion of patients surviving with increasing
time. Log-rank tests with p-values <0.05 were used to evaluate the
statistical significance of differences in survival between the high
and low-expression groups.

2.8 Single cell analysis

Single-cell transcriptomics data was obtained from the GEO
database throughGEOqueryRpackge (Davis andMeltzer, 2007).The
data was sequenced using with 10x genomics platform comprising
of 64 samples stained CD45 negative (non-immune cells) and CD45
positive (immune cells), out of which 60 were of ESCC patients and 4
adjacent normal tissues. The data was in the form of raw UMI count
matrices of CD45 negative and positive with cell counts of 97,631

and 111,028, respectively. The UMI count matrices were processed
through the Seurat R package, first low-quality cells were filtered out
with low RNA counts and high mitochondrial gene content with a
threshold of not <200 and >5. The data was normalized using the
“Log Normalize” method using the Normalize Data function, and
variable features were identified for downstream analysis using the
Find Variable Features function (Leydesdorff and Bornmann, 2011).
Further data was log-normalized and scaled using the scale Data
function, and dimensionality reduction was performed through PCA
(Sachin, 2015). The clustering was done with a graph-based method
Louvain algorithm with a resolution 0.6 and neighbor identification
through KNN, where K was set to 30 (Abdulla and Khasawneh,
2022). As per the reported cutoffs, the same number of clusters and
their markers were identified as reported in the previous studies. The
annotationwasdoneusing the available annotateddata.Theclustering
results were visualized through the UMAP plot and gene expression
of MMP9 among cells was visualized through violin plots.

3 Results

3.1 Overview of ESCC patient
demographics and characteristics

This study drew upon a well-defined patient cohort from TCGA
containing 93 individuals diagnosed with ESCC. Most patients were
male (n = 81, 87%), with only a minority being female (n = 12,
13%). The median age at diagnosis was 57 years (interquartile range:
51–64). The cancer stages based on the American Joint Committee
on Cancer (AJCC) staging system are distributed as follows - Stage
I: 6.7%, Stage II: 59.0%, Stage III: 30.0%, and Stage IV: 4.4%. 3
Patientshadunknowncancerstages.PatientshadpredominatedGrade
2 (G2) histological grade (53%) followed by Grade 3 (G3): 23.0%,
Grade 1 (G1): 15.0%, and Unknown Grade (GX): 9.7% (Table1). This
distribution indicates a relatively balanced representation of early and
advanced disease stages, allowing for comprehensive analysis across
the disease spectrum. The GTEX dataset used had a total of 651
esophagus tissue samples. These samples were predominantly from
the squamous region of the distal esophagus, at least 4 cm above
the gastroesophageal junction. These esophageal samples represented
normal tissues from healthy individuals.The donor demographics for
the esophagus tissue collection in GTEX was skewed toward males.
There were 415 male donors (64%) and 236 female donors (36%).

3.2 Identification of MMPs as a major
regulator of ESCC

AfterTCGAandGTEXdata retrieval, the statistical criteria on p<
0.05 and 2 log FC≥ 0.2were utilized for further analysis. 15,711DEGs
between ESCC and normal Esophageal samples was identified, and
rigorous filtering identified 2,524 genes exhibiting altered expression,
including (1,227 downregulated genes and 1,297 upregulated
DEGs). The remaining 13,187 genes did not show significant
differential expression (Figure 1A). Further characterization of the
DEGs revealed fascinating insights into potential drivers of ESCC
pathogenesis. Notably, matrix metalloproteases (MMPs), known for
their involvement in ECM remodeling and tumor invasion, were
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TABLE 1 Clinical characteristics of esophageal squamous cell carcinoma samples.

Characteristics TCGA ESCC cohort

N = 931

Stratification Patients, (n %) Stratification Patients, (n %)

Age (Years) 51–64 57 Alcohol history 67 74%

Gender  Female 12 (13%) Clinical grade  G1 14 (15%)

 Male 81 (87%)  G2 49 (53%)

Tumor site  Distal 39 (42%)  G3 21 (23%)

 Mid 41 (45%)  GX 9 (9·7%)

 Mid |Distal 4 (4·3%) Clinical stage  I 6 (6·7%)

 Proximal 6 (6·5%)  II 53 (59%)

 Proximal| Mid 2 (2·2%)  III 27 (30%)

T stage  T1 7 (7·7%)  IV 4 (4·4%)

 T2 32 (35%) N stage  N0 52 (57%)

 T3 48 (53%)  N1 29 (32%)

 T4 4 (4·4%)  N2 6 (6·6%)

M stage  M0 81 (90%)  N3 3 (3·3%)

 M1 3 (3·3%)  NX 1 (1·1%)

 M1A 1 (1·1%) Race  Asian 44 (49%)

 MX 5 (5·6%) Black or African American 5 (5·6%)

Survial Status  Deceased 32 (34%)  White 41 (46%)

 Living 61 (66%)

1Median (IQR); n (%)

prominently featured among the top 50 most upregulated genes. This
finding aligns with the aggressive nature of ESCC and emphasizes
the potential involvement ofMMPs in ESCCprogression. Conversely,
myosin family genes, essential for various cellular processes, including
muscle contraction and cell movement, were enriched among the top
50 downregulated genes (Figure 1B). This downregulation suggests
a potential disruption of cellular motility and contractility in ESCC,
highlighting another potentially important aspect of ESCC biology.

3.3 Gene Ontology - Biological process
enrichment analysis

GO-BP terms were performed on high-confidence genes with a
p-value cut-off of <0.05 for statistical significance. The upregulated
DEGs were significantly enriched in cell division, cell cycle process,
cell cycle, mitotic cell cycle, ECM disassembly, and collagen
catabolic process (Figure 2A).These findings highlight the enhanced
proliferative capacity of ESCC cells, facilitating tumor progression

and metastasis. Downregulated DEGs and the muscle system
process were significantly enriched inmuscle function.This suggests
a potential loss of contractile capacity in ESCC cells, which could
contribute to impaired esophageal motility (Figure 2B).

3.4 MSigDB cancer hallmark analysis
highlights key pathways in ESCC
progression

Reactome pathways were searched for up and downregulated
DEGs with a p-value of <0.05 set as the statistical cut-off. The
upregulated DEGs were significantly enriched in terms like
the formation of the cornified envelope, cell cycle checkpoint,
and mitotic spindle checkpoint pathways; additionally, pathways
like Polo-like kinase mediated events, ECM organization, and
keratinization emphasizing the aberrant cell cycle control in
ESCC (Figure 2C). Furthermore, the downregulated DEGs were
significantly enriched in muscle contraction, neuronal system,
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FIGURE 1
(A) The volcano plot illustrates the differential gene expression profile between TCGA-ESCC tumor samples and GTEX Esophageal normal tissue
samples. Upregulated genes (n = 1,297), identified with a logFC (Logarithm of Fold Change) ≥ 2 and p-value <0.05, are highlighted in red, indicating
higher expression in tumors. Downregulated genes (n = 1,227), meeting the criteria of LogFC ≤2 and p-value <0.05, are depicted in blue, signifying
lower tumor expression. Genes with non-significant differential expression (n = 13,187) (p-value ≥0.05) are represented in grey. The LogFC threshold
reflects the logarithmic ratio of expression levels between TCGA-ESCC tumors and GTEX normal tissue. In contrast, the significance threshold ensures
statistical relevance in the identified gene expression changes (B). The heatmap represents the top 100 DEGs, comprising 50 upregulated and 50
downregulated, identified between Esophageal Squamous Cell Carcinoma (ESCC) and GTEX datasets. Each row in the heatmap corresponds to an
individual gene, while each column represents a distinct sample. The color spectrum employed in the heatmap signifies gene expression levels, with
red denoting higher expression and blue indicating lower expression. The top 50 upregulated genes are depicted in shades of red, reflecting increased
expression in ESCC compared to GTEX. Conversely, the top 50 downregulated genes are represented in shades of blue, signifying decreased
expression in ESCC relative to GTEX.

ion homeostasis” and G alpha (s) signaling events, GPCR ligand
binding, and PLC β-mediated events pathways (Figure 2D),
indicating disrupted ionic balance and signaling pathways,
therefore these alterations might contribute to tumorigenesis and
progression in ESCC.

3.5 msigDB cancer hallmark analysis

This analysis offers a broad overview of fundamental
biological processes by identifying broad functional themes
potentially impacting the disease context. Hallmarks like E2F
Targets, G2M Checkpoint, Mitotic Spindle, and “TNFα Signaling
were significantly upregulated. These findings align with the
observed enrichment in cell cycle and proliferation-related
pathways, further supporting the aggressive nature of ESCC.
Also, downregulating hallmarks like Myogenesis and Adipogenesis
suggest potential suppression of differentiation pathways in ESCC
(Table 2).

3.6 Construction of the PPI network

Based on the functional enrichment analysis revealing
prominent roles of cell cycle and ECMdegradation in ESCC, further
investigation focused on these pathways at the protein level. A
curated set of 365 DEGs enriched in these pathways was employed
to construct a PPI network. The PPI network exported by STRING
comprised 365 nodes and 2,462 edges, which were visualized in

Cytoscape (Figure 3). The modular interaction network was viewed
as statistically enriched due to the enrichment p-value (p < 1.0e-16).

3.7 Identification and validation of
differentially expressed hub genes

The CytoHubba plugin identified the top 20 hub genes based
on bottleneck algorithm ranking in the PPI network (Table 3),
exhibiting high connectivity and potentially acting as critical
regulators; these genes probably play crucial roles in the incidence
and development of ESCC. These hub genes were categorized
based on their functional association with either cell cycle or
ECM degradation pathways. Interestingly, seven hub genes (CDK1,
ECT2, KIF20A, MAD2L1, PLK1, SFN, and TOP2A) were linked to
cell cycle regulation, highlighting the significance of this process
in ESCC pathogenesis. Meanwhile, thirteen hub genes (CDH1,
COL3A1, DSP, DDR1, ITGA6, KLK7, KRT17, KRT6A, MMP7,
MMP9, PKP3, SDC1, and WNT3A) were associated with ECM
degradation, reflecting the importance of this pathway in disease
progression. To further validate the functional significance of the
identified hub genes, the expression boxplots of the hub genes, based
on TCGA and GTEX data, involved a comprehensive comparison
of expression levels for all 20 hub genes between the tumor group
(n = 91) and the normal group (n = 661). The results demonstrated
that these hub genes were upregulated in the tumor group compared
to the normal group. P-values (2.6E-49 to 1.4E-5), and the median
log2 fold change (log2FC) between the two groups ranged from
1.8 to 10.6, providing strong evidence for their altered expression
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FIGURE 2
Dot plots representing the top 10 upregulated (A) and downregulated (B) Gene Ontology (GO) Biological Processes (GO-BP) associated with
Esophageal Squamous Cell Carcinoma (ESCC). In each plot, individual dots represent specific GO-BP terms, and the dot size corresponds to the
number of enriched genes within each biological process. The color gradient from blue to red indicates the significance level, with deeper red shades
representing more significant enrichment and blue shades reflecting less significance. For the top 10 upregulated GO-BP terms (A), the larger dots in
warmer colors highlight biological processes with more enriched genes that play a role in ESCC. Conversely, in the top 10 downregulated GO-BP
terms (B), larger dots in warmer colors denote biological processes where many genes are downregulated in ESCC (C, D) Bar plots showcasing the top
10 upregulated (C) and downregulated (D) Reactome pathways associated with Esophageal Squamous Cell Carcinoma (ESCC). Each bar in the plot
corresponds to a specific Reactome pathway, and the color gradient from blue to red signifies decreasing p-values, indicating increasing significance.
In plot 2C, larger bars in warmer colors represent Reactome pathways with higher upregulated genes, showcasing key biological processes
contributing to ESCC. Conversely, in plot 2D, larger bars in warmer colors denote Reactome pathways where many genes are downregulated in ESCC,
providing insights into suppressed pathways.

and substantial up- or downregulation of the hub genes in ESCC
compared to normal tissues (Figure 4).

3.8 Hub genes as potential therapeutic
targets

To further explore the potential therapeutic implications of
the identified hub genes, their dependency in ESCC cell lines
was investigated (Figure 5A). displays the heatmap depicting the
expression of hub genes across 22 ESCC cell lines.

The study investigated the expression of four essential
hub genes—CDK1, MAD2L1, PLK1, and TOP2A-as critical
dependencies for cell survival in ESCC cell lines. These
genes were identified using CRISPR dependency scores, all
≤ −1, indicating a strong dependence on these genes for
cell viability.

Next, the study identified available molecules that could
target these essential hub genes. Among the screened compounds,
GSK461364 emerged as a promising PLK1 inhibitor. BMS265246
and Valrubicin were identified as effective inhibitors of CDK1 and
TOP2A, respectively. Unfortunately, no readily available inhibitor
was found for MAD2L1.

Dose-response plots were generated to illustrate the effect of
these inhibitors on ESCC cell lines. The majority of the ESCC cell
lines demonstrated sensitivity to GSK461364 and Valrubicin at sub-
micromolar concentrations. BMS265246 also showed efficacy, with
sensitivity observed at micromolar concentrations (Figures 5B–D).
These findings highlight the potential of targeting essential hub
genes, particularly PLK1, TOP2A, and potentially CDK1, for
therapeutic intervention in ESCC. GSK461364 and Valrubicin
appear promising candidates for further investigation, warranting
further studies to establish their specific efficacy and safety in ESCC
treatment.
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TABLE 2 List of cancer hallmarks identified through enrichment analysis of differentially expressed genes in ESCC.

Cancer hallmarks Pathway status Net enrichment
score

No. of enriched
genes

p-value p-adjust q-value

G2M Checkpoint Upregulated 3.94 56 1.0e-10 1.3e-09 8.1e-10

E2F Targets Upregulated 3.72 45 1.0e-10 1.3e-09 8.1e-10

Mitotic Spindle Upregulated 3.22 29 3.8e-09 3.7e-08 2.3e-08

TNFα Signaling Upregulated 2.64 31 1.3e-05 9.9e-05 6.2e-05

MToRC1 Signaling Upregulated 2.44 25 1.8e-04 1.2e-03 7.4e-04

P53 Pathway Upregulated 2.30 12 3.3e-04 1.8e-03 1.1e-03

Interferon ɣ Response Upregulated 2.27 24 4.6e-04 2.2e-03 1.4e-03

Estrogen response Upregulated 2.06 33 1.1e-03 4.7e-03 2.9e-03

Glycolysis Upregulated 2.03 29 5.2e-03 2.0e-02 1.2e-02

Inflammatory Response Upregulated 1.97 28 5.8e-03 2.0e-02 1.3e-02

Interferon-α Response Upregulated 1.84 13 1.2e-02 3.4e-02 2.1e-02

KRas Signaling Upregulated 1.70 20 1.1e-02 3.2e-02 2.0e-02

Myogenesis Downregulated −3.87 59 1.0e-10 1.3e-09 8.1e-10

Adipogenesis Downregulated −1.84 10 1.0e-02 3.2e-02 2.0e-02

FIGURE 3
Network diagram visualizing the top enriched genes in Cell Cycle and ECM Degradation pathways. Red nodes highlight hub genes, with varying shades
indicating log2 fold change, lighter shades for moderate changes, and darker shades for significant alterations. Gray edges depict gene interactions. A
color gradient bar illustrates log2 fold change values.
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TABLE 3 Top 20 hub genes identified based on network analysis. The table categorizes these genes into two groups: 13 related to extracellular matrix
remodelling and 7 related to cell cycle regulation.

Rank∗ Hub gene Gene name Pathway Involved in

1 CDH1 Cadherin-1 ECM Cell-cell adhesion & gene transcription

2 ECT2 Epithelial cell transforming 2 Cell-Cycle Cell proliferation & migration

3 SFN Stratifin Cell-Cycle Cell differentiation & apoptosis

4 MMP9 MMP9 ECM ECM degradation & cell invasion

5 KRT17 Keratin 17 ECM Epithelial cell structure & function

6 MMP7 MMP 7 ECM ECM degradation & cell invasion

7 TOP2A Topoisomerase II α Cell-Cycle DNA replication & transcription

8 MAD2L1 MAD2 like 1 Cell-Cycle Cell cycle regulation & spindle checkpoint control

9 PKP3 Plakophilin 3 ECM Desmosome formation and cell-cell adhesion

10 ITGA6 Integrin α6 ECM Cell-matrix adhesion and cell signaling

11 CDK1 Cyclin-dependent kinase 1 Cell-Cycle Cell cycle regulation & mitosis

12 DDR1 Discoidin domain receptor 1 ECM Cell adhesion and migration

13 COL3A1 Collagen type III α 1 chain ECM ECM structure and function

14 KRT6A Keratin 6A ECM Epithelial cell structure and function

15 WNT3A Wingless-type MMTV integration site family member 3A ECM Cell proliferation, differentiation & migration

16 KLK7 Kallikrein-related peptidase 7 ECM Proteolysis and cell signaling

17 SDC1 Syndecan 1 ECM Cell adhesion, cell signaling, and ECM organization

18 PLK1 Polo-like kinase 1 Cell-Cycle Cell cycle regulation and mitosis

19 KIF20A Kinesin family member 20A Cell-Cycle Microtubule-based intracellular transport

20 DSP Desmoplakin ECM Desmosome formation and cell-cell adhesion

∗ ∗Rank is based on The Bottleneck Algorithm∗

ECM, extracellular matrix; MMP, matrix metalloprotease

3.9 Prognostic analysis of hub genes in
ESCC reveals MMP9 as a potential
biomarker

The association between hub genes and prognosis in ESCC
was explored in this study, employing a two-pronged approach:
cox regression analysis and Kaplan-Meier survival analysis. The
Cox regression analysis investigated that none of the hub genes
demonstrated a statistically significant association with overall
survival (p > 0.05), as illustrated in Figure 6A. This finding
suggests that hub genes may not possess sufficient prognostic
power in ESCC. While the study further evaluated their impact
on survival rates through Kaplan-Meier analysis, interestingly,
MMP9 emerged as the sole gene exhibiting a significant log-
rank p-value (p = 0.026), as depicted in (Figure 6B). Patients
with high MMP9 expression displayed worse overall survival
than those with low expression. This finding highlights the
potential prognostic value of MMP9 in ESCC, independent

of the lack of individual significance observed in the Cox
regression analysis.

3.10 Validation using single-cell RNA
analysis

Single-cell RNA analysis revealed that MMP9, MMP7, KRT17,
KLK7, TOP2A, CDK1, and KRT6A were highly variable features
among the CD45-negative cells. In contrast, MMP9, MMP7, PLK1,
KRT17, and SDC1 showed variability in CD45-positive cells in
ESCC samples (Figures 7A, B). Further cell annotation identified
eight main cell types, with a resolution of 0.6, resulting in clusters
that aligned with known cell markers. Consequently, we annotated
the CD45-negative cells as follows: epithelial cells (44,730 cells),
fibroblasts (37,213 cells), endothelial cells (11,267 cells), pericytes
(3,102 cells), and fibroblastic reticular cells (1,319 cells). The CD45-
positive cells were categorized into T cells (69,278 cells), B cells
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FIGURE 4
Box plots comparing the expression of 13 Extracellular Matrix genes (A) and seven cell cycle-related hub genes (B) between GTEX normal and
Esophageal Squamous Cell Carcinoma (ESCC) tumor samples. The boxes depict the interquartile range of gene expression, with a horizontal line
indicating the median. The presence of asterisks (∗ ) signifies p-values less than 0.0001, highlighting significant differences in expression between
normal and tumor samples.

(22,477 cells), and myeloid cells (19,273 cells) (Figures 7C, D).
MMP9 was found to be differentially expressed across various cell
types in ESCC. Specifically, it was highly expressed in myeloid
cells, fibroblasts, and epithelial cells. In contrast, MMP9 exhibited
low expression in T cells and endothelial cells and negligible
expression in pericytes, fibroblastic reticular cells, Figures 7C, D
and B cells (Figures 7E–F).

4 Discussion

ESCC is a major global health challenge with multifactorial
etiology, including genetic and environmental components. Efforts
to detect inchoate changes have attenuated the development of
cancer and have even had some success in prevention (Alsop
and Sharma, 2016). Therefore, seeking predictive indicators and
therapeutic markers for ESCC is vital. In our research, 15,711
DEGs were screened via R programming software. Then, GO-
BP function enrichment analysis, Reactome pathway enrichment

analysis, and msigDB cancer hallmark analysis were applied to
filter the DEGs. A PPI network was constructed using STRING to
obtain hub genes likely central to the ESCA pathological process.
Most previous studies in this field stopped at this point, resulting
in limited clinical usefulness. Therefore, we implemented further
analysis targeting the crucial hub genes identified previously in
our study. We focused on assessing screened hub genes with
greater possibility as new therapeutic targets for treating ESCC.
We conducted an expression analysis of these hub genes, explored
their potential therapeutic implications and dependency in ESCC
cell lines, identified inhibitory molecules targeting these essential
hub genes, and conducted the prognostic analysis. These analyses
showed the potential of these hub genes as biomarkers for appraisal
in therapy.

This study conducted a detailed analysis of a patient cohort
comprising 93 individuals diagnosed with ESCC, sourced from
TCGA.The cohort had a significant gender disparity, with 87%of the
patients beingmale (n = 81) and only 13% female (n = 12).Thismale
predominance is noteworthy and may warrant further investigation
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FIGURE 5
(A) Paired heatmaps depicting gene expression of hub genes and CRISPR dependency scores across 22 Esophageal Squamous Cell Carcinoma (ESCC)
cell lines. The color gradients in the heatmaps provide a quick reference for gene expression levels and cellular dependence, with lighter shades
representing lower expression or dependency and darker shades indicating higher levels (B–D). Dose-response plots illustrating the effect of PLK1
inhibitor GSK461364 (5B), CDK1/2 inhibitor BMS265246 (C), and TOP2A inhibitor Valrubicin (D) on ESCC cell line viability. The X-axis represents the
concentration of the respective inhibitors-PLK1 inhibitor GSK461364, CDK1/2 inhibitor BMS265246, and TOP2A inhibitor Valrubicin- while the Y-axis
illustrates the corresponding viability fraction of ESCC cells. These graphs succinctly portray the relationship between increasing drug concentrations
and the resultant viability of ESCC cell lines, offering a visual representation of the potential effectiveness of each inhibitor in influencing cell viability in
the context of ESCC.

into gender-specific risk factors or differences in disease progression.
The median age at diagnosis for this cohort was 57 years, with an
interquartile range of 51–64 years. This suggests that ESCC tends
to be diagnosed in middle-aged to older adults, highlighting the
importance of age-related screening and early detection strategies.
Moreover, the distribution of cancer stages, according to the AJCC
staging system, revealed that Stage II was the most prevalent,
affecting 59.0% of patients.

Additionally, most patients had Grade 2 (G2) histological
tumors, accounting for 53% of the cases, which was higher than
the other histological grades. Furthermore, the characterization of
the DEGs revealed fascinating insights into potential drivers of
ESCC pathogenesis. Notably, MMPs, known for their involvement
in ECM remodeling and tumor invasion, were prominently featured
among the top 50 most upregulated genes. Previous studies have
shown that MMP9 was associated with ESCC cell migration and
invasion, and the Stat3 signaling pathway controlled its expression
in vitro (Tsukamoto et al., 2023). This finding aligns with the
aggressive nature of ESCCand emphasizes the potential involvement
of MMPs in ESCC progression.

Moreover, upregulation of hallmarks like “E2F Targets,” “G2M
Checkpoint,” “Mitotic Spindle,” and “TNFα Signaling.” These
findings align with the observed enrichment in cell cycle and
proliferation-related pathways, further supporting the aggressive
nature of ESCC. Furthermore, hallmarks like “Myogenesis” and
“Adipogenesis” suggest potential suppression of differentiation
pathways in ESCC. Notably, the upregulation of interferon
and TNF signaling pathways suggests the presence of a “hot”
tumor phenotype in some ESCC subtypes. Furthermore, the
enrichment of DEGs in cell proliferation and division, including
“collagen catabolic process,” “cell division,” “regulation of cell cycle
process,” and “mitotic cell cycle,” and ECM disassembly, suggested
that multitudes of DEGs were closely associated with nuclear
activities, like cell division. Cell division as a functional category
includes mechanisms to properly orient and position the mitotic
spindle, which is essential because incorrect activity related to the
spindle contributes to disease, even carcinogenesis (Canman and
Cabernard, 2018; López-Lázaro, 2018); these findings highlight
the enhanced proliferative capacity of ESCC cells. Also, the most
abundant matrix protein polymers are collagens, which increase
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FIGURE 6
(A) Displays a forest plot summarizing the impact of hub gene expression on overall survival in Esophageal Squamous Cell Carcinoma (ESCC), using
hazard ratios (HR). Each line represents an individual hub gene, with position indicating HR and confidence intervals (B) Kaplan-Meier curves illustrate
the difference in overall survival between high and low MMP9 expression groups over time. These visuals efficiently convey the collective influence of
hub genes on survival and highlight the prognostic significance of MMP9 expression in ESCC.

tumor tissue stiffness, regulate tumor immunity, and promote
metastasis (Discher et al., 2017; Yamauchi et al., 2018). Therefore,
enrichment in terms of collagen catabolism is of great significance
in the development of ESCC.

Moreover, reactome pathway enrichment analysis revealed that
upregulated DEGs were also enriched in keratinization pathways,
cornified envelope formation, and epidermal cell differentiation.
According to previous literature, enrichment analysis showed
that the keratinization process was focused, and a series of
genes were related to the development of esophageal cancer
(Song et al., 2023). In one study, keratinization is accompanied
by apoptosis and is ultimately associated with tumor progression
in patients with ESCC (Ohbu et al., 1995). Also, enrichment in
cell cycle checkpoint and mitotic spindle checkpoint pathways
further emphasizes the aberrant cell cycle control in ESCC.
Therefore, these alterations might contribute to tumorigenesis and
progression in ESCC.

Furthermore, the top 20 hub proteins are closely associated with
the cell cycle, tumorigenesis, and ECM degradation (Gobin et al.,
2019; Liu et al., 2019; Quintero-Fabián et al., 2019; Wu et al., 2019;
Xie et al., 2020; Pandey et al., 2021; Hosseini and Nemati, 2023).
To further explore the potential therapeutic implications of the
identified hub genes, their dependency in ESCC cell lines was
investigated. Among 20 selected hub genes, the expression of
four essential hub genes, CDK1, MAD2L1, PLK1, and TOP2A,
is critical for cell survival in ESCC cell lines. Previous studies
showed that low expression of CDK1 was associated with a
worse relapse‐free survival rate in ESCC patients (Dong et al.,
2018). TOP2A has been reported to be a sensitive and specific

marker of active proliferating cells, indicating its importance
in cancer research (D’arcy and Gabrielli, 2017). A large-scale
retrospective study has demonstrated that TOP2A high expression
is associated with poor differentiation and neural invasion of
esophageal cancer and is also an independent risk factor affecting
the prognosis of esophageal cancer (Xu et al., 2015). Also, The
expression of PLK1 is upregulated in various tumors, which is often
associated with poor prognosis, including ESCC (Takai et al., 2005;
Feng et al., 2009).

Next, our study focused on identifying available molecules
targeting these essential hub genes. GSK461364 emerged as a
promising PLK1 inhibitor, while BMS265246 and Valrubicin
were identified as inhibitors of CDK1 and TOP2A, respectively.
Unfortunately, no readily available inhibitor was found for
MAD2L1. These findings highlight the potential of targeting
essential hub genes, particularly PLK1, TOP2A, and potentially
CDK1, for therapeutic intervention in ESCC. GSK461364 and
Valrubicin appear promising candidates for further investigation,
warranting further studies to establish their specific efficacy and
safety in ESCC treatment. The Cox regression analysis finding
suggests that hub genes may not possess sufficient prognostic
power in ESCC. While the study further evaluated their impact
on survival rates through Kaplan-Meier analysis, interestingly,
MMP9 emerged as the sole gene exhibiting a significant log-
rank p-value (p = 0.026). Patients with high MMP9 expression
displayed worse overall survival than those with low expression.
This finding highlights the potential prognostic value of MMP9 in
ESCC, independent of the lack of individual significance observed
in the Cox regression analysis.
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FIGURE 7
Single-cell RNA Seq analysis (A, B) Among CD45-negative cells, MMP9, MMP7, KRT17, KLK7, TOP2A, CDK1, and KRT6A were identified as highly variable
features. In contrast, in EC samples, MMP9, MMP7, PLK1, KRT17, and SDC1 exhibited significant variability among CD45-positive cells (C, D) Cell
annotation identified eight main cell types at a resolution of 0.6, resulting in the same clusters reported with cell markers. The annotated cell types are
as follows: CD45-negative epithelial cells (44,730), fibroblasts (37,213), endothelial cells (11,267), pericytes (3,102), and fibroblastic reticular cells (1,319).
For CD45-positive cells, the annotated types are T cells (69,278), B cells (22,477), and myeloid cells (19,273) (E, F). MMP9 was highly expressed in
myeloid cells, fibroblasts, and epithelial cells, had low expression in T and endothelial cells, and was negligible in pericytes, fibroblastic reticular cells,
and B cells.

In our single-cell RNA analysis, we observed that MMP9,
among other markers, was highly variable across different cell
types in ESCC samples, particularly in CD45 negative epithelial
cells and CD45 positive myeloid cells. Notably, MMP9 exhibited
differential expression patterns, being highly expressed in myeloid,
fibroblast, and epithelial cells while showing low or negligible
expression in T cells, endothelial cells, pericytes, fibroblastic
reticular cells, and B cells. The high expression in myeloid cells
suggests significant involvement in immune-mediated processes
and inflammation within the TME. This could contribute to
creating pro-tumorigenic inflammatory conditions. ElevatedMMP9
expression facilitates ECM remodeling in fibroblasts and epithelial
cells, potentially enhancing tumor invasion and metastasis. The
presence of MMP9 in these stromal and cancer cells may promote
tissue restructuring, angiogenesis, and cancer cell migration.
The lower expression in T cells might indicate a secondary
role in adaptive immune responses, possibly through cytokine-
mediated effects. The minimal expression in endothelial cells,
pericytes, fibroblastic reticular cells, and B cells suggests that
MMP9’s direct effects on vascular remodeling and lymphoid
tissue architecture are limited. This expression pattern aligns with
the bulk RNA-seq finding that underlines higher MMP9 levels
correlate with worse overall survival in EC patients, highlighting
its potential as a prognostic marker and therapeutic target,
particularly through its actions in myeloid, fibroblast, and epithelial
cell populations.

5 Conclusion and limitation of study

We identified 7,055 differentially expressed genes (DEGs)
in ESCC, including 3,312 downregulated and 3,743 upregulated
genes and 20 hub genes. Four critical genes- CDK1, MAD2L1,
PLK1, and TOP2A are essential for ESCC cell survival,
suggesting their potential as prognostic biomarkers or
therapeutic targets. GSK461364 is a promising PLK1 inhibitor,
while BMS265246 and Valrubicin target CDK1 and TOP2A,
respectively. DEGs are involved in key processes and pathways
like cell cycle, ECM disassembly, collagen catabolism, and
several signaling events. Hallmarks such as E2F Targets,
G2M Checkpoint, and TNFα Signaling are upregulated, while
Myogenesis and Adipogenesis are downregulated, highlighting
the aggressive nature of ESCC and potential suppression
of differentiation pathways. Moreover, MMP9, among other
markers, was highly variable across different cell types in ESCC
samples, and its high expression of MMP9 correlates with
poor survival.

These findings provide insights for future predictive
biomarker exploration and targeted therapies in ESCC.
While we have initiated validation, further experimental
studies are required to verify our results. Despite this
limitation, our data provide valuable insights to guide
future exploration of predictive biomarkers and molecular-
targeted therapy for ESCC.
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