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Screening and identification of
the hub genes in severe acute
pancreatitis and sepsis

Si-Jiu Yang1†, Yan Luo1†, Bao-He Chen1 and Ling-Hui Zhan1,2*
1Department of Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine,
Xiamen University, Xiamen, China, 2The School of Clinical Medicine, Fujian Medical University, Fujian,
China

Background: Severe acute pancreatitis (SAP) is accompanied with acute onset,
rapid progression, and complicated condition. Sepsis is a common complication
of SAP with a high mortality rate. This research aimed to identify the shared
hub genes and key pathways of SAP and sepsis, and to explore their functions,
molecular mechanism, and clinical value.

Methods: We obtained SAP and sepsis datasets from the Gene Expression
Omnibus (GEO) database and employed differential expression analysis and
weighted gene co-expression network analysis (WGCNA) to identify the shared
differentially expressed genes (DEGs). Functional enrichment analysis and
protein–protein interaction (PPI) was used on shared DEGs to reveal underlying
mechanisms in SAP-associated sepsis. Machine learning methods including
random forest (RF), least absolute shrinkage and selection operator (LASSO)
and support vector machine recursive feature elimination (SVM-RFE) were
adopted for screening hub genes. Then, receiver operating characteristic (ROC)
curve and nomogram were applied to evaluate the diagnostic performance.
Finally, immune cell infiltration analysis was conducted to go deeply into the
immunological landscape of sepsis.

Result: We obtained a total of 123 DEGs through cross analysis between
Differential expression analysis and WGCNA important module. The Gene
Ontology (GO) analysis uncovered the shared genes exhibited a significant
enrichment in regulation of inflammatory response. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis revealed that the shared genes
were primarily involved in immunoregulation by conducting NOD-like receptor
(NLR) signaling pathway. Three machine learning results revealed that two
overlapping genes (ARG1, HP) were identified as shared hub genes for SAP and

Abbreviations: AP, Acute pancreatitis; SAP, Severe acute pancreatitis; GEO, Gene Expression Omnibus;
FC, Fold change; WGCNA, Weighted gene co-expression network analysis; DEG, Differentially
expressed gene; PPI, Protein–protein interaction; RF, Random Forest; LASSO, Least absolute shrinkage
and selection operator; SVM-RFE, Support vector machine recursive feature elimination; ROC, Receiver
operating characteristic; AUC, area under the curve; SsGSEA, single sample gene set enrichment
analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NLR, NOD-like
receptor; NF-κB, NF-kappa B; SIRS, systemic inflammatory response syndrome; SOFA, sequential organ
failure assessment; qSOFA, quick SOFA; PCT, Procalcitonin; NLRP3, NOD-like receptor family pyrin
domain-containing 3; ARG1, Arginase 1; HP, Haptoglobin.
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sepsis. The immune infiltration results showed that immune cells played crucial
part in the pathogenesis of sepsis and the two hub genes were substantially
associated with immune cells, which may be a therapy target.

Conclusion: ARG1 and HPmay affect SAP and sepsis by regulating inflammation
and immune responses, shedding light on potential future diagnostic and
therapeutic approaches for SAP-associated sepsis.
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1 Introduction

Acute pancreatitis (AP) is a pancreatic inflammatory disorder
most usually caused by digestive enzyme activation and self-
digestion (Boxhoorn et al., 2020). Most patients in clinical practice
experience a self-limiting course; however, approximately 20%–30%
of cases will progress to severe acute pancreatitis (SAP), often
accompanied by pancreatic infection and peripancreatic necrosis,
potentially leading to life-threatening complications (Lee and
Papachristou, 2019). Sepsis is one of the common complications
of SAP. It is defined as a dysregulated host response to infection
characterized by organ dysfunction and has become the main cause
of death in SAP patients (Singer et al., 2016; Mifkovic et al., 2006).

Previous studies have shown that SAP can lead to systemic
inflammation and immune dysfunction, paving the way for the
development of sepsis (Beger and Rau, 2007; Kylänpää et al., 2012).
The initial pancreatic injury can trigger an inflammatory response,
leading to a waterfall effect and systemic inflammatory response
syndrome (SIRS) (Kylänpää et al., 2012). Subsequently, the response
shifted from pro-inflammatory to anti-inflammatory. During this
transformation process, the patient’s intestinal barrier may be
disrupted, leading to bacterial translocation and pancreatic tissue
necrosis, causing secondary infections, and increasing the risk
of sepsis (Garg and Singh, 2019). The immune response initially
aimed at controlling inflammation may become dysregulated,
and excessive immune response can lead to the progression of
sepsis (Kylänpää et al., 2010). After the occurrence of sepsis,
excessive inflammation and immune response are intertwined,
manifested as overwhelming systemic infection causing a large
amount of inflammatory and uncontrolled immune responses,
ultimately leading to multi-organ dysfunction (Mira et al.,
2017). The association between SAP and sepsis underscores the
complex interaction between inflammation, immunity, and disease
progression.

In the past, it was generally believed that pancreatic necrosis
in SAP patients was predispose to sepsis, but recent studies
have shown that pancreatic injury is an important pathological
change in sepsis, which in turn increases the risk of death in
patients with SAP-associated sepsis (Li et al., 2020; Chaari et al.,
2016). Moreover, SAP combined with sepsis increases mortality
rate by 80% (Mifkovic et al., 2006). Therefore, early identification
and timely intervention are the key to reduce the risk of SAP-
associated sepsis and improve its prognosis.

Although SAP and sepsis share some similar pathophysiological
factors, the underlying mechanism of their relationship is unclear,
particularly in the setting of cellular and molecular. Inflammation
is a typical feature of these two diseases, and the immune state

caused by inflammation may affect these two diseases through
complex mechanisms, but their immune prospects still require
further research. In thiswork,we identified the shared hub genes and
key pathways between SAP and sepsis and preliminarily explored
their functions and molecular mechanism using bioinformatics
methods. Finally, we assessed the immunological landscape of
sepsis and explored the association between shared hub genes with
immunocytes to acquire a better knowledge of the pathogenesis of
sepsis, which could potentially provide valuable insights for clinical
therapeutics.

2 Materials and methods

2.1 Data collecting

Figure 1 illustrated the flowchart of the bioinformatics analysis
technique employed in this study. The gene expression data for
SAP and sepsis was sourced from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013). The SAP gene
expression dataset GSE194331 based on GPL16791 platform
consists of 30 SAP patients and 32 healthy controls. The sepsis
microarray dataset GSE95233 comprises 51 sepsis patients and
22 healthy controls, while the GSE57065 collection contains 28
sepsis patients and 25 healthy controls. Both sepsis datasets are
based on the GPL570 platform. To ensure maximum consistency
and quality, we specifically selected unprocessed blood samples
from sepsis patients on the first day as the experimental group
for both mentioned datasets. Batch correction was performed
on two sepsis datasets by the “removeBatchEffect” function in R
software (version 4.2.3) “limma” package, resulting in a combined
sepsis expression data consisting of 79 sepsis patients and 47
healthy control samples. Dataset GSE28750 related to sepsis and
GSE101462 related to pancreatitis was utilized as the externa
validation dataset. Table 1 displays a comprehensive description of
the datasets.

2.2 Processing of data and identification of
differentially expressed genes (DEGs)

In the GSE194331 high-throughput bulk sequencing dataset,
we first extracted the raw gene data. Then, we use R software to
read and organize the data. To ensure that the data meets the
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FIGURE 1
Flow chart of this study.

TABLE 1 Basic information of GEO datasets used in the study.

GSE series Disease Origin Case Control Platform Group

GSE149331 Pancreatitis PBMC 30 32 GPL16791 Discovery cohort

GSE95233 Sepsis PBMC 51 22 GPL570 Discovery cohort

GSE57065 Sepsis PBMC 28 25 GPL570 Discovery cohort

GSE101462 Pancreatitis PBMC 10 4 GPL10588 Validation cohort

GSE28750 Sepsis PBMC 10 20 GPL570 Validation cohort

format requirements of the difference analysis, we need to confirm
that the expression matrix is the count data and that the row
names correspond to the gene names. Afterwards, we used the
“trans_exp_new” function of the “tinyarray” package to convert the
ensemble gene names to gene symbols. Subsequently, genes with
low expression levels were filtered out, and only those expressed
in over 50% of the samples were retained. Finally, we conducted
differential gene analysis using the “limma”, “DESeq2”, and “edgeR”
package respectively, with a significance threshold set at |log2 Fold

change (logFC)| > 1.5 and P-value < 0.05 (Ritchie et al., 2015;
Love et al., 2014; Robinson et al., 2010).

In the GSE95233 and GSE57065 microarray datasets, we
conducted background calibration and normalization using R
software. When several probes correspond to the same gene,
a random de-weighting method is used, that is, for duplicate
probes, only the data of the first probe is retained. As mentioned
earlier, the “removeBatchEffect” function was also used to remove
batch effects after combining the two sepsis datasets. Finally, we
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conducted differential gene analysis using the “limma” package
using a significance threshold of |logFC| > 1 and P-value
< 0.05 (Ritchie et al., 2015).

To visualize the expression patterns of DEGs, the “ggplot2” and
“pheatmap” packages were conducted to create volcano plots and
heatmaps, respectively.

2.3 Weighted gene co-expression network
analysis (WGCNA)

WGCNA is a biological analysis method used to identify
highly collaborative gene sets, which can cluster genes with
similar expression patterns and analyze the correlation between
modules and specific traits or phenotypes (Langfelder and
Horvath, 2008). We first performed hierarchical clustering
analysis on all samples to assess the presence of significant
outliers. Then, co-expression networks were then constructed
using a soft-thresholding approach. We determined the optimal
soft threshold power (β = 4) and constructed biologically
significant scale-free networks. Subsequently, we established
network connectivity using the topology overlap matrix and
identified gene modules through the dynamic tree cutting
method. After obtaining the gene modules, we calculated the
module eigengene based on the first principal component
of gene expression profiles within the module and assessed
the correlation between module eigengenes and sample traits
(disease status). The correlation between module eigengenes
and traits represents the correlation between the modules and
traits. Finally, we visualized the eigengene network, identified
highly correlated modules that are significant in relation to
sepsis, and evaluated Module Membership and Gene Significance
of the genes in these modules to demonstrate the module
significance.

2.4 Identification of shared genes and
functional enrichment analysis

Initially, we employed a Venn diagram to determine the
intersection of SAP DEGs, sepsis DEGs, and sepsis WGCNA
key module genes, identifying the overlapping genes as
core shared genes (Chen and Boutros, 2011). Subsequently,
we conducted functional enrichment analysis on these
shared genes. Gene Ontology (GO) provides fundamental
annotations and standardized descriptions of gene products,
encompassing biological processes, cellular locations, and
activities (The Gene Ontology Consortium, 2019). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) elucidates
significant metabolic pathways, which are particularly crucial
in mechanistic research (Ogata et al., 1999). The GO and
KEGG enrichment analysis is primarily carried out using
the R packages “clusterProfiler”, “enrich”, and “ggplot2”. The
statistical difference threshold for GO terms was established
as an adjusted p-value by Benjamini–Hochberg method of
<0.05, while for KEGG pathway, it was set at a p-value
of <0.05.

2.5 Construction of the protein-protein
interaction (PPI) network

To investigate the connectivity among shared genes, the Search
Tool for Retrieval of Interacting Genes (String) database (https://
www.string-db.org) was employed to construct PPI network.
The STRING database is an online bioinformatics database that
provides information on gene and protein interactions. Using the
STRING database, the list of proteins was queried to retrieve
potential interactions. Then, the resulting data was used to
construct PPI network where nodes represent proteins and edges
represent interactions. Subsequently, the PPI networkwas visualized
using the Cytoscape software (version 3.9.1) (Szklarczyk et al.,
2021; Shannon et al., 2003). For node ranking based on network
features, we primarily employed the CytoHubba plug-in within
Cytoscape. 11 topological evaluation approaches are available in
CytoHubba, with Maximal Clique Centrality (MCC) exhibiting
superior performance in accurately identifying essential proteins
from PPI networks (Chin et al., 2014). Therefore, we used the MCC
analysis method to select the highest 10 nodes. Finally, the top 10
core genes obtained from the intersection were visualized.

2.6 Machine learning

We used three machine learning methods to narrow down
the scope of identifying hub genes. The Random Forest (RF)
algorithm is designed to reduce variance and improve prediction
stability by integrating multiple decision trees. It constructs decision
trees using gene subsets and assesses feature importance by the
degree to which each gene decreases impurity across the trees
(Biau, 2012). The Least absolute shrinkage and selection operator
(LASSO), a regression-based method, penalizes coefficients to shrink
some gene contributions to zero, effectively performing feature
selection by focusing on genes with non-zero coefficients. It is
characterizedby its ability to increase the accuracy and interpretability
of statistical model predictions (Friedman et al., 2010). The Support
VectorMachineRecursiveFeatureElimination (SVM-RFE)algorithm
utilizes structural riskminimization to enhance learning performance
by reducing empirical errors while keeping relevant variables. It
employs a Support Vector Machine iteratively to rank genes based
on their contribution to classification performance, sequentially
eliminating the least important features to achieve feature gene
selection (Sanz et al., 2018). In the threemachine learningmodels, the
dependent variable was the sepsis disease state, and the independent
variables were overlapping genes identified through differential
analysis and WGCNA of two diseases. Lastly, the common genes
obtained by crossing the overlapping genes in the three machine
learning models and the top 10 genes of PPI were defined as the hub
genes for establishing the diagnostic model of SAP- associated sepsis.

2.7 Evaluation of the diagnostic value of
hub genes

Thenomogramgeneratedby the “rms”Rpackageholds significant
value in the clinical diagnosis of SAP-associated sepsis (Mottola and
Cocconcelli, 2022).Therelative expression levelofhubgenes translates
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to a score on the nomogram graph. The total score of the nomogram
reflects theaggregationof individual scores,which in turncorresponds
tovaryingdiagnosticefficacyforSAP-associatedsepsis,andpotentially
predict its incidence. To assess the diagnostic performance of hub
genes for SAP-associated sepsis, we performed receiver operating
characteristic (ROC) analysis and utilized the area under the curve
(AUC) as the assessment metric. To externally verify our findings,
we retrieved the expression data of DEGs from GSE28750 and
GSE101462 and performed ROC analysis to evaluate the diagnostic
potential value of hub genes.

2.8 Immune infiltration analysis

We employed the CIBERSORT method and single sample
gene set enrichment analysis (ssGSEA) for immune cell infiltration
analysis. CIBERSORT was implemented using the “Cibersort” R
package to quantify the distribution of immune cells in sepsis and
control groups (Steen et al., 2020). ssGSEA was performed by the
“GSVA” R package to excavate the correlation between hub genes
and immune cells (Hänzelmann et al., 2013).

3 Result

3.1 Identification of DEGs in SAP

In the SAP dataset GSE149331, DEGs were screened using the
“limma”, “DESeq2”, and “edgeR” package respectively. A total of
404 overlapping genes were classified as SAP DEGs by those three
algorithms, including 351 upregulated DEGs and 53 downregulated
DEGs. Volcano plots of three algorithms highlighted genes with
significant changes and statistical significance, while heatmap
depicted the similarity in gene expression between DEGs in SAP
dataset (Figures 2A–C, F). PCA plot and the Venn diagram of SAP
DEGs of the three analysis algorithms were shown in Figures 2D, E.

3.2 Identification of DEGs in sepsis

In the sepsis combined dataset, the “limma” algorithm was
employed to identify 880 DEGs. Among these, 526 were upregulated
while354weredownregulated.ThePCAanalysis revealeda significant
bilateral distribution of samples between two groups (Figure 3A).
The volcano plot (Figure 3B) depicted DEGs expression patterns
in sepsis. Figure 3C displayed a cluster heatmap in sepsis dataset.

3.3 WGCNA and key module genes
screening and shared genes identification

WGCNA was performed to excavate the co-expressed gene
modules with the highest connectivity and identify the core
genes in sepsis. To ensure the connections between genes in the
network correspond to a scale-free distribution, we chose a soft-
thresholding power β = 4 (scale-free R2 = 0.9) and estimated the
mean connectivity and scale-free fit index (Figure 4A). Based on
this threshold, we divided the genes in the gene clustering tree

into modules with high similarity and similar expression patterns,
and finally obtained a total of 15 closely related gene modules
(Figure 4D). Subsequently, we created a heatmap (Figure 4B) to
characterize the Topological Overlap Matrix (TOM) between 1,000
randomly selected genes in the data to visualize the gene network.
Furthermore, the relationship between sepsis and genemodules was
showed in Figure 4C, the greenyellow module displayed a highly
significant positive correlation with sepsis (r = 0.66, P < 0.001),
whereas the bule module showed the strongest negative correlation
with sepsis (r = −0.93, P < 0.001). Furthermore, in both greenyellow
and blue modules, a noteworthy correlation was observed between
Gene Significance and Module Membership (r = 0.76 and r = 0.98,
respectively) (Figures 4E, F). Then, a total of 8,266 key genes were
obtained in key modules. Finally, we intersected SAP DEGs, sepsis
DEGs and core genes of WGCNA in sepsis samples, yielding a total
of 123 genes shared by the two diseases (Figure 4G).

3.4 Functional enrichment analysis and
construction of PPI network

To explore potential shared biological processes and
mechanisms underlying SAP-related sepsis, 123 shared genes were
performed GO and KEGG pathways enrichment. Bubble plot was
used for visualizing GO analysis, in which three boxes depicted
the enrichment analysis outcomes of CC, MF, and BP, respectively.
As shown in Figure 5A, GO analysis was substantially enriched in
defense response to bacterium, regulation of inflammatory response,
regulation of peptidase activity. Furthermore, based on the KEGG
analysis (Figure 5B), the shared genes primarily involved in the
NF-kappa B (NF-κB) signaling pathway, NOD-like receptor (NLR)
signaling pathway, and IL-17 signaling pathway. Cnetplot visualized
genes participating in enrichment pathways and displayed the
association between genes and biological concepts as a network.
The GO cnetplot was adopted to present the gene network under
three different terms (Figure 5C).

To evaluate the shared genes interactions between SAP and
sepsis, a PPI network of 82 nodes connected by 295 edges was
performed by the STRING database. We further visualized the
degree of each gene using the CytoHubba plug-in in Cytoscape.
Finally, we selected the top 10most essential genes from the network
for further investigation (Figure 5D).

3.5 Hub genes screening by machine
learning

To narrow down the scope of screening hub genes, three
machine learning methods were adopted. Based on SVM-RFE
results, when the feature genes were 37, the classifier achieved
maximum precision and minimal error (Figures 6A, B). LASSO
regression analysis was performed on 123 shared DEGs, and
after tenfold cross validation, the LASSO algorithm identified 15
characteristic genes at the most suitable λ = 0.004 (Figure 6C).
The RF algorithm was also carried out to rank 123 shared DEGs
according to the importance of each gene. Subsequently, the top
10 characteristic genes with the highest importance were selected
(Figure 6D). In the end, by employing a Venn plot to depict the
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FIGURE 2
Differential expression gene analysis in SAP dataset (A) The volcano map of DEGs by “Deseq2” algorithm. (B) The volcano map of DEGs by “edgeR”
algorithm. (C) The volcano plot of DEGs by “limma” algorithm. (D) The distribution characteristics of samples based on PCA results in GSE149331. (E)
Venn diagram shows that 404 overlapping DEGs in SAP dataset by three algorithms. (F) A heatmap of the DEGs in GSE149331.

intersection of the overlapping genes of three machine learning
algorithms and the top 10 essential genes of PPI, we ultimately
identified two hub genes: ARG1 and HP (Figure 6E).

3.6 Diagnostic value assessment

To enhance the diagnostic and predictive abilities, a nomogram
was established by integrating two hub genes (Figure 7A). To
evaluate the sensitivity and specificity of the hub genes and the
nomogram in diagnosing SAP-associated sepsis, we calculated their
respective AUC values using the ROC curve. Both the two hub genes
and the nomogram exhibited an AUC value of 1.000, indicating
that the nomogram may have a significant diagnostic utility in
SAP-associated sepsis (Figures 7B–D).

We conducted external validation of two hub genes to
assess their diagnostic performance in GSE28750 and GSE101462
datasets, both of which exhibited effective predictive performance.
Figures 8A, D showed the expression patterns of ARG1 and
HP in GSE28750 and GSE101462, respectively. ROC analysis
of each genes yielded an AUC ≥0.800, demonstrating a good
predictive value (Figures 8B, C, E, F).

3.7 Immune infiltration analysis

To explore the immune landscape in sepsis cohorts, immune
cell infiltration was employed by the CIBERSORT and ssGSEA
methods. Figure 9A displayed the proportional distribution of 22
different immune cells in the sepsis and control groups. Comparing
the sepsis group to the control group, Figure 9B revealed a greater
percentage of neutrophils, monocytes, M0 macrophages, naive B
cells, and plasma cells, but a lower percentage of resting Natural
killer cells, Memory B cells, active memory CD4+T cells and
CD8+T cells. Moreover, ssGSEA was utilized to gain insight into the
correlation between two hub genes and the immune cells. Figure 9C
demonstrates a significant correlation between both hub genes
ARG1 and HP with the multiple immune cells in sepsis.

4 Discussion

SAP is a severe pancreatic inflammation characterized by
persistent organ damage, often presenting as necrotizing pancreatitis
with a considerable morbidity and mortality rate that imposes a
social and economic burden (Peery et al., 2022). The course of
SAP has two major death peaks, namely, the SIRS or multiple
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FIGURE 3
Differential expression gene analysis in sepsis combined dataset (A) PCA Plot shows that samples in the sepsis group and control group were clearly
distributed on both sides. (B) The volcano map of DEGs by “limma” algorithm. (C) A heatmap of the DEGs in sepsis combined dataset.

organ failure phase of the first stage (within 2 weeks of onset)
and the infection phase of the second stage (within 4 weeks of
onset) (Oláh et al., 2007). Sepsis is the usual clinical manifestation
at the second stage, characterized by dysregulation of host
inflammatory response and multi-organ dysfunction, with a
high mortality rate (Mifkovic et al., 2006). Therefore, there is an
immediate requirement to explore crucial signaling pathways for
a more comprehensive comprehension of regulatory mechanisms
and to devise innovative biomarkers that can assist in the timely
detection of sepsis associated with SAP.

The SOFA (sequential organ failure assessment) score is a part of
the clinical diagnostic criteria for sepsis, which quantifies the criteria
for organ damage related to sepsis and can predict the mortality
rate of sepsis patients. However, the SOFA score has little reference
significance for predicting the occurrence of sepsis (de Grooth et al.,
2017). The quick SOFA (qSOFA) score is recommended for
screening suspected sepsis, but some studies have indicated that
the qSOFA score has poor ability to identify sepsis and predict
death (Fernando et al., 2018; Hwang et al., 2018). Procalcitonin
(PCT) is considered a promising biomarker that can be used to
guide the use of antibiotics, but its non-specific nature limits its
diagnostic efficacy in clinical applications (Nobre et al., 2008). In
recent years, research on novel biomarkers for sepsis has been
constantly emerging, but so far, none of them have been strongly

proven to be superior (Pierrakos et al., 2020). Previously, there was
no research combining SAP and sepsis to determine diagnostic
biomarkers for SAP associated sepsis and establish a diagnostic
model. For the first time in this research, we have integrated SAP
and sepsis transcriptome and identified hub genes linked to SAP
and sepsis. Furthermore, we have analyzed their shared regulatory
pathways, immune landscape, and clinical implications. We found
that ARG1 and HP are the most important hub genes between
SAP and sepsis, and the NLR signaling pathway is a common
regulatory pathway for these two diseases. Finally, ARG1 and HP
were identified as valuable diagnostic markers and nomogrammaps
were developed to improve early identification of SAP-associated
sepsis. The results of immune infiltration indicated that the two hub
genes were significantly correlated with immune cells andmay serve
as therapeutic targets for SAP-associated sepsis.

The enrichment analyses confirmed that the hub genes between
SAP and sepsis were involved in the NLR signaling pathway.
NLR, a family member of pathogen recognition receptor, is critical
in intracellular ligand recognition (Platnich and Muruve, 2019).
NOD1 and NOD2, two typical NLRs, can be activated by specific
components of bacterial peptidoglycans. Once activated, it may
trigger the downstream NF-κB pathway, resulting in the secretion
of inflammatory chemokines (Caruso et al., 2014). The NOD-like
receptor family pyrin domain-containing 3 (NLRP3) inflammasome,
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FIGURE 4
WGCNA, key module genes screening and shared genes identification (A) The scale-free topology model was utilized to identify the best β value, and β
= 4 was chosen as the soft threshold based on the average connectivity and scale independence. (B) The network heatmap showing the gene
dendrogram and module eigengenes. (C) The heatmap revealing the relationship between module eigengenes and status of sepsis. (D) Dendrogram of
consensus module eigengenes. (E) The correlation plot between the greenyellow Module Membership and the Gene Significance of genes in the
greenyellow module. (F) The correlation plot between the blue Module Membership and the Gene Significance of genes in the blue module. (G) A total
of 123 key genes were identified by taking the intersection between two diseases.
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FIGURE 5
Enrichment analysis of the intersection of genes in sepsis (A) GO analysis of the intersection of genes, including biological process, cellular
component, and molecular function, respectively. (B) KEGG pathway analysis of the intersection of genes. (C) The GO cnetplot describes the link
between genes and biological concepts as a network and visualize genes involving in enrichment pathways. (D) The PPI network of the top 10 core
genes based on Cytoscape plug-in CytoHubba analysis.

which belongs to the NLR family, has also been proven to be linked to
the initiation andprogressionof SAPand sepsis (Danielski et al., 2020;
Ferrero-Andrés et al., 2020). In the context of sepsis,NLRP3 functions
by recruiting and activating caspase-1, leading to release of IL-1β and
IL-18, initiating a cascade of inflammatory reactions that ultimately
leads to substantial inflammation-induced damage and multi-organ
failure (Sahoo et al., 2011). Furthermore, caspase-1mediated immune
cell pyroptosis may lead to immune paralysis in sepsis (Miao et al.,
2011). In another study, activation of the NLRP3 inflammasome
was observed in SAP animal models, and downregulating this
pathway led to alleviation of intestinal injury (Xu et al., 2018).
Collectively, the NLR signaling pathway contributes significantly
to the shared pathophysiology of these two diseases. We speculate

that the inflammation and immune processes mediated by the NLR
signaling pathway are potential mechanisms for the occurrence and
developmentofSAP-associated sepsis.Targeteddownregulationof the
NLR signaling pathway and inhibition of inflammasome activation
may be a promising treatment strategy for SAP-associated sepsis.

Our research indicates that both ARG1 and HP were
upregulated in SAP and sepsis and showed good predictive
properties with an AUC ≥0.800 in both test and validation sets.
Additionally, our study developed a nomogram for diagnosing SAP-
associated sepsis for the first time, which has higher diagnostic value
than independent biomarkers.We can collect peripheral blood from
SAP patients and infer the probability of sepsis occurrence based
on the expression of two hub genes. Our diagnostic nomogram
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FIGURE 6
Machine learning and identification of hub genes. (A,B) Identification of potential shared diagnostic genes by SVM-RFE model.37 genes were selected
based on SVM-RFE with the lowest error and highest accuracy. (C) Based on the Lasso regression algorithm, 15 genes were identified as the potential
candidate genes with the lowest binominal deviation. (D) The top 10 genes were selected and ranked based on the importance score of random forest
algorithm. (E) Venn diagram shows that two hub genes (ARG1, HP) are identified in SAP- associated sepsis.
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FIGURE 7
Nomogram construction and the diagnostic value evaluation in SAP-associated sepsis (A) The visible nomogram for diagnosing SAP-associated sepsis.
(B) The ROC curve of ARG1. (C) The ROC curve of HP. (D) The ROC curve of the nomogram. The ROC curve of each candidate gene and nomogram
showed the significant diagnostic value.

incorporates critical insights into the NLR signaling pathway,
particularly through the hub genes ARG1 and HP, which bridge
SAP and sepsis. These genes are an indispensable part of immune
and inflammatory regulation, and are enriched in the NLR signaling
pathway, which is a common regulatory mechanism of the two
diseases. By focusing on gene expression levels and pathway
activity indicators related to NLR signaling, our model captures the
dynamic immune response in SAP-associated sepsis, improving our
understanding of the disease pathogenesis. This model represents a
significant advancement in SAP and sepsis management, providing
a shift from passive to active patient treatment. The early prediction
of the model can not only guide us in early monitoring and
intervention of SAP patients, prevent SAP from developing into
sepsis, reduce the probability of sepsis occurrence, but also improve
the timeliness and effectiveness of treatment interventions, optimize

patient management strategies, prevent sepsis from developing
to more severe stages, thereby reducing mortality and improving
clinical outcomes.

As an important hub gene between SAP and sepsis, ARG1
(Arginase 1) is a member of the urea hydrolase family and
participates in the metabolism of arginine by catalyzing the
hydrolysis of arginine into urea and ornithine (Wissmann et al.,
1996). More and more evidence confirm that arginase activity is
upregulated during SAP and sepsis (Ding et al., 2022; Reizine et al.,
2022; Chu et al., 2021). A study has found an increase in the
expression and activity of ARG1 in patients with SAP (Ding et al.,
2022). In addition, the expression of ARG1 in neutrophils is
significantly upregulated in sepsis patients, and inhibition of
ARG1 can significantly restore the immune function of CD8+T
cells (Dai et al., 2022). The evidence presented above indicates
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FIGURE 8
Expression pattern validation and diagnostic value (A) Expression of ARG1 and HP in GSE28750. (B) ROC curve of the ARG1 in GSE28750. (C) ROC curve
of the HP in GSE28750. (D) Expression of ARG1 and HP in GSE101462. (E) ROC curve of the ARG1 in GSE101462. (F) ROC curve of the HP in
GSE101462.∗P < 0.05;∗ ∗ ∗ ∗P < 0.0001.

that it may be related to the development and progression of
SAP and sepsis. Arginase has been shown to inhibit T cell
function by downregulating the expression of T cell receptors,
and supplementing with L-arginine can promote T cell survival in
the absence of external cytokines, highlighting the key function of
ARG1 in immune suppression (Geiger et al., 2016). In addition,
arginase competes with nitric oxide synthase for arginine as a
substrate, interfering with carbon monoxide synthase activity
and leading to vascular dysfunction (Hu et al., 2021). ARG1 has
always been considered a classic biomarker in M2 macrophages.
It participates in the antibacterial pathway of polymorphonuclear
granulocytes and can regulatemacrophage function bymetabolizing
arginine, leading to sustained and aggravated inflammatory
responses (Yang and Ming, 2014). We speculate that ARG1 may
participate in the pathological and physiological processes of
these two diseases through the above mechanisms, and arginine
metabolism may be a potential target for controlling infection and
immunity in SAP-associated sepsis.

HP (Haptoglobin) is a protein mainly produced in the liver,
responsible for binding and clearing free hemoglobin. Additionally,
HP is also an acute phase protein and exhibits antimicrobial
properties (Eaton et al., 1982). Its association with inflammatory
diseases is widely recognized (Quaye, 2008). Previous reports have
shown that HP levels increase in both pediatric and adult with sepsis
(Chavez-Bueno et al., 2011; Philip, 2012; Thongboonkerd et al.,

2009). HP levels have been utilized in algorithms to assist in the
diagnosis of sepsis (Philip, 2012). However, there is relatively little
research on haptoglobin in acute pancreatitis. Only one animal
experiment published in 2020 was detected, which showed an
increase in haptoglobin levels observed during the acute phase
of acute pancreatitis (Yoon et al., 2020). Research has found that
β Chains of HP can bind to the adhesion glycoprotein CD22
of B lymphocytes, thereby having an inhibitory effect on the
function of B lymphocytes (Hanasaki et al., 1995). HP can also exert
immune regulatory effects by affecting T cell function and regulating
macrophage polarization (Arredouani et al., 2003; Morimoto et al.,
2022). We assumed that HP may play a potential role in SAP
and sepsis by affecting the intensity of inflammatory response and
activation status of immune cells, but further data is needed.

ARG1 and HP play different but complementary roles in the
pathophysiology of SAP- associated sepsis. ARG1 mainly reflects
immune suppression, while HPmainly reflects inflammatory status.
Their combined analysis can comprehensively evaluate immune
function and inflammatory status, improve the overall predictive
ability and clinical utility of the model. Given the role of ARG1
in immune regulation, ARG1 levels can provide insights into the
immune status and potential prognosis of patients. A higher level
of ARG1 may indicate severe immune suppression, indicating a
higher risk of adverse consequences. Meanwhile, understanding
ARG1 dynamics can also help identify potential therapeutic
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FIGURE 9
Immune cell infiltration analysis (A) The bar plot shows the proportion of immune cells in different samples. (B) The boxplot compares the expression
of immune cells between sepsis and controls. (C) Correlation analysis of immune cell infiltrations with two hub genes.∗P < 0.05;∗ ∗P < 0.01.

targets. By using ARG1 as an important feature gene in the
model, the model can predict which patients may benefit from
treatments aimed at regulating arginine metabolism or enhancing

immune response. HP serves as a valuable marker of inflammatory
status, distinguishing different stages, and types of inflammatory
reactions in SAP-associated sepsis. Incorporating HP levels into
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the model helps identify high-risk patients who may require
more proactive intervention in the early stages. Utilizing both
ARG1 and HP enables the model to achieve more personalized
treatment. Treatment strategies based on ARG1 and HP levels can
more effectively address specific pathophysiological mechanisms,
providing patients with precise medical services and improving
prognosis.

Our immune infiltration analysis suggests that various types
of immune cells are involved in the occurrence and development
of sepsis. Immune cells are pivotal in orchestrating the immune
response and preserving immune homeostasis during sepsis.
Understanding the changes of different immune cell populations in
sepsis and analyzing the quantity, functional status, and interactions
of different immune cell populations can help us gain a deeper
understanding of the development mechanism and predict the
effectiveness of treatment, which may bring new ideas for the
treatment of sepsis. In the initial stage of sepsis, neutrophils serve as
the foremost defensive mechanism against sepsis by virtue of their
rapid migration to the infection site (Tan et al., 2020). Macrophages
polarize towards M1 macrophages and initiate a pro-inflammatory
cascade with neutrophils, releasing a substantial amount of
inflammatory and chemotactic factors (Cavaillon andAdib-Conquy,
2005). In addition, the number and function of B cells and T
lymphocytes have significantly decreased, including a decrease
in antigen presentation ability and a decrease in lymphocyte
proliferation activity (Wiersinga and van der Poll, 2022). Our
research results indicate notable variations in immunological cell
profiles between the sepsis and control groups. The sepsis group
showed an elevation in monocytes, macrophages, and neutrophils,
alongside a decrease in Memory B cell, CD4+T cells, and CD8+T
cells. ARG1 and HP, identified as crucial hub genes between SAP
and sepsis, play a vital role in the immunological response. Our
study found that in sepsis samples, two key genes are positively
correlated with macrophages and regulatory T cells and negatively
correlated with activated B cells and CD8+T cells. This will shed
light on immune-level pathophysiological mechanisms and may
be an essential factor in comprehending the pathogenesis of
SAP-associated sepsis.

Our research has several advantages. We used comprehensive
bioinformatics analysis for the first time to understand the
relationship between these two diseases. WGCNA and three
machine learning algorithms were used to identify potential shared
diagnostic genes, and a nomogram for diagnosing SAP- associated
sepsis was developed for the first time. The validation of external
datasets improved the accuracy of predictions. There are also three
major limitations in this study. Firstly, the data used in this study
was sourced from public databases. Public databases often have
sample bias and the compilation of data from different sources in
public databases leads to inconsistent data quality. However, in our
study, we have expanded the data by integrating different sepsis
datasets to balance the representativeness of different subgroups
and reduce selection bias. At the same time, we applied strict
data preprocessing and standardization techniques when processing
data to alleviate quality inconsistencies caused by different data
collections. Secondly, although we expanded the sample size by
merging two sepsis datasets and using an external validation set
to reduce the risk of overfitting, our study sample size may still be
valid, and theAUCobtained from the experimental results is slightly

perfect, indicating the possibility of overfitting. Finally, our research
findings come from different patient cohorts and have not yet been
validated within the same individual. Therefore, it is necessary
to develop an SAP-sepsis combination model, integrate available
clinical metadata into the model as much as possible, and conduct
extensive functional validation in large-scale studies with sufficient
sample size.

5 Conclusion

ARG1 and HP may affect SAP and sepsis by regulating
inflammation and immune responses, shedding light on
potential future diagnostic and therapeutic approaches for SAP-
associated sepsis.
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