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Editorial on the Research Topic
Insights into glyco-parasitology

“Glycoscience” and “Parasitology” are complex, long-studied fields of science, with
enormous efforts focused on both scientific areas. The combination of “Glyco-parasitology”
brings together the important and unique features of glycans related to parasites, parasite
biology and immune functions, with many questions still unexplored. This is partially
because life cycles, generation of glycans, and functions of glyco-related molecules of
parasites and hosts themselves are complicated and yet to be fully defined. For example,
expression of glycoforms (glycan structures) differ among each life stage of a parasite and
susceptibilities to parasitic infection differ among the strains or individuals in the host
species. These features may create difficulties in merging Glycoscience and Parasitology, but
there are cutting-edge studies happening across the world and we have brought together a
collection of them for this Research Topic, “Insights into Glyco-parasitology”.

It is not a stretch to say that parasitic infections are mediated by glyco-relatedmolecules.
Many of the parasites utilize their glyco-binding molecules, some of which may be
glycosylphosphatidylinositol (GPI)-anchored, to attach to and infect hosts (Loukas and
Maizels, 2000; Petri et al., 2002; Harcus et al., 2009). Some transfer host glycans to
themselves to evade the host’s immune responses (Campetella et al., 2020). In some
cases, glycan-glycan interactions are important to determine and drive parasite-host
interactions (Hall et al., 2020). On the host side, many glycans and glyco-related
molecules of parasites are antigenic to humans, and cause or modulate an immune
response. In this Research Topic, Prasanphanich et al. showed that IgG antibodies,
generated during infection, targeted Schistosoma mansoni complex-type N-glycans with
core α2-xylose and core α3-fucose. These antibodies could kill schistosomula in a
complement-dependent manner. From the results, we can see an exciting possibility for
vaccine development targeting the core xylose/core fucose glycans, and such vaccines are
not yet available towards S. mansoni (Bunte et al., 2022).

Some immune cells attach to and phagocytose the parasites via glycan interactions, and
thereby, the parasites are able to infect and proliferate in the immune cells (Tanaka et al.,
2007; Lefèvre et al., 2013). Membranous surfaces are covered by mucous consisting mainly
of mucins and other glycoproteins, which are used for maintaining the humidity of the
body, protecting from physical damage, retaining beneficial microorganisms and
preventing virulent microorganisms from entering (Garić et al., 2020; Paone and Cani,
2020). Mucins are components of tears, saliva and the mucous layers covering digestive and
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respiratory tracts. Cells are also covered by glycomolecules-the
glycocalyx. These N- and O-glycans on mucins, glycoproteins
and glycolipids often function as the attachment and entry point
for parasites. In this case, parasite glycan-binding proteins (GBPs)
are important for infection. Some of the GBPs serve as virulence
factors with their hemagglutinating, hemolytic and cytotoxic
activities (Singh et al., 2016). If there is a mechanism to prevent
the attachment of parasitic GBPs to glycans and glyco-molecules, or
develop antibodies against carbohydrate recognition domains
(CRDs) of the lectins, the parasites will be stifled in attaching to
host cells, decreasing the impact of disease in humans.

As mentioned above, many of the parasitic glycans are different
from human structures, so our immune systems can recognize those
as foreign antigens and eliminate the parasites from our body. These
glycans can be utilized as diagnostic tools and vaccine targets.
Parasitic glycan-based vaccination may be effective in protecting
from infection, or lessening the symptoms from infection. However,
the story is not that simple. Some types of parasitic glycans can
suppress the host immune response, and thereby, the parasites can
persist in the hosts for many years (van Die and Cummings, 2010).
Trypanosoma spp. utilize their trans-sialidases to transfer host sialic
acids onto parasitic glycans to hide their antigenicity and escape
from host immune recognition, though attempts to generate
vaccines targeting these molecules have been made (Silva et al.,
2009; da Costa et al., 2021). In this aspect, it is important to clarify
which parasitic glycans suppress the host immune response and
which parasitic glycosyltransferases/glycosidases relate to virulence
of the parasites. So far, very few studies have been conducted to
identify such glycans and glycosyltransferases of parasites, although
some glycomics data are available (Hokke et al., 2007) and glycan
synthetic pathways can be drawn (Izquierdo, 2023). In this Research
Topic,Wang et al. reviewedN- andO-linked glycan and GPI-anchor
synthetic pathways of Cryptosporidium parasites by reanalyzing the
Cryptosporidium genomes. The authors assembled elegant diagrams
of glycosylation-related pathways as a comprehensive resource for
the glyco-parasitology research communities.

Another mode of action of parasitic glycans, glycoproteins and
glycolipids is conferred by secretion of molecules from the parasites.
The glyco-related molecules on extracellular vesicles (EVs)
including exosomes may also affect host cells and environments.
Interestingly, S. mansoni EVs contain numerous glycan structures,
including sialylated glycoconjugates that seem to be obtained from
exogenous sources because the parasite cannot synthesize sialic acids
(Dagenais et al., 2022). Kuipers et al. showed life stage-specific
glycosylation of EVs from S. mansoni and those glycans may have an
affect on immune cells through interactions with specific C-type
lectins on the host cells, including MGL and DC-Sign. This research
field is relatively new and we are expecting exciting advancements in
the future.

Finally, biosynthetic and metabolic pathways of parasites can be
targets for drug development, if the pathways are different from
those of hosts. For example, some parasites solely depend on their
energy synthesis from the glycolysis pathway. In this case, if we can
find or develop competitors that bind to glucose transporters and
receptors, these molecules may be used as preventive or therapeutic

drugs. One of these candidates would be rare sugars, as described by
Harada et al., such as D-allose and D-psicose (Harada et al., 2012).
Kato et al. showed that D-allose and D-psicose have potential as
amoebicides by inhibiting proliferative steps, however additional
information on the characteristics of the sugar transporters and
receptors of the parasites is needed to exploit these findings.

In summary, this Research Topic “Insights into Glyco-
parasitology” is a collection of recent research articles, the results
of which will certainly serve as the basis of future Glyco-
parasitological research. We still have a vast field to explore to
clarify how the parasites utilize glyco-related molecules to co-evolve
and co-exist with their hosts, and subvert the host defensive
strategies. These molecules may have diverse functions among
different parasite species, but research targeting these glyco-
molecules may lead to new strategies for preventing and treating
parasitic infections.
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