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Molecular and cellular characterization of tumors is essential due to the
complex and heterogeneous nature of cancer. In recent decades, many
bioinformatic tools and experimental techniques have been developed to
achieve personalized characterization of tumors. However, sample handling
continues to be a major challenge as limitations such as prior treatments
before sample acquisition, the amount of tissue obtained, transportation, or the
inability to process fresh samples pose a hurdle for experimental strategies that
require viable cell suspensions. Here, we present an optimized protocol that
allows the recovery of highly viable cell suspensions from breast cancer primary
tumor biopsies. Using these cell suspensions we have successfully characterized
genome architecture through Hi-C. Also, we have evaluated single-cell gene
expression and the tumor cellular microenvironment through single-cell
RNAseq. Both technologies are key in the detailed and personalized molecular
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characterization of tumor samples. The protocol described here is a cost-
effective alternative to obtain viable cell suspensions from biopsies simply and
efficiently.

KEYWORDS

structural variations (SVs), Hi-C, single cell RNA sequencing, 3D genome architecture,
breast cancer

Introduction

In breast cancer, biopsy collection using thick needles is a
standard diagnostic method. Core needle biopsies are used to
characterize molecular markers related to the cancer subtype,
inform treatment and provide prognostic information (Pagni et al.,
2014; Ziv et al., 2016). However, the use of biopsies is not limited to
the clinic as they also present a significant opportunity in research
for “de novo” molecular characterization through genomic, and/or
transcriptomic techniques. While surgical specimens often provide
a larger amount of tissue, these may not always be available in breast
cancer due to the increasing use of up-front systemic therapy before
surgical excision, posing a challenge for obtaining untreated tumor
tissue at the time of resection (Prat et al., 2015).

Themolecularcharacterizationofcancer is relevantdue to thehigh
complexity and heterogeneity of the disease and new technologies
may allow for a better understanding of its various pathological
processes. Recent techniques for cancer analysis include chromosome
conformation capture technologies (Jia et al., 2017).These techniques
enable the characterization of different levels of three-dimensional
genome organization but have also proven to be valuable tools
for detecting chromosomal structural variations (SVs) that may be
difficult tocharacterizeotherwise (Harewood et al., 2017;Stephenson-
Gussinye and Furlan-Magaril, 2023).

Chromosomal SVs are key markers in various cancer types.
In B-cell acute lymphoblastic leukemia, gene fusions resulting
from chromosomal rearrangements such as translocations between
chromosomes 9–22 (Philadelphia chromosome) or 12–21, are
associated with incidence and prognosis in children (Woo et al.,
2014; Mallard et al., 2022). SVs can also cause alterations in
chromatin architecture, translating into enhancer-hijacking
events and disruptions in gene expression, leading to tumoral
progression (Wang et al., 2021; Wang et al., 2022b; Xu et al., 2022;
Stephenson-Gussinye and Furlan-Magaril, 2023). These topological
alterations have been observed in various malignancies involving
oncogene expression and tumor-specific transcriptional programs
(Liu T. et al., 2023; Xie et al., 2024).

Assessing the tridimensional genome organization may not
be sufficient to characterize molecular signatures fully, and gene
expression profiling is also indispensable to relate genomic structural
variants to functional transcriptomic alterations and to identify new
targets for cancer characterization, prognosis, or therapy.

Single-cell RNA sequencing (scRNA-seq) is a technology that
allows transcriptomic characterization of tumors. This technique
has several benefits over total RNA-seq as it identifies and
characterizes the different cellular populations present in the
tumor sample. Additionally, it does not require large cell numbers
and provides a more precise approach to characterizing the
tumor microenvironment (Zhang et al., 2021b). However, a huge

bottleneck in its success when working with tumor samples is the
requirement of clean (debris-free) single-cell suspensions with 70%
or more viability, which is difficult to obtain from most biopsies.
This is due to different factors such as sample heterogeneity, handling
time, reduced cell recovery and low cell viability from tumoral cells
that may have hypoxic or necrotic sections, among others (Roma-
Rodrigues et al., 2019).

Applying both Hi-C and scRNA-seq technologies to the same
patient sample allows for detailed molecular characterization of the
tumoral cells and could potentially allow large-scale characterization
of other pathologies. The processing of small amounts of tissue
through tumor biopsy samples to obtain highly viable cell
suspensions formulti-omic analysis protocols creates awide range of
opportunities for cancer research and could also be applied to other
diseases. Herewe present a detailed protocol that produces clean and
viable cell suspensions to perform Hi-C and scRNA-seq from breast
tumor biopsies.

Materials and methods

Given the considerable tumor heterogeneity in some cancer
types, the personalized molecular characterization of the
cell population is crucial to understand cancer pathogenesis.
Furthermore, the option to conduct multi-omic analyses derived
from biopsies provides a new tool for cancer studies, particularly
as obtaining naive tumor samples during surgeries is not always
possible as patients might be already undergoing treatment
that may alter the tumor environment. However, the molecular
characterization of tumoral biopsies is challenging and requires
tissues to be efficiently cryopreserved until enough samples are
collected to process them with the scRNA-seq protocol, which
uses a chip that accommodates a minimum of up to four samples.
These factors pose significant obstacles, especially when protocols
require viable and clean cell suspensions. For these reasons, we
optimized an affordable protocol to obtain cell suspensions from
primary breast cancer core needle biopsies, ensuring sufficient
cell number and viability to conduct chromosomal conformation
capture analysis by Díaz et al. (2018), and transcriptomic single-cell
analysis with scRNA-seq (10X Genomics).

Acquisition and storage of breast cancer
biopsies

Primary breast cancer core needle biopsies and surgical samples
were collected from female patients diagnosed with breast cancer,
treated at the Instituto Nacional de Ciencias Médicas y Nutrición
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Salvador Zubirán in Mexico City (INCMNSZ) (n = 30). The study
was approved by INCMNSZ’s research and ethics committee (Ref.
3274), and informed consent was obtained from all participants.
For core biopsies, three cores per patient were taken using TruCut
needles (BIOCOREMG 12G x 10CM, Histo) and placed in 5 mL of
RPMI 1640 medium (Gibco) enriched with 10% fetal bovine serum
(FBS, Gibco) and 1% ampicillin/streptomycin (Biowest).The sample
was immediately placed on ice and transported to the laboratory
in an insulated compartment. Surgery samples were collected from
systemic treatment-naive patients undergoing surgery. After review
by a pathologist, a tissue sample was provided and handled using the
same methods. The size of the sample varied depending on tumor
size and tissue availability after pathology analyses. The adjacent
tissue was collected following the samemethod used for the tumors,
ensuring it was taken from at least 1 cm away from the tumor-
affected area and presented a macroscopically healthy appearance.

Pre-freeze tissue dissociation protocol

A tissue processing protocol was initially standardized based
on previously published recommendations (Lu et al., 2020b). Briefly,
the sample was weighed, washed with PBS and dissociated to
obtain a cellular suspension, which was enriched to a viability
above 70% using a Dead Cell Removal Kit, and subsequently
frozen and stored in liquid nitrogen. Later, the sample was thawed
based on previously published recommendations (Lu et al., 2020b)
for processing through Hi-C and scRNA-seq (Figure 1A). The cell
viability was often low after thawing, consequently, a second use of
the Dead Cell Removal Kit was necessary to increase cell viability.
This resulted in a high cell loss.

Post-freeze tissue dissociation protocol

Freezing and storage
Based on the previous observations, we implemented

a new protocol that minimized sample manipulation and
centrifugation steps (Figure 1B) to obtain the maximum number
of cells while maintaining sufficient cell viability for subsequent
experimental processing.

Upon receiving the sample, the tissue was weighed and then
stored according to a previously published protocol with some
minor modifications (Wu et al., 2021b). Briefly, the tissue was cut
into 1 mm3 pieces, placed in 500 µL freezing medium containing
90% FBS (Gibco) with 10% dimethyl sulfoxide (DMSO, Sigma)
in a 1.8 mL cryovial (Thermo Scientific), and frozen using a
Mr. Frosty™ Freezing Container (ThermoFisher) at −80°C for
24–72 h before being transferred to liquid nitrogen (Figure 1B).The
steps described below constitute a cost-effective alternative to the
protocol described by Wu et al., which uses the Human Tumour
Dissociation Kit (Miltenyi Biotec) following the manufacturer´s
instructions (Wu et al., 2021b).

Sample dissociation
The tissue was thawed using a water bath at 37°C for a few

seconds, transferred to a 15 mL tube and washed with 14 mL of
pre-warmed 10% FBS-RPMI added dropwise. The sample was then

centrifuged at 300 g for 10 min, the supernatant was discarded, and
the tissue was placed in a 1.5 mL tube with PBS (Sigma).The sample
was washed twice with 1 mL of cold PBS by gently tapping the tube
and then allowing the tissue to settle for 2 min on ice to removemost
blood and the remaining medium (Figure 1B).

To obtain a single cell suspension, PBS was removed and the
Accumax solution (Sigma) was added using 100 µL per 0.01 g of
tissue. The tissue was incubated at room temperature for 30 min,
gently mixing at 10-min intervals. After the incubation period, the
enzymatic digestion was stopped by adding 1 mL of RPMI medium
with 10% FBS, and the cell suspension was passed through a 40 µm
filter using a syringe plunger to apply mechanical disaggregation.
We recovered a single-cell suspension free of large debris
(Figure 1B).

Dead cell removal and measurement of cell
viability

Cell viability was calculated using Trypan Blue (Sigma). Since
subsequent protocols required a recommended viability of over
70%, the enrichment of live cells represented a crucial step in the
protocol. Twodead cell removal kits were tested in 5 surgical samples
for this step:

• DeadCell Removal Kit (Miltenyi Biotec #130090101) usingMS
Columns with magnetic beads (Miltenyi Biotec #130042201)
following the manufacturer’s instructions.
• EasySep Dead Cell Removal AnnV Kit (Stemcell technologies
#17899) following the manufacturer’s instructions.

Both kits process cell suspensions through established protocols.
However, a significant difference in the viability was observed
between the two kits (Figure 1C). Measuring the viability of 5
tumoral samples before and after processing for each kit, the Dead
Cell Removal Kit (Miltenyi Biotec) was found to be more effective
for breast tissues with a 40% improvement in cell viability from the
original sample, leading to its inclusion in our protocol (Figure 1C).
Enrichment of viable cells using the kit can be repeated as needed to
achieve the recommended yield of live cells.

Subsequently, cells were divided from the same suspension to
continue with the Hi-C and scRNA-seq protocols.

A step-by-step protocol of the optimized procedure is
included as Supplementary Material 1.

Hi-C procedure
We followed the protocol published by Díaz et al. (2018) with

some modifications. Briefly, cells were brought to a volume of
437.5 μL with RPMI/10% FBS medium and cross-linked with 16%
formaldehyde (Thermo Scientific) to a final concentration of 2%
and incubated for 10 min at room temperature with gentle rotation.
The reaction was stopped by adding 1 M ice-cold glycine (Sigma)
to a final concentration of 0.125 M, incubating for 5 min at room
temperature, and then for 15 min on ice. The cells were centrifuged
at 400 g, washed with 500 μL of cold PBS, flash-frozen and
stored at −70°C.

Fixed cells were thawed on ice, resuspended in 500 μL of cold
cell lysis buffer (10 mM Tris-HCl pH 8, 0.2% IGEPAL CA-630,
10 mM NaCl, 1X cOmplete®protease inhibitors cocktail (Roche)),
and incubated for 30 min on ice, gently mixing every 5–10 min.
Subsequently, the obtained cell nuclei were pelleted at 300 x g for
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FIGURE 1
Comparison of two protocols for dissociation and freezing of breast cancer tumor biopsies. (A) Pre-freeze tissue dissociation protocol. The steps
carried out to perform this protocol are indicated, highlighting in red the steps that were eliminated in the standardization process for the final
protocol. (B) Post-freeze tissue dissociation protocol. The steps carried out in this protocol are indicated, this was established as the definitive protocol
for processing and storing breast cancer tumor samples. (C) Comparison of cell viability using two dead cell removal kits. Kit 1 corresponds to the
EasySep Dead Cell Removal Annexin V Kit (Stemcell technologies #17899) and Kit 2 corresponds to the Dead Cell Removal Kit (Miltenyi Biotec
#130090101). Viability improvement was measured by subtracting the viability observed after one use of the kit minus viability observed before the kit
processing. The difference between the kits was statistically significant via an unpaired t-test (p = 0.0083, n = 5). (D) Comparison of cell viability
between the two tested protocols (Pre-freeze and post-freeze tissue dissociation protocols) comparing cell viability obtained immediately after
thawing and disaggregating the sample (in the post-freeze protocol) and viability after using the dead cell removal kit.
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10 min at 4°C and washed with 500 μL of NEBuffer r3.1 (NEB).
After removing the buffer, the nuclei were suspended in 50 μL of
NEBuffer r3.1 containing 0.3% SDS and incubated for 45 min at
37°C without agitation. Subsequently, 10% Triton X-100 was added
to a final concentration of 1.14%, the volume was adjusted to 110 μL
with water, and the samples were incubated for 45 min at 37°C with
gentle rotation.

For genome digestion, 125 U of DpnII (New England Biolabs)
were added in two slots. First, 50 U were added, and the sample
was incubated at 37°C with gentle agitation (650 rpm) overnight.
Subsequently, an additional 75 U were added, and the incubation
continued under the same conditions for an additional 4 h, after
which the enzyme was inactivated by heating the samples to
62°C for 20 min.

To fill in the cohesive DNA ends and mark the molecules
with biotin, biotin-14-dATP (Invitrogen), and the rest of dNTPs
were used together with DNA Polymerase I Klenow enzyme (New
England Biolabs, 5 U/μL), and incubated for 75 min at 37°C with
gentle agitation. After the incubation, DNA Ligase Buffer (New
England Biolabs) was added to achieve a concentration of 1X, along
with 50 U Weiss of T4 DNA Ligase enzyme (Thermo Scientific, 5 U
Weiss/μL), 0.24 μg/μL Bovine Serum Albumin (BSA, New England
Biolabs, 20 mg/mL), and 10% Triton X-100 for a final concentration
of 0.8%, bringing the total volume to 1,000 μL.

After ligation, proteinase K (Sigma) and RNase I (Sigma) were
added followed by incubation at 37°C for 2 hours and crosslinks
reversed at 65°C overnight. The DNA was purified using a Phenol-
Chloroform-Isoamyl alcohol mix (25:24:1) (Sigma) 1X v/v, then
0.1 volumes of 3 M sodium acetate (Sigma, pH 5.2), 50 μg/μL of
glycogen (Sigma, 20 mg/mL), and 2 volumes of absolute ethanol
were added. Precipitated DNA was centrifuged at 15,000 rpm for
30 min at 4°C, washed twice with 80% ice-cold ethanol, dried, and
the pellet diluted in 30 μL of TLE.

Next, DNA was sheared using a Covaris sonicator, followed
by a biotin pull-down using Dynabeads MyOne Streptavidin C1
beads (Invitrogen). Several washes were performed using Tween
Buffer (5 mM Tris-HCl pH 8.0, 0.5 mM EDTA, 1 M NaCl, 0.05%
Tween), 0.5 X Tween Buffer, and No Tween Buffer (5 mM Tris-HCl
pH 8.0, 0.5 mM EDTA, 1 M NaCl). Removal of biotin molecules
from non-ligated fragments was carried out by adding 15 U T4
DNA polymerase (New England Biolabs). The ends of sheared
fragments were repaired with dNTPs and 5 U of DNA Polymerase
I Klenow (New England Biolabs, 5 U/μL), phosphorylated with the
enzyme T4 PNK (New England Biolabs, 10 U/μL), and an adenine
nucleotide was added to the fragments using the enzyme DNA
Polymerase I Klenow exo- (New England Biolabs). Finally, Illumina
TruSeq adapters were ligated, and the libraries were sequenced on
an Illumina NovaSeq - S4 flow cell.

Hi-C analysis
The FASTQ files originated from paired-end sequencing were

processed using Seqtk (Heng, 2023) to remove low-quality regions
and trim adapter sequences. The reads were aligned to the
GRCh38 reference human genome using runHiC (Wang, 2016).
Subsequently, using the same software, the reads were filtered for
non-informative read pairs and PCR duplicates. The quality of the
experiments was assessed with runHiC and HiCUP (Wingett et al.,
2015). To identify SVs, HiCBreakfinder (Dixon et al., 2018) and

EagleC (Wang et al., 2022b) were employed, providing both intra-
chromosomal and inter-chromosomal SVs. HiNT-TL was applied
for further corroboration of inter-chromosomal translocations
(Wang et al., 2020). In each case, SVs were visually confirmed to
eliminate false positives.The final list was constructed by combining
the information provided by all the tools. After eliminating the
false positive SVs, the gene fusion events were identified with
EagleC, and the complex SVs reconstruction was performed using
NeoLoopFinder (Wang et al., 2021).

Chromatin compartments were calculated by converting the
matrices obtained through runHiC to the appropriate format and
using dcHiC software (Chakraborty et al., 2022). The matrices were
normalized with ICED and the analysis done at 100 kb resolution.
The identification of Topologically Associating Domains (TADs)
was performed using the TADLib pipeline (Wang et al., 2015;
Wang et al., 2017) with the hitad command. Afterward, TADs were
filtrated obtaining just the larger domains (level 0) for comparison
between tumor and normal tissue matrices. TAD boundaries were
compared using BEDtools (Quinlan and Hall, 2010) giving an 50 kb
window to each side of the boundaries. Matrices were visualized
using HiGlass (Kerpedjiev et al., 2018).

For normal tissue, two published in situ Hi-C experiments
(Kim et al., 2022) were merged to achieve a valid pair count like
the Hi-C of the primary breast cancer tumor. To compare the SVs
detected in our TNBC tumor, we analyzed three published in situ
Hi-C experiments from TNBC tumors (Kim et al., 2022) and called
SVs, as described in the sections above.

scRNA-seq procedure

The scRNA-seq libraries were constructed using the Chromium
Next GEM Single Cell 3′Reagent Kits v3.1 (Dual Index) following
the manufacturer’s instructions (10X Genomics). Briefly, the cell
suspension was minimally manipulated as described above and
loaded onto the Chromium Next GEM Chip G, avoiding bubble
formation. Then the chip was inserted into the Chromium Single
Cell Controller. Subsequently, the cDNA library was produced,
cleaned, and amplified using 11 cycles of the specified PCR program.
Libraries were constructed by adding the appropriate adapters and
indices (Dual Index TT Set A) provided by the manufacturer. The
final amplification was carried out with 12 cycles of the specified
PCR program and sequenced on an Illumina NovaSeq - S4 flow cell.

scRNA-seq analysis

Quality metrics and clustering analysis
FASTQ reads obtained from the pair-end sequencing were

aligned to the GRCh38 reference human genome and quantified
using Cell Ranger (version 3.1, 10X Genomics). For quality control,
standard filters were used, and cells with >15% of mitochondrial
UMI´s (Unique Molecular Identifier) were excluded from analysis
(Zhang et al., 2021a; Tietscher et al., 2023). Genes detected in fewer
than 3 cells andwithin cellswith less than 200 geneswere filtered out.

After quality control, 5, 591 cells were obtained in total, 5,201
cells from the tumor and 390 cells from the adjacent tissue. The
“integration” function and the batch correction were performed

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1420308
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Stephenson-Gussinye et al. 10.3389/fmolb.2024.1420308

using the CCAIntegration method with default parameters. Library
normalization, scaling of the data, dimensional reduction, clustering
and the previous steps were performed with the Seurat package
(Stuart et al., 2019). The elbow plot and the number of principal
components were obtained with the ElbowPlot function. In this
case, the 20 first principal components were used. Evaluation
of the cell cycle was calculated using the CellCycleScoring
function. Visualization of clusters was performed with UMAP
(Uniform Manifold Approximation and Projection). The function
FindAllMarkers was utilized to identify genes that characterize
the clusters and identification of cell populations was made
using canonical markers: PTPRC (CD45+) for immune cells;
MKI67 for proliferative cells; CD3D for NKT/T cells; MS4A1
for B cells; CD68 for myeloid cells; PECAM1 for endothelial
cells; EPCAM for epithelial cells; PDGFRB for mesenchymal
cells and JCHAIN for plasmablasts. Also, additional markers
were used to identify subpopulations like fibroblasts with the
expression of TNC, COL18A1 and COL12A1 (Wu et al., 2021a;
Kumar et al., 2023; Tietscher et al., 2023). Additionally, within the T
cell population, a subpopulation of regulatory T cells was detected,
through the expression of CTLA4 and FOXP3.

For the PAM50 cluster map analysis, the list of the 50 gene
markers was obtained from the original paper (Parker et al., 2009).
The counts of these gene transcripts were selected in all tumor and
adjacent tissue cells and the hierarchical clustering was calculated
using Euclidean distance and Ward linkage method.

The data normalization and cell population separation were
done using R and Seurat (Hao et al., 2024) library. The statistical
analysis and cluster map were performed using Python ad hoc
scripts with Scipy (Virtanen et al., 2020), Pingouin (Vallat, 2018),
and Seaborn (Hunter, 2007; Waskom, 2021) libraries.

Results

Successful obtention of viable cell
suspensions

To successfully process primary breast cancer tumor biopsies,
a crucial first step was standardizing sample handling and
storage to have a functional protocol that allows sample storage
while maintaining cell viability for further processing as clinical
biopsies may be obtained and delivered to the laboratory at
unpredictable times.

Two protocols for sample handling and storage were tested: one
involving the freezing of cell suspensions and the other storing the
sample as frozen tissue. Both protocols were tested using tissue
obtained from primary breast cancer tumors (n = 6 for frozen cell
suspensions and n = 24 frozen tissues).

Using the pre-freeze dissociation protocol the average viability
of the 6 samples processed was 34.78% and only 1 passed viability
QC (>70%) upon thawing, making up 16.6% of the samples
(Figure 1D). Out of the 5 remaining samples, we were able to
rescue only 2 with the dead cell removal kit, representing 40% of
the samples (Figure 1D).

In contrast, 8 samples out of 24, or 33.3% of the samples, were
viable when processed with the post-freeze protocol proposed. After
using the dead cell removal kit on 16 of the remaining samples, we

rescued 12, representing 75% of the group. On average, using this
method, 20 out of 24 samples (83.3%) passed the quality control to
continue with the protocol (Figure 1D).

More importantly, the total number of recovered cells was higher
from the frozen tissue storage protocol, due to the elimination
of handling steps (Figures 1A,B). Considering these results, we
proceeded with the frozen tissue storage protocol.

With the handling, storage, and disaggregation protocol
established, a primary Triple Negative Breast Cancer tumor sample
(TNBC) was processed.The cell suspension obtained for this sample
consisted of approximately 1.4 million cells, exhibiting 92% cell
viability. This cell suspension was divided into two parts, one for
Hi-C and one for scRNA-seq. For the adjacent tissue, we recovered
≈1100 cells used for scRNA-seq.

High-quality Hi-C and single-cell RNA-seq
data sets from primary breast cancer
biopsies

Approximately 1.3 million tumor cells were destined for Hi-C.
The experiment’s quality was assessed using the HiCUP software
(Wingett et al., 2015) (Figure 2; Supplementary Table 1). Nearly
80% of the sequenced read pairs aligned to the reference genome
uniquely (Figure 2A). Experimental artifacts, such as non-ligated
or circularized regions, accounted for approximately 4% of the
sequencing read pairs, indicating a high execution efficiency and
high-quality production of interaction data sets (Figure 2B). Finally,
17.07% of the reads were identified as PCR duplicates leaving a total
of 336 million valid paired reads (Figure 2C).

The percentage of contacts in cis-close (<10Kbp), cis-far
(>10Kbp), and trans was 26%, 63.8%, and 10.2%, respectively
(Figure 2C). Since the probability of contacts decreases with
genomic distance, the proportion of intrachromosomal contacts
is typically three times higher than that found between
chromosomes when using the Hi-C technique (Lieberman-
Aiden et al., 2009; Sarnataro et al., 2017). For this reason, the
experiment met the quality standards for the analysis and
construction of interaction matrices.

Additionally, quality was also assessed for the published Hi-C
data sets from healthy breast tissues (Figures 2D–F) and for the
additional published Hi-C data from TNBC tumors analyzed. All
data sets presented similar quality control measures, good enough
to continue with further analysis (Supplementary Table 1).

For the tumor scRNA-seq, 16,000 cells were allocated with
an approximate viability of 92%, calculated using Trypan Blue.
Considering an approximate loss of 60% inherent to the single-cell
capture technique, we would expect about 8,832 viable cells. For the
adjacent tissue approximately 1,100 viable cells were processed.

Apreliminary count of 6,264 cellswas obtained from the scRNA-
seq data, an average of 66,329 reads, and amedian of 3,260 genes per
cell was obtained in the tumor sample. For the adjacent tissue, 481
cells, 61,593 reads and 1,195 genes per cell were obtained, indicating
a good result according to the manufacturer’s specifications (10X
Genomics).

The Barcode Rank Plot shows an adequate number of UMIs
associated with barcodes, which confirms a correct cell capture.
Furthermore, few cells showed a high percentage of mitochondrial
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transcripts, those cells were filtered out (Supplementary Figure 1A)
and after quality control we obtained cells with appropriate
RNA molecules, features (genes) and mitochondrial counts
(Supplementary Figure 1E), thus it was considered that the
experiment exhibited adequate quality for further analysis
(Chen et al., 2019; Luecken and Theis, 2019). Additionally, the
distribution of cells in different phases of the cell cycle was also
identified and it showed a distribution consistent with the cell
heterogeneity in a tumoral sample (Supplementary Figures 1B, D).
Therefore, out of a total of 6,264 cells for the tumor and 481 cells for
the adjacent tissue, there was a reduction of 11%, resulting in 5,591
(5,201 cells for the tumor and 390 for the adjacent tissue) viable cells
for subsequent analyses after quality control. These results confirm
the success of the scRNA-seq experiment (Supplementary Table 2).

The single-cell RNAseq data sets presented here represent two
examples of technically successful experiments with different cell

counts derived from breast biopsies. In the literature, most single-
cell RNAseq data sets with variable cell counts are analyzed by
pooling samples from many patients or conditions to increase the
cell numbers considered in the analysis (Qian et al., 2020; Gao et al.,
2021; Pal et al., 2021; Reed et al., 2024).Thus, the observationsmade
here are just a description of the different cell populations found in
these two data sets with all their limitations. More complex samples
and analyses are needed to confirm and expand the observations
presented more comprehensively.

Identification of cell populations in the
TNBC tumor

Characterization of the immune subpopulations infiltrating the
tumor by scRNAseq has been a useful tool to predict tumor

FIGURE 2
Hi-C quality from the tumor biopsy using the post-freeze tissue dissociation protocol. (A) Number of successfully aligned sequencing reads from the
tumor Hi-C to the GRCh38 reference genome. (B) Number of Hi-C reads identified as informative contacts for interaction matrix construction; within
the category of invalid pairs wrong size sequences, circularized reads, non-ligated, re-ligated, and continuous sequences are included. (C) Total and
unique reads from tumor Hi-C counts after PCR duplicate removal. Additionally, the percentages of contacts identified within less than 10 kb distance
(Cis-close), more than 10 kb distance (Cis-far), or between different chromosomes (Trans) are shown. (D) Number of successfully aligned sequencing
reads from the normal tissue Hi-C to the GRCh38 reference genome. (E) Number of normal tissue Hi-C reads identified as informative contacts for
interaction matrix construction. (F) Total and unique reads from normal tissue Hi-C counts after PCR duplicate removal divided by contact distance.
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control and immunotherapy responsiveness (Azizi et al., 2018; Sade-
Feldman et al., 2018; Li et al., 2019); hence we aimed to define the
identity of different tumor-infiltrating immune cell populations
including T cells, B cells andmyeloid cells. Our protocol allowed the
identification of eight clusters of non-hematopoietic cell populations
based on the negative expression of PTPRC (CD45−) and the
heterogenous expression of EPCAM gene transcripts defining
epithelial cells (Figures 3C,D). Also, we identified the expression of
endothelial (PECAM1), plasmablasts (JCHAIN) and mesenchymal
(PDGFRB) cell transcript markers according to Wu et al., 2021a
(Figures 3C,D). Finally, the expression of TNC, COL18A1 and
COL12A1 gene transcripts related to fibroblast subtypes was also
detected (Tan et al., 2022) (Figures 3C,D). There were cells from
both adjacent tissue and tumor samples contributing to most
clusters (Figures 3A,B) and the most abundant cluster in both
tissues is cluster 0. Interestingly, clusters 3 and 4 contain 1 and
0 cells from the adjacent tissue respectively, and these represent
the most proliferative cells from the epithelial compartment in
the tumor (Figures 3C,D; Supplementary Figures 1C, D. On the
contrary, endothelial and mesenchymal gene transcript markers
were primarily detected in clusters 11 and 12 which are enriched
with cells from the adjacent tissue with 10 and 3 cells from the tumor
respectively (Figures 3A,C,D).

Each cluster was characterized by an independent
transcriptional profile, in addition to the identification of
canonical markers (Supplementary Figure 1F). Two groups of cell
populations were identified: hematopoietic cells expressing PTPRC
(CD45+) were included in clusters 6 to 10; non-hematopoietic
cells (without expression of PTPRC) comprised clusters 0 to 5,
11, and 12. Each cluster of hematopoietic cells expressed specific
genes. Cluster 6 was identified as myeloid cells with the expression
of CD68 as a canonical marker, and transcriptomic signature
including TYROBP, AIF1, FCER1G, IFI30, LYZ, LAPTM5, PLEK,
SPI1, ITGB2, LST1. Clusters 7, 8 and 9 belonged to T/NKT cells
with expression of CD3D, GZMA, GZMB GZMH and CD8A genes.
Cluster 9 represented a subtype of T cells, known as regulatory T
cells, distinguished by FOXP3 gene expression. These regulatory T
cells also express CTLA4, ICOS, LAIR2 and TIGIT gene transcripts.
Finally, cluster 10 was identified as B cells expressing MS4A1 and
CD79A genes. For the non-hematopoietic component, all clusters
expressed EPCAM gene, a marker for epithelial cells, but every
cluster had a particular transcriptional signature. Cluster 0 to 5 have
similar genes expressed but at different levels. For example, clusters
1 and 2, expressed VCAM1, LTF, ITGB8 and CXCL1 while clusters
0, 3 and 4 expressed less of these transcripts. Clusters 0, 3 and 4
shared some gene transcripts such as GABRP, ITPR2, NOTCH3 and
VTCN1, but with low levels in clusters 3 and 4. Clusters 3 and 4
differed from cluster 0 as they expressed RAD51AP1, TK1, GINS2,
HELLS, CENPU, CLSPN, TPX2, PRC1, CENPE and CEPF genes
which are not expressed in cluster 0. Cluster 12, which also expressed
the EPCAM gene, expressed unique genes including LIN7A,CAPN8,
CLASTN2 and TTC6. On the other hand, cluster 11 did not express
EPCAM but expressed the endothelial marker gene PECAM1. The
cells in this cluster also expressed TIMP3, CXCL12, CLDN5, CD34,
EMCN and CDH5 genes.

Within the five clusters expressing EPCAM epithelial marker
together with COL18A1 (clusters 0–4), two presented a high
number of cells in the S and G2M phases of the cell cycle

and are enriched with tumoral cells. These populations were
identified as proliferative epithelial cells by the expression of
MKI67 (Figures 3C,D; Supplementary Figures 1C, D) which
might represent the tumoral epithelial cell compartment with a
proliferative transcriptional program.

Additionally, we were able to classify the primary breast
cancer tumor by using PAM50 markers on our scRNA-seq
data (Supplementary Figure 2). We observed several basal-
like marker genes expressed in the tumor sample and the
lack of ERBB2 amplification and hormonal receptors. These
expression profile in the tumor sample of the PAM50
marker genes allows us to suggest that our TNBC tumor
was possibly of the basal-like subtype (Perou et al., 2000;
Wallden et al., 2015).

With these results we concluded that the processing and
storage of the primary breast cancer tumor biopsy sample
was successful for the implementation of Hi-C and scRNA-seq
experiments.

Characterization of SVs in the TNBC tumor

Interaction matrices were constructed using the runHiC
software (Wang, 2016). Published in situ Hi-C data set from
normal breast tissue was used as a healthy reference and
three Hi-C data obtained from TNBC tumors were used to
compare the SVs (Kim et al., 2022).

Whole-genome interactionmatrices were constructed, revealing
a similar cis/trans interaction trend in our tumor and normal
datasets. However, several high-frequency interchromosomal
interactions were detected in the tumoral genome which were
absent in the normal breast tissue matrix identified as potential
chromosomal translocations (Figure 4A).

Next, we analyzed the tumor to detect SVs. Using three
different identification software packages, a total of 87 SVs
were found, which were visually confirmed in the interaction
matrices. Among these, 53 corresponded to inter-chromosomal
translocations and 34 to intra-chromosomal SVs encompassing
15 inversions, 11 duplications, and 8 deletions of genetic
material (Figure 4B).

TNBC is known for its heterogeneous and unstable genome
(Kwei et al., 2010), especially the basal-like subtype. To compare
the SVs identified in our tumor we evaluated three published
Hi-C data sets from TNBC-diagnosed female patients (Kim et al.,
2022). We observed a high genomic instability in all the samples
processed accompanied by elevated heterogeneity between the
samples. The TNBC3 sample was the most rearranged with 164 SVs
in total, followed by TNBC2 with 99 SVs our tumor with 87, and
finally TNBC1 with 55 SVs (Figure 4B). These findings recapitulate
the previous observations that TNBC tumors present a variable
number of SVs and high heterogeneity between individual samples
(Supplementary Figure 3A) (Kawazu et al., 2017).

Next, we compared the regions affected by SVs in the
published TNBC published samples in contrast to our tumor.
We found 6 regions of intra-chromosomal SVs shared between
our sample and TNBC1. For the TNBC2 we found 25
regions were involved in genomic alterations in both samples,
especially in chromosome 6 (Supplementary Table 3). These regions
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FIGURE 3
Characterization of cell populations derived from the breast cancer tumor and the adjacent control tissue scRNA-seq data sets. (A) UMAP of the 390
cells from the adjacent tissue and UMAP of the 5,201 cells from the tumor colored by cell the cell clusters detected (0–12). (B) UMAP of 5,591 cells:
5,201 cells of tumor (blue cells) and 390 cells of adjacent tissue (red cells). (C) Identification of subpopulations with canonical markers and their
expression across the clusters: PTPRC (CD45+) for immune cells; MKI67 for proliferative cells; CD3D for NKT/T cells; MS4A1 for B cells; CD68 for
myeloid cells; PECAM1 for endothelial cells; EPCAM for epithelial cells; PDGFRB for mesenchymal cells and JCHAIN for plasmablasts. Also, additional
markers were used to identify a particular subpopulation like fibroblasts with the expression of TNC, COL18A1 and COL12A1. (D) Canonical markers
expression across the clusters.
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FIGURE 4
Identification of SVs in the triple negative breast (TNBC) tumor using Hi-C data. (A) Whole-genome interaction matrices of the tumor tissue biopsy
sample and previously published normal breast tissue. It is observed that the highest frequency of contacts is in cis in both samples. High-frequency
interchromosomal interactions observed in tumor tissue and not in normal breast tissue are highlighted with boxes. Matrices constructed at 5 Mb
resolution. (B) Number and classification of SVs found in the Hi-C tumoral sample processed and compared with the TNBC Hi-C data
published by Kim et al. (2022). (C) Hi-C contact matrix showing a deletion in chromosome 6 identified by the SVs analysis. Resolution 5 kb. (D)
Inter-chromosomal Hi-C matrix showing a translocation between chromosomes 1–17. Resolution 5 kb. (E) Intra and inter-chromosomal Hi-C contact
matrices showing a complex SV formed involving a translocation between chromosomes 6–19 and a duplication in chromosome 19. (F)
Reconstruction of the loci altered by a complex SV. Translocation between chromosomes 6–19 generates a gene fusion of COL191A and ZNF486
genes identified by EagleC analysis. Duplication in chromosome 19 harbors genes possibly related to tumoral activity.

encompassed 242 genes, including some ones previously related
with oncogene activity in TNBC breast cancer like NOTCH3
and PKN1 (Supplementary Figures 3B, C) (Turner et al., 2010;
Kawazu et al., 2017; Kovalevska et al., 2021). Finally, the comparison

made with the TNBC3 sample showed less similarity accounting for
only two SVs with shared genomic regions. This analysis indicates
that our primary TNBC tumor more closely resembles the TNBC2
sample in terms of SVs.
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Using our Hi-C data we also analyzed the resulting gene fusions
generated by the SVs previously identified.We found 19 SVs involving
38 genes in gene fusion events in the primary tumor sample
(Supplementary Table 4). From these genes, 19 were found to be
significantly expressed in the scRNAseq data. The same analysis was
performedon the publishedTNBCHi-Cmatrices, fromwhich 18 SVs
were found togenerate gene fusion events inTNBC1, 26SVs inTNBC
2 and 31 in TNBC 3 (Supplementary Table 4). Nevertheless, none of
the genes found fused in the primary tumor sample was shared with
any of the published data indicating that TNBC subtype molecular
alterations are highly heterogeneous between patients.

An example of an SV identified in our tumor in contrast with
the normal tissue is a deletion pattern in chromosome 6 of 250 kb
length in theHi-Cmatrix (Figure 4C).Fromthisdeletionagene fusion
was identified involving PDE7B-MAP7 genes. MAP7 gene has been
found to promote cell migration and invasion in breast cancer tumors
(Wang et al., 2022a; Wang et al., 2023b) and PDE7B gene encodes a
phosphodiesterase that is involved in the regulation of cellular cAMP.

The deletion also encompassedMTFR2 and BCLAF1 genes, the
latter one was recently related to the regulation of the PDL1 pathway
in breast cancer (Ma et al., 2021). Both gene overexpression is related
to a worse prognosis in breast cancer (Lu et al., 2020; Yu et al., 2022).

Another SV found in the tumor sample was an inter-
chromosomal translocation between chromosomes 1–17 (Figure 4D).
This translocation was found to generate a gene fusion between SKI-
NMT1 genes, SKI is an interesting gene reported both with a pro-
oncogenic and a suppressor tumor activity in breast cancer models
(Rashidian et al., 2015). The NMT1 gene was highly expressed in the
tumor and is reported as a potential diagnostic biomarker in breast
cancer related to poor prognosis (Wang H. et al., 2023).

Our Hi-C data also allowed the identification of complex
rearrangements involving more than one SV in the same locus
(Figures 4E,F), one of which encompasses a duplication found
in chromosome 19 (coordinates: 17,710,000–20,735,000) and a
translocation of chromosomes 6–19 (coordinates: chr6:70,130,000
chr19:20,195,000). The complex SV was reconstructed using
NeoLoopFinder and was found to generate COL19A1-ZNF486 gene
fusion. COL19A1 is an alpha chain of type XIX collagen found
to be related to immunotherapy response in esophageal squamous
cell carcinoma (Liu J. et al., 2023). ZNF486 codes for a zinc-finger
protein that has been described as a potential prognosis marker in
breast cancer patients (Du et al., 2021), howevermore data would be
needed to characterize its specific function in breast cancer cells.The
duplicated region also harbored PIK3R2 and RAB3A genes, both of
which have a role in several malignancies (Wu et al., 2018; Liu et al.,
2022). Both genes are being expressed in the tumor (Figures 4E,F).

Another example of a genomic region that was altered in our
tumor, corresponds to that encoding the α-enolase (ENO1) gene.
This region was duplicated and involved in a gene fusion. ENO1
gene expression is increased in various cancer types, including
breast cancer (Cancemi et al., 2019) (Figures 5A,B). The α-enolase
is involved in glycolysis and has shown oncogenic properties related
to promoting cell proliferation and tumormetastasis (Xu et al., 2020;
Huang et al., 2022). Silencing of ENO1 gene in a breast cancer cell
line reduced the proliferative capacity of the cells (Zhang et al.,
2020), indicating that ENO1 could be a potential molecular
prognostic marker or therapeutic target in breast cancer.

In our samples, ENO1 was significantly expressed in the tumor
(Figure 5D) and expressed at different levels the cell clusters
identified, particularly in epithelial populations enriched in the
tumor sample (Figures 5C,D). This could suggest that the epithelial
cell populations found in the tumor could have different metabolic
cell states reflected by ENO1 gene expression levels. Although
further analysis is necessary, the presence of a genetic duplication
in the tumor could potentially be a driving factor altering its
expression.The application ofHi-C inmore samples could confirm if
this duplication is a common feature in breast cancer and functional
experiments would be needed to determine causality.

Identification of chromatin compartments
and topologically associating domains in
the TNBC tumor

Next, we explored the overall genome topology of the tumor
in contrast to the normal breast tissue. The interaction patterns
corresponding to A and B chromatin compartments exhibited few
differences as inmost regions the pattern was similar between the two
samples (Figures 6A,B; Supplementary Figure 4). The percentage of
the genome-changing compartment was low representing less than
6% (Figure 6B). From these regions, nearly half changed from A
to B, and the other 50% presented a pattern change from B to A
compartment (Figure 6C). Even if the changes at the compartment
level are small, further analysis is needed to characterize if gene
expressionchangescouldoccurderivedfromcompartmentswitching.

Regarding Topologically Associating Domains (TADs), 5,927
TADs were found in the normal tissue and 5,212 in the tumor
sample with an average size of 470 kb and 540 kb respectively.
We noticed that the structures are highly conserved between
the two samples with 70% of the boundaries shared between
them (Figures 6D,E). There were places in which clear differences
were detected (Figure 6F), indicating that the Hi-C experiment
successfully provided the tumoral genome topology at different
scales. To thoroughly investigate the functional consequences of the
differences in TADboundaries between the tumoral genome and the
normal breast tissue, additional analysis is needed.

Discussion

We have presented an optimized and cost-effective protocol to
store and process breast cancer tumor samples acquired through
core needle biopsies to obtain viable and debris-free single-cell
suspensions. The quantity, viability and quality of cell suspensions
are determining factors that limit the potential use of this sample
type in various experimental protocols and each type of tissue
and cellular composition presents its challenges. Many strategies
have been proposed to work with biopsies from different sources
(Díaz et al., 2018; Slyper et al., 2020; Wu et al., 2021b; Burja et al.,
2022).The alternative described here is an affordable option yielding
high-quality cell suspensions for scRNA-seq and Hi-C experiments.

For Hi-C and other chromosomal conformation capture
techniques the samples can be directly fixed with formaldehyde
and then frozen (Díaz et al., 2018). However, this is not the
case for experiments in which cells need to be viable as for
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FIGURE 5
ENO1 gene is amplified in the triple negative breast tumor. (A) Hi-C contact matrices comparing the region where gene ENO1 is located in tumor tissue
and normal breast tissue. The area showing an interaction indicating amplification of genetic material in tumor tissue is marked with a square. Matrices
at 10 kb resolution. (B) Zoom-in on the region showing an amplification pattern that co-localizes with the ENO1 gene locus in tumor tissue. Matrices at
5 kb resolution. (C) Distribution of ENO1 expression in tumor and adjacent tissue cells of breast cancer. (D) Density expression of ENO1 across the
clusters. Expression is plotted on the box plot.
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FIGURE 6
Chromatin organization of the triple negative breast tumoral genome at different scales. (A) Example of chromatin compartmentalization of two
chromosomes (chr3 and chr7) between tumoral and normal tissue. (B) Percentage of the genome that changes significantly from compartment in the
tumor in comparison with normal tissue. (C) Percentage of the changing chromatin that goes from A to B and B to A compartment in the tumor in
comparison with normal tissue. (D) Conservation of TAD boundaries across the analyzed samples. TAD boundaries were calculated using TADlib. (E)
Example of a region on chromosome 4 showing a very similar organization of Topologically Associating Domains (TADs) between tumor tissue and
normal tissue. Dark gray squares represent TADs identified using TADlib. Matrices at 25 kb resolution. (F) Example of a region on chromosome 3
showing different TADs and compartmentalization organization between tumor tissue and normal tissue. Dark gray squares represent TADs identified
using TADlib. Matrices at 25 kb resolution.
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scRNA-seq. Processing fresh tissue for scRNA-seq can yield
good results (Slyper et al., 2020). However, when working with
tissue derived from clinical procedures, it is not always feasible
to experiment on fresh samples. The protocol presented here
enables the acquisition of high-quality data, both transcriptomic
and topological, allowing the characterization of different levels of
molecular dysregulation in tumor biopsies.

The molecular characterization of SVs using Hi-C has its
limitations as only large SVs can be identified in the tumor
sample and other types of genomic alterations such as small
rearrangements or punctual mutations cannot be identified with
this technique. However, Hi-C allows efficient identification of large
rearrangements de novo and is the technology that can inform also
on the topological consequences of the SVs and at the same time,
topological alterations that are not derived from genetic events.

As an example of the power of the combination of the
two data sets produced, we found a genetic duplication of the
ENO1 gene locus in the tumor (Figure 5B). Also, the ENO1 gene
appears expressed in most epithelial tumoral cell populations
identified through scRNA-seq from the biopsies (Figure 5D). ENO1
is involved in glycolysis and its gene expression has been reported
to be dysregulated in various cancer types (Huang et al., 2022).
Although further analysis and functional experiments are required,
together these observations suggest that the genetic duplication of
ENO1 could lead to its expression in the epithelial populations from
the tumor and this may impact their metabolism. We also detected
other SVs harboring genes that were expressed in the tumor as the
region encompassing NOTCH3 and PKN1 genes and many other
genes involved in gene fusions in the tumoral genome.

From the single-cell transcriptomic analysis, we found that the
expression of canonical marker genes delimited the clusters of the
immune component including T cells, B cells and Myeloid cell
transcript markers, and a more hybrid scenario was found for the
epithelial and fibroblast cell populations in the tumor (Wu et al.,
2021a). The expression of the epithelial transcript marker EPCAM
coincided with the expression of COL18A1, TNC and COL12A1 gene
transcripts in the tumor clusters (Figures 3A–C).TNC,COL18A1 and
COL12A1 gene expression characterize fibroblasts known as ECM-
CAF (Extracellular Matrix-Cancer Associated Fibroblasts) which
participates in the aberrant remodeling of the extracellular matrix
in breast cancer (Papanicolaou et al., 2022; Minini and Fouassier,
2023). Our tumor may have an overrepresentation of cells that co-
express both EPCAM and CAF transcript markers which might
representepithelialcells transitingtoamore“mesenchymal/fibroblast”
transcriptomic phenotype. Moreover, these same clusters present a
high expression of ENO1, and thus might have a more non-oxidative
metabolism. Further analysis and functional experiments will be
needed to expand these observations.

PDGFRB, JCHAIN and PECAM1 aremarkers that could identify
mesenchymal, plasmablasts and endothelial cells, respectively
(Wu et al., 2021a). We observed a low expression of these markers
in our tumor and their accumulation in cell populations from the
adjacent control tissue. This reduced expression could be the result
of the low cell number of these populations in our tumor as not
all breast cancer tumors present equal proportions of these cell
populations (Wu et al., 2021a).

Performing other types of analyses like Gen Set Enrichment
Analysis (GSEA) or Gen Regulatory Network Analysis that could

delve further into the identification of a more unconventional
stromal component that is not evident using conventional markers,
could add valuable information (Fan et al., 2022).

In conclusion, the possibility to conduct both 3D genomic
reconstructions and single-cell transcriptomics on the same sample
offers numerous opportunities to characterize in detail the genomic
events that lead to genome topology aberrations and transcriptional
deregulation in particular cell populations from the same tumor.This
combined strategy could help to identify prognostic or therapeutic
targets that have consequences on gene transcription regulation as
well as the different cell populations that constitute the tumor.
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