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Background: Diabetic foot ulcers are the most common and serious
complication of diabetes mellitus, the high morbidity, mortality, and disability
of which greatly diminish the quality of life of patients and impose a heavy
socioeconomic burden. Thus, it is urgent to identify potential biomarkers and
targeted drugs for diabetic foot ulcers.

Methods: In this study, we downloaded datasets related to diabetic foot ulcers
from gene expression omnibus. Dysregulation of mitophagy-related genes was
identified by differential analysis and weighted gene co-expression network
analysis. Multiple machine algorithms were utilized to identify hub mitophagy-
related genes, and a novel artificial neural network model for assisting in the
diagnosis of diabetic foot ulcers was constructed based on their transcriptome
expression patterns. Finally, potential drugs that can target hub mitophagy-
related genes were identified using the Enrichr platform and molecular
docking methods.

Results: In this study, we identified 702 differentially expressed genes related to
diabetic foot ulcers, and enrichment analysis showed that these genes were
associated with mitochondria and energy metabolism. Subsequently, we
identified hexokinase-2, small ribosomal subunit protein us3, and l-lactate
dehydrogenase A chain as hub mitophagy-related genes of diabetic foot
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ulcers using multiple machine learning algorithms and validated their diagnostic
performance in a validation cohort independent of the present study (The areas
under roc curve of hexokinase-2, small ribosomal subunit protein us3, and l-lactate
dehydrogenase A chain are 0.671, 0.870, and 0.739, respectively). Next, we
constructed a novel artificial neural network model for the molecular diagnosis
of diabetic foot ulcers, and the diagnostic performance of the training cohort and
validation cohort was good, with areas under roc curve of 0.924 and 0.840,
respectively. Finally, we identified retinoic acid and estradiol as promising anti-
diabetic foot ulcers by targeting hexokinase-2 (−6.6 and −7.2 kcal/mol), small
ribosomal subunit protein us3 (−7.5 and −8.3 kcal/mol), and l-lactate
dehydrogenase A chain (−7.6 and −8.5 kcal/mol).

Conclusion: The present study identified hexokinase-2, small ribosomal subunit
protein us3 and l-lactate dehydrogenase A chain, and emphasized their critical
roles in the diagnosis and treatment of diabetic foot ulcers through multiple
dimensions, providing promising diagnostic biomarkers and targeted drugs for
diabetic foot ulcers.

KEYWORDS

diabetic foot ulcers, mitophagy-related genes, machine learning algorithms, artificial
neural network, molecular docking method

1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disease
characterized by hyperglycemia (Brody, 2012), and the number
of patients with DM continues to increase as the global society
ages (Hart et al., 2017). Among the many diabetes-induced
complications, the problem of diabetic foot ulcers (DFU) appears
to be particularly serious and is widely regarded as one of the most
challenging (GBD, 2019 Diseases and Injuries Collaborators, 2020).
Recent studies have shown that diabetic foot ulcers are the main
contributor to non-traumatic lower limb amputations, with diabetic
foot ulcers leading to 40% to 60% of all non-traumatic amputations
(Jude et al., 2001). And diabetic foot accounts for 19%~34% of
diabetic patients, with a high mortality rate of 50%~70% within
5 years (McDermott et al., 2023), and more than 1/3 of diabetic foot
ulcers require amputation surgery (Armstrong et al., 2023). The high
morbidity, mortality, and disability of the diabetic foot greatly
diminishes patients’ quality of life and imposes a heavy
socioeconomic burden (Armstrong et al., 2017). Additionally,
DFU is also a complex mixture of neuropathy and infection
(Villa et al., 2024). Previous studies have shown that foot
infections also increase the risk of lower limb amputation in DM
patients (Pitocco et al., 2019; Ruder, 2024; Wei et al., 2024), and its
prevalence has risen from 4% to 7% (Pitocco et al., 2019). Diabetic
foot infection (DFI) is a pathological condition that is primarily
caused by the invasion andmultiplication of microorganisms in host
tissues resulting in an inflammatory response that usually results in
tissue damage (Coye et al., 2024; Senneville et al., 2024; Villa et al.,
2024; Wang B. et al., 2024). DFI usually occur after the breakage of
the skin’s protective coating, and the most common breakage is the
DFU, which involves at least the epidermis and part of the dermis
(Senneville et al., 2024). Due to the fact that DFUs are often
associated with vasculopathy and recurrent microbial infections,
which contributes to high patient morbidity and mortality (Xiong
et al., 2020). Thus, the main aim of DFU treatment is to control
infection and promote wound healing (Primadhi et al., 2023).

However, the current clinical diagnosis and treatment of DFU
also face challenges, with the clinical diagnosis of DFU being overly
dependent on the clinical experience of clinicians and lacking
effective treatments (Armstrong et al., 2017; Matos et al., 2018;
Purwanti et al., 2024; Wang F. et al., 2024; Wang K. et al., 2024). At
the present stage, the treatment of DFU patients mainly includes
debridement, wound dressing, anti-infection treatment, peripheral
vasculopathy treatment, strict glycemic control, and amputation
(McIllhatton et al., 2021; Orlando et al., 2021; Ahmed et al., 2022;
Slomski, 2022; Jeffcoate et al., 2024), but the therapeutic efficacy of
these methods is still unsatisfactory and has not yet achieved a
satisfactory clinical results, that is, they do not fully control the
underlying metabolic lesions (Bardill et al., 2022; Chen et al., 2024;
Yi et al., 2024; Zhang G. et al., 2024; Zhang N. et al., 2024). Thus, it is
urgent to further identify novel biomarkers of DFU to improve the
current dilemma of clinical diagnosis and treatment of DFU.

Mitochondria are the energy powerhouses of the cell,
responsible not only for ATP production, but also for regulating
calcium homeostasis, responding to oxidative stress, and
modulating cell death processes (Li A. et al., 2022). Through its
own specialized autophagic program, mitochondrial autophagy
precisely removes destroyed mitochondria, and this mechanism is
critical for maintaining mitochondrial functionality and ensuring
intracellular homeostasis (Onishi et al., 2021). However,
mitochondrial autophagy, an important mitochondrial quality
control mechanism, leads to the gradual accumulation of
mitochondrial DNA (mtDNA) mutations in response to reactive
oxygen species (ROS) stress, as well as a decrease in intracellular
mitochondrial membrane potential and depolarization damage,
eventually leading to cell death (Lu et al., 2023). Previous studies
have shown a strong association between DFU and mitophagy (Qi
et al., 2023; Wang et al., 2023). The accumulation of ROS can
damage the extracellular matrix and endothelial cells, impede the
formulation of new blood vessels, and delay the wound healing
process (Li et al., 2018). At the same time, the increase in ROS may
also exacerbate the inflammatory response, making it difficult for
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diabetic foot ulcers to heal (Huang et al., 2020). Therefore, reducing
the release of ROS appears to be crucial for improving the healing of
DFU. Furthermore, in diabetic patients, a persistent hyperglycemic
state may trigger impairment of mitochondrial function, which in
turn exacerbates the cellular stress response and promotes cell death
(Wronka et al., 2022). Enhanced oxidative stress and weakened
protective mechanisms in diabetic patients can lead to the
accumulation of ROS (Rendra et al., 2019). In this context,
mitophagy activators present potential as novel therapeutic
approaches for diabetes (Shan et al., 2022). By eliminating
dysfunctional mitochondria, mitochondrial autophagy contributes
to the reduction of ROS production and the alleviation of oxidative
stress (Rovira-Llopis et al., 2017; Zhang et al., 2019), which is
particularly important for the healing of DFU. Therefore, it is
necessary to develop mitophagy-related genes for the diagnosis
and treatment of DFU through whole transcriptome analysis.

In recent decades, machine learning has evolved from a
peripheral technology to become a cornerstone of healthcare
data analytics (Haug and Drazen, 2023; Shibue, 2023), which is
highly effective in identifying disease-relevant biomarkers,
making accurate clinical diagnoses, and determining optimal
therapeutic regimens in the field of biomedicine (Le et al.,
2021). Due to advances in high-throughput sequencing
technology and the integration of machine learning in the
medical field, many new methods for identifying molecular
targets for various diseases are now available (Wu et al.,
2023). Clinicians can now utilize biomarkers for early
diagnosis of DFU to initiate timely interventions (Wang et al.,
2021; Li Y. et al., 2022; Shi et al., 2023; Shi et al., 2024). It has been
previously shown that the integration of bioinformatics and
machine learning has become an important tool for
identifying novel biomarkers associated with DFU (Khandakar
et al., 2021; Chemello et al., 2022; Guan et al., 2024; Hettinger
et al., 2024).

In this study, we systematically investigated the changes in the
expression patterns of mitophagy-related genes in DFU based on
DFU whole transcriptome expression data. Immediately after that,
we found that hexokinase-2 (HK2), small ribosomal subunit protein
us3 (RPS3), and l-lactate dehydrogenase A chain (LDHA) can be
indicated using multiple bioinformatic algorithms, that can be used
as hub mitophagy-related genes of DFU (DMGs) in DFU.
Meanwhile, we validated the importance of DMGs in DFU
through multiple dimensions. In conclusion, the present study
takes mitophagy as the starting point, and through the
combination of multiple bioinformatic analysis techniques and
machine learning algorithms to identify novel targets that can be
used for the diagnosis and treatment of DFU, which will provide
promising targets for the clinical diagnosis and treatment of DFU.

2 Materials and methods

2.1 Data downloading and processing

In this study, the bulk RNA-seq datasets relevant to DFU were
acquired from the gene expression omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/), with Table 1 displaying the fundamental
information of these datasets. The training cohort comprised
33 samples from GSE134431 and GSE80178, while the validation
cohort included 32 samples from GSE7014 and GSE68183.
“ComBat” from the R package “sva” was employed to remove
batch effects within both the training and validation cohorts
(Leek et al., 2012). The effectiveness of this de-batching effect
was assessed through principal component analysis (PCA).

2.2 Gene expression difference analysis

In this study, we compared the whole transcriptome expression
data of DFUs and Ctrls using the R package “limma” to identify
differentially expressed genes (DEGs) in both clusters at a P-value of <
0.05. P-values were computed using the Wilcoxon rank-sum test.

2.3 Weighted gene co-expression
network analysis

We used the “WGCNA” R package to identify DEGs associated
with DFUs (Langfelder and Horvath, 2008). We first determined the
appropriate soft threshold (β) and transformed the expression data
matrix into a topological overlap matrix (TOM). Based on the TOM
difference metric, we set the minimum module size to 200 and
compute the module eigengenes (ME). Subsequently, gene
significance (GS) and module significance (MS) were calculated
by correlating the identified modules with the phenotypic data of the
DFUs, which helped to analyze the correlation between each module
and the DFUs.

2.4 Downloading of mitophagy-related
genes

The mitophagy-related genes (MRGs) used in this study were
obtained from the GeneCards database (https://www.genecards.org/).
Specifically, we firstly entered the GeneCards database homepage,
entered “mitophagy” as the keyword in the search panel, selected
the gene type as “protein coding.” The score was set to greater than
2.5, resulting in a total of 417 MRGs (Supplementary Table S1).

TABLE 1 The basic information regarding the dataset in the present study.

Cohort division Dataset source Annotation platform Ctrl samples DFU samples

Training cohort GSE80178 GPL16686 3 9

GSE134431 GPL18573 8 13

Validation cohort GSE68183 GPL16686 3 3

GSE7014 GPL570 6 20
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2.5 Functional enrichment analysis

In order to identify the primary biological processes and
functions the 22 DFU-related MRGs were enriched, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were conducted utilizing the R package
“clusterProfler” (Yu et al., 2012).

2.6 Identification of DMGs using machine
learning algorithms

We utilized three machine learning algorithms to identify
DMGs: support vector machine recursive feature elimination
(SVM-RFE), least absolute shrinkage and selection operator
(LASSO), and random forest (RF). We applied the RF algorithm
from the “randomForest” package, the LASSO algorithm from the
“glmnet” package, and the SVM-RFE algorithm from the “e1071”
package for screening the 22 DFU-related MRGs to identify
potential candidate genes (Noble, 2006; Vasquez et al., 2016; Paul
et al., 2018).

2.7 Evaluation of the diagnostic
performance of DMGs for DFU

We utilized the R software package “pROC” to further evaluate
the diagnostic potential of the identified DMGs for DFU. Using the
“roc” function of the “pROC” package, we conducted receiver

operating characteristic (ROC) analyses. The final area under the
ROC curve (AUC) results were calculated using the “ci” function
of “pROC.”

2.8 Construction of the ANN model

We used the R package “neuralnet” to develope an ANN model.
Two data sets, GSE134431 and GSE80178, were used as the training
set of the ANN, and two data sets, GSE7014 and GSE68183, were
used as the validation set of the ANN. The resulting ANN model
featured three main layers: an input layer, a hidden layer, and an
output layer.

2.9 Gene set enrichment analysis

Based on the median value of the DMGs expression, we
clustered the DFU cohort and conducted gene set enrichment
analysis (GSEA) to ascertain the correlation between these genes
and biological functions.

2.10 Immune infiltration analysis

We assessed immune cell infiltration in DFU patients using the
R packages “GSVA” and “GSEABase” (Hänzelmann et al., 2013).
First, genetic information of 28 immune cell genomes
(Supplementary Table S2) was obtained from the TISIDB

FIGURE 1
Identification of DEGs based on bulk RNA-seq. (A,B) Distributional characteristics of the unprocessed data. (C,D) Distribution characteristics of the
processed data. (E) Volcano plot showing the DEGs between DFUs and Controls. (F)Heatmap showing the overall landscape of the DEGs between DFUs
and Controls. (G) Chromosome map showing the distribution of DEGs on chromosomes.
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database (http://cis.hku.hk/TISIDB/). Subsequently, ssGSEA scores
were calculated for each sample based on these 28 immune cell
genomes. The infiltration levels of different immune cells were
visualized using the “pheatmap” R package.

2.11 Molecular docking

We utilized the Enrichr platform (https://maayanlab.cloud/
Enrichr/) to identify drugs targeting DMGs. The molecular
structures of the drugs were sourced from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). Simultaneously, we retrieved
the 3D structures of HK2 (PDB ID: 6Q6N; resolution: 1.63 Å), RPS3
(PDB ID: 4ZVV; resolution: 2.20 Å), and LDHA (PDB ID: 5W8J;
resolution: 1.55 Å) from the PDB (https://www.rcsb.org/). Protein
and drug files were converted to PDBQT format, excluding water
molecules but including polar hydrogen atoms. Using AutoDock
tools, we prepared the ligand and protein files, conducted docking
simulations, and visualized the interactions with PyMOL.

2.12 Statistical analysis

In this study, we performed all statistical analyses of
bioinformatics in R language. The analysis of variance (ANOVA)
method was employed to statistically analyze multi-group data,

while the wilcoxon rank sum test was used to compare two
groups. Statistical significance was defined as P < 0.05 for all
statistical analyses.

3 Results

3.1 Differential analysis of gene expression

In this study, we used the 33 samples contained in
GSE134431 and GSE80178 as the training cohort, but due to
the batch effect between different datasets, we need to remove the
batch effect caused by the merging of GSE134431 and
GSE80178 in the pre-processing of the data, to make the data
in the same dimension and comparable. The data pattern of the
training cohort before merging is shown in Figures 1A, B, which
shows that the data are not in the same dimension in multiple
aspects. After removing the batch effect, the data pattern is shown
in Figures 1C, D. The results show that the samples are
independent of each other and evenly dispersed, meaning that
the data are in the same dimension and comparable, and can be
included in subsequent analyses. Next, we used the corrected
matrix for differential gene expression analysis (Figure 1E),
resulting in a total of 1,665 DEGs, of which 854 were
upregulated genes and 811 were down-regulated genes
(Supplementary Table S3). The whole expression landscape of

FIGURE 2
Identification of DFU-related DEGs based on bulk RNA-seq. (A) Construction of the unscaled co-expression network. (B) Merging of similar
modules. (C) Sample dendrogram and trait heatmap. (D) The correlation betweenmodules and disease phenotypes. (E) Statistics on the proportion of the
number of module genes.
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these DEGs was shown in Figure 1F, that is, their expression was
significantly different between the control and DFU
group. Finally, we visualized these 1,665 DEGs on
chromosomes and showed that they were evenly distributed
on chromosomes and underwent deregulated
expression (Figure 1G).

3.2 Identification of DFU-related DEGs

Dysregulated expression of genes may be caused by multiple
factors, that is, to identify DFU-related DEGs, we further performed
weighted gene co-expression network analysis. Based on the optimal
soft threshold power β = 10 (unscaled R2 = 0.9), the genes were
divided into four independent co-expression modules (Figures 2A,
B). The clustering dendrogram depicted the sample grouping, with
DFU samples being distinctly separated from the control samples
(Figure 2C). The correlogram of module-trait relationships
highlighted that the turquoise module showed the strongest
correlation with DFU (Figure 2D). The turquoise module
contained a total of 702 DEGs and had the highest gene
percentage (Supplementary Table S4), that is, a total of 42.2% of
the dysregulated expression of the DEGs identified in the results
mentioned above were related to DFU (Figure 2E), and were thus
included in the subsequent analysis as DFU-related DEGs.

3.3 The expression pattern of MRGs in
DFU altered

To investigate whether the expression patterns of MRGs in
DFUs were altered, we obtained 417 MRGs from the GeneCards
database (https://www.genecards.org/) for subsequent studies
(Figure 3A). We intersected these 417 MRGs with the
702 DFU-related DEGs identified in the analysis mentioned
above, resulting in a total of 22 DFU-related MRGs
(Figure 3B), implying that the deregulated expression of these
genes affects the onset and progression of DFUs to a certain
extent in the form of mitophagy. Immediately after that, we
further validated the dysregulated expression of these genes, and
the box plot showed that there was a significant difference in
their expression between control and DFU groups (Figure 3C).
However, genes are not independent of each other, and
there would be a certain relationship between their own
expression, so we performed correlation analysis on the
expression of these 22 DFU-related MRGs, and the results
showed that there was a strong expression relationship among
them internally (Figures 3D, E). The dysregulated expression of
DFU-related MRGs and the synergistic interactions between
them suggest that the expression pattern of MRGs in DFU is
altered resulting in their ability to contribute to the onset and
progression of DFU.

FIGURE 3
Expression patterns of MRGs in DFU patients. (A) Heatmap showing the overall expression landscape of the 417 MRGs. (B) Venn plots showing the
overlapped genes between 417MRGs and 702 DFU-related DEGs. (C) Box plot showing the expression levels of DFU-related MRGs. (D)Gene relationship
network diagram of DFU-related MRGs. (E)Correlation analysis of DFU-related MRGs. Red and green colors represent positive and negative correlations,
respectively. The correlation coefficient was expressed as the area of the pie chart (*p < 0.05, **p < 0.01, ***p < 0.001).
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3.4 Functional enrichment analysis

To ascertain the biological functions and signaling pathways
in which MRGs are mainly enriched to contribute to the
progression of DFU, we performed enrichment analysis on
the 22 DFU-related MRGs mentioned above. Among them,
GO results showed that they were mainly related to
mitochondria/autophagy and energy generation and
metabolism, such as “mitochondrial outer membrane,”
“mitochondrial matrix,” “apoptotic mitochondrial changes,”
“regulation of mitochondrial membrane permeability,”
“macroautophagy,” “regulation of autophagy,” “aldehyde
dehydrogenase [NAD(P)+] activity,” “aldehyde dehydrogenase

(NAD+) activity,” “protein phosphatase binding,” “electron
transfer activity,” “monosaccharide metabolic process,”
“hexose metabolic process,” “reactive oxygen species
metabolic process,” “glucose metabolic process,” “generation
of precursor metabolites and energy,” “response to oxygen
levels,” and “response to hypoxia” (Figure 4A). Additionally,
KEGG results were similar to GO results, showing that they were
associated with energy generation, amino acid metabolism, and
cancer, that is, “Glycolysis/Gluconeogenesis,” “Pyruvate
metabolism,” “Cysteine and methionine metabolism,”
“Carbon metabolism,” “p53 signaling pathway,” “HIF-1
signaling pathway,” “NF-kappa B signaling pathway,”
“Bladder cancer,” “Colorectal cancer,” “Small cell lung

FIGURE 4
Enrichment analysis of DFU-related MRGs. (A) GO enrichment analysis results of DFU-related MRGs. (B) KEGG enrichment analysis results of DFU-
related MRGs.
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cancer,” “Prostate cancer,” and “Central carbon metabolism in
cancer” (Figure 4B).

3.5 Identification of DMGs using multiple
machine learning algorithms

In recent years, machine learning has become a major tool for
healthcare data analysis and mining, and it is highly effective in
identifying disease-related biomarkers and making accurate clinical
diagnoses. Clinicians can now utilize biomarkers for early diagnosis
of DFU and timely intervention. Thus, the present study analyzed
the 22 DFU-associated MRGs mentioned above using multiple
machine learning algorithms (Supplementary Table S5). First, we
identified 7 candidate genes using the LASSO algorithm (Figure 5A);
7 candidate genes using the SVM-RFE algorithm (Figure 5B); and

11 candidate genes using the RF algorithm (Figure 5C).
Subsequently, we crossed the identified candidate genes
(Figure 5D), and found that HK2, RPS3, and LDHA could serve
as DMGs (Table 2).

3.6 Diagnostic performance of DMGs

The screened DMGs were significantly differentially expressed,
suggesting that DMGs may play a potential role in contributing
DFU (Figures 6A–C). Furthermore, AUC of DMGs was 0.955 of
HK2, 0.909 of RPS3, and 0.822 of LDHA, respectively (Figure 6D).
The results of the validation cohort showed that DMGs were also
dysregulated, where RPS3 was down-regulated in DFU and HK2 and
LDHA were both up-regulated in DFU (Figures 6E–G). DMGs also
showed good performance in DFU in the validation set, with AUCs of
0.671 for HK2, 0.870 for RPS3 and 0.739 for LDHA (Figure 6H).
Additionally, we also constructed an artificial neural network (ANN)
model based on the DMGs. Two data sets, GSE134431 and GSE80178,
were used as the training set of the ANN, and two data sets,
GSE7014 and GSE68183, were used as the validation set of the
ANN. The resulting ANN model featured three main layers: an
input layer, a hidden layer, and an output layer (Figure 6I). Table 3
presents the results of the ANN prediction. The training set achieved a
prediction accuracy of 90.9%, while the validation set yielded 87.5%.
Furthermore, theANNmodel has anAUCvalue of 0.924 in the training
set (Figure 6J), and 0.840 in the validation set (Figure 6K). Overall, the

FIGURE 5
Identification of DMGs using three machine learning algorithms. (A) LASSO logistic regression was used to select candidate genes, accompanied by
fine-tuning the penalty parameter through a process of tenfold cross-validation. (B) The SVM-RFE algorithmwas utilized for candidate gene selection. (C)
The RF algorithm was utilized for candidate gene selection. (D) Venn diagram showing the overlapped candidate genes by RF, SVM-RFE, and LASSO
algorithms.

TABLE 2 Scanning of candidate machines by three machine learning
algorithms.

Algorithms Genes

Lasso HK2; RPL8; RPL18A; TRIM25; CTPS1; RPS3; LDHA

RandomForest RPL18A; HK2; RPL8; RPS5; RPL12; KRT15; TRIM25; SESN2;
RPS3; LDHA; HILPDA

SVM-REF HK2; EEF1A1; RPS3; CTPS1; SRC; TP53; LDHA
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ANN model constructed based on the transcriptome of DMGs can
assist in the prediction of DFU.

3.7 GSEA analysis

We assessed signaling pathways associated with DMGs using
GSEA analysis. The results showed that LDHA is enriched in type

II diabetes mellitus, rheumatoid arthritis, ribosome, RNA
degradation, valine, leucine and isoleucine degradation, fat
digestion and absorption, and circadian rhythm (Figures 7A,
B). RPS3 is enriched in ribosome, tyrosine metabolism, glycine
serine and threonine metabolism, terpenoid backbone
biosynthesis, and type II diabetes mellitus (Figures 7C, D).
HK2 is enriched in IL-17 signaling pathway, type II diabetes
mellitus, terpenoid backbone biosynthesis, systemic lupus
erythematosus, and tyrosine metabolism (Figures 7E, F). As
mentioned above, DMGs are enriched in diabetes-related
biological pathways, such as “Type II diabetes mellitus,” which
creates the foundation and necessary conditions for the
development of DFU. Additionally, we found that DMGs are
also associated with inflammatory signaling pathways and amino
acid metabolism signaling pathways, such as “IL-17 signaling
pathway,” “Valine, leucine and isoleucine degradation,”
“Glycine, serine and threonine metabolism,” “Histidine
metabolism,” and “Tyrosine metabolism.” There exists a
strong relationship between amino acid metabolism and
energy metabolism in organisms (e.g., glycolysis, TCA cycle,

FIGURE 6
Diagnostic performance of DMGs in DFU. (A–C) The expression of the DMGs in the training cohort. (D) The ROC of the DMGs in the training cohort.
(E–G) The expression of the DMGs in the validation cohort. (H) The ROC of the DMGs in the validation cohort. (I) Construction of ANN based on the
DMGs. (J) The AUC of the training set with a value of 0.924. (K) The AUC of the validation set with a value of 0.840.

TABLE 3 ANN diagnosis effect for the training and validation cohort.

Training set Validation set

Control DFU Control DFU

Prediction Control 10 2 8 3

DFU 1 20 1 20

Accuracy 90.9% 87.5%

AUC 0.924 0.840
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respiratory chain, etc.). Amino acids can be metabolized to
produce ATP and also provide intermediates for other
metabolic pathways to maintain normal life activities.
However, dysregulation of amino acid metabolism can also
lead to disturbed energy metabolism in organisms, which can
activate mitochondrial abnormalities including mitochondrial
autophagy, and thus induce inflammatory diseases.

3.8 Immune cell infiltration analysis

We conducted an assessment of the immunological profile of
DFU samples utilizing the ssGSEA algorithm (Supplementary
Table S6). Figure 8A showed overall landscape of immune cell
infiltration between the DFU and Control groups. Compared
with Control samples, DFU samples have higher “Type 17 T
helper cell,” “CD56dim natural killer cell,” “Activated dendritic
cell” and “Eosinophil” “Neutrophil,” and have lower “Effector
memory CD4 T cell,” “Immature B cell,” “Natural killer cell,”
“CD56bright natural killer cell” (Figure 8B). Subsequently, we
explored the correlation between the expression of DMGs and the
aforementioned dysregulated immune cells through correlation
analysis. The results showed that there was a significant
correlation between the expression of DMGs and the
abundance of these immune cells, for example, the expression
of HK2 and LDHA was positively correlated with the abundance

of Neutrophil, Monocyte, Eosinophil and Activated CD4 T cell,
whereas RPS3 expression was negatively correlated with the
abundance of Neutrophil and Central memory CD8 T cell
(Figure 8C). The significant correlation suggests that the
dysregulated expression of DMGs may contribute to the
disruption of the immune microenvironment in DFU patients,
thereby worsening the inflammatory features that characterize
DFU patients.

3.9 Molecular docking

Previous studies has shown that drug discovery typically
commences with identifying disease targets, with target-based
drug discovery being the predominant approach for developing
new drugs. Thus, targeting DMGs may provide a new effective
therapeutic option for DFU treatment. Specifically, we identified two
drugs capable of targeting DMGs based on the DSigDB database,
namely, retinoic acid and estradiol. The results showed that both
drugs were able to target DMGs and both had higher binding
energies, sequentially LDHA-Retinoic acid (−7.6 kcal/mol) and
LDHA-Estradiol (−8.5 kcal/mol) (Figures 9A, B), RPS3-Retinoic
acid (−7.5 kcal/mol) and RPS3- Estradiol (−8.3 kcal/mol) (Figures
9C, D), HK2-Retinoic acid (−6.6 kcal/mol), and HK2-Estradiol
(−7.2 kcal/mol) (Figures 9E, F). Notably, retinoic acid and
estradiol have been shown in previous reports to be used in the

FIGURE 7
The GSEA of DMGs in DFU. (A,B) The GSEA of LDHA in DFU. (C,D) The GSEA of RPS3 in DFU. (E,F) The GSEA of HK2 in DFU.
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treatment of skin-related diseases, for example, retinoic acid and its
derivatives have potential for the treatment of severe skin diseases
(Szymański et al., 2020). Estradiol promotes the production of
extracellular matrix (ECM) (Soldano et al., 2010; Aida-Yasuoka
et al., 2013; Baker Frost et al., 2021), which helps to enhance skin
elasticity and reduce wrinkles (Rzepecki et al., 2019). These also
provide the basis for the use of retinoic acid and estradiol in the
treatment or alleviation of DFU symptoms.

4 Discussion

DFU is one of the primary causes of disability and death in DM
patients. Previous studies have shown a strong relationship between
DFU and mitophagy (Qi et al., 2023; Wang et al., 2023), and
importantly mitophagy activators present potential as a novel
therapeutic approach for diabetes (Shan et al., 2022), that is,
through elimination of malfunctioning mitochondria, mitophagy
helps to reduce the production of ROS and alleviate oxidative stress
(Rovira-Llopis et al., 2017; Zhang et al., 2019), which is particularly
important for the healing of DFUs. Therefore, the aim of the present

study was to investigate the potential of MRGs as DFU biomarkers
thereby contributing to the clinical diagnosis and treatment of DFU.

The current study was based on bulk RNA-seq data from DFU.
Specifically, we firstly obtained 1,665 genes that were deregulated in
DFU by differential analysis, of which 854 were up-regulated and
811 were down-regulated. Immediately after that, we used weighted
gene co-expression network analysis to find that 42.2% of the
mentioned above 1,665 DEGs, which are DFU-related DEGs, had
their deregulated expression associated with the occurrence of DFU.
Meanwhile, in order to investigate the role that mitophagy
contributes to the occurrence of DFU, we isolated the MRGs in
DFU-related DEGs using the MRGs annotated in the GeneCards
database for MRGs with potential regulation in DFU, known as
DFU-related MRGs. It is important to notice that the genes
themselves do not operate and function independently, and their
internal expression also has a strong correlation. The results of
correlation analysis showed that almost all of the 22 DFU-related
MRGs identified had significant correlation in their internal
expression, implying that these genes, as the core genes of
mitophagy factors, can largely contribute to the occurrence and
development of DFU. Secondly, to verify the reliability of these

FIGURE 8
Immune cell infiltration analysis. (A) Overall characterization of immune cell abundance. (B) The difference of immune cell infiltration abundance
between the DFU samples and control samples. (C) Correlation between DMGs expression and immune cell infiltration abundance (*p < 0.05, **p < 0.01,
***p < 0.001).
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genes, we enriched and analyzed them, and the results showed that
they were significantly correlated with mitophagy, energy generation
and metabolism, amino acid metabolism, and cancer, which means
that our results have a certain reliability. In order to identify DMGs
in DFU, we utilized multiple machine learning, and the results
showed that HK2, RPS3 and LDHA could be indicated by all the
machine learning algorithms.

It is worth mentioning that HK2, RPS3 and LDHA have been
reported in previous studies. For example, Hexokinase, the first key
enzyme in the glucose metabolic pathway responsible for the
conversion of glucose to glucose 6-phosphate, is encoded by
HK2. It was previously shown that HK2 expression is insulin-
responsive, and in diabetes mellitus, HK2-associated unscheduled
glycolysis may be a key initiator of insulin resistance and the
development of vascular complications (Rabbani et al., 2022). It
has also been demonstrated that inhibition of HK2 up-regulation
can block excessive glycolytic responses, which may result in
preservation of mitochondrial function and inhibition of diabetic
renal fibrosis (Hasegawa et al., 2023). RPS3 is an essential
component of the 40S subunit of eukaryotic ribosomes and is
directly involved in ribosome maturation and translation
initiation. RPS3 is expressed in human pancreatic islet cells in
response to the transfer of cytokines from the cytoplasmic to the
nuclear compartment. Furthermore, RPS3 is involved in NF-κB
signaling, and a genetic increase in the activity of the NF-κB subunit

c-Rel leads to protection against human islet cell death (Mokhtari
et al., 2009). Meanwhile, ethanol may affect oxidative stress in β-cells
by increasing the expression of the RPS3 gene, thereby decreasing
their metabolic activity (Shin et al., 2004). Lactate dehydrogenase
(LDH) is a metabolic enzyme that catalyzes the interconversion of
pyruvate and lactate. LDH is a tetramer consisting of two subunits:
muscular and cardiac, encoded by LDHA and LDHB, respectively
(Zhang et al., 2022). LDHA catalyzes the reversible conversion of
pyruvate to lactate while oxidizing NADH to NAD in anaerobic
glycolysis. The inhibition of LDHA under normal physiological
conditions and its inappropriate up-regulation in the diabetic milieu
is well documented and is predominantly enriched in human islet α
cells (Sanchez et al., 2021). In addition, the pathogenesis of diabetic
kidney disease (DKD) is associated with LDHA-mediated lactic
acidosis, which leads to mitochondrial abnormalities and renal
fibrosis in DKD patients (Walbridge et al., 1987). In summary,
the DMGs are associated with energy metabolism abnormalities.

Certainly, the performance of DMGs for DFU still needs both
single-gene as well as multi-gene tests, including ROC and ANN
(Mandair et al., 2023). ANN, as a form of artificial intelligence, has
found extensive application in clinical medicine (Kufel et al., 2023;
Mandair et al., 2023; Popovic et al., 2023). However, the current
clinical methods for diagnosing DFU have limitations, particularly
in terms of molecular-level diagnosis, which is often reliant on the
clinical experience (Voelker, 2023). Thus, we constructed the ANN

FIGURE 9
Molecular docking simulations. (A,B) The structure of the complex formed by the docking of LDHA with Retinoic acid (A), Estradiol (B). (C,D) The
structure of the complex formed by the docking of RPS3 with Retinoic acid (C), Estradiol (D). (E,F) The structure of the complex formed by the docking of
HK2 with Retinoic acid (E), Estradiol (F).
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model based on DMGs with high prediction accuracy. The AUC
values were all more than 0.8. Overall, the ANN constructed based
on the transcriptome of DMGs can assist in the prediction of DFU.

Prior research has shown that drug discovery typically
commences with identifying disease targets, with target-based
drug discovery being the predominant approach for developing
new drugs (Paananen and Fortino, 2020; Trajanoska et al., 2023).
We identified two drugs capable of targeting DMGs based on the
DSigDB database, namely, retinoic acid and estradiol. Retinoic acid
and its derivatives have therapeutic potential for severe skin diseases
(Szymański et al., 2020). Estradiol promotes extracellular matrix
(ECM) production (Soldano et al., 2010; Aida-Yasuoka et al., 2013;
Baker Frost et al., 2021), contributes to skin elasticity and reduces
wrinkles (Rzepecki et al., 2019). In addition, the results of molecular
docking showed a high binding affinity between retinoic acid and
estradiol and DMGs, implying that they may be promising
therapeutic agents against DFU.

There are also several limitations of this study that need to be
clarified. Firstly, the number of DFU samples in the GEO database
that could be incorporated into the present study was small, which
also limited our possibility to perform additional cohort analyses
and validation. Secondly, the clinical information of DFU samples
was incomplete, which led to the lack of clinical phenotyping
research on DFU in the present study. Finally, this study still
needs more biological and clinical experiments for its subsequent
analysis and validation.

5 Conclusion

In the present study, we performed a series of bioinformatic
analyses based on DFU- related transcriptomics data. Specifically,
we identified 702 DFU-related DEGs, including 22 MRGs, and the
enrichment analysis results showed that these genes are related to
mitochondria and energy metabolism. Immediately following this,
we used multiple machine learning algorithms (RF, Lasso and SVM-
RFE) to collectively identify HK2, RPS3 and LDHA to serve as
DMGs. Meanwhile, we constructed a novel ANN model for DFU
diagnosis, and the ROC curves of the model showed good
performance. Additionally, the results of ssGSEA showed that
DMGs could regulate the immune microenvironment of DFU
patients. Finally, we found that retinoic acid and estradiol may
be promising drugs against DFU. In conclusion, this study identified
DMGs through multiple analytical techniques and verified their
importance in DFU through multiple dimensions, providing
promising targets for the clinical diagnosis and treatment of DFU.
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