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Proteins, as the primary executors of physiological activity, serve as a key factor
in disease diagnosis and treatment. Research into their structures, functions,
and interactions is essential to better understand disease mechanisms and
potential therapies. DeepMind’s AlphaFold2, a deep-learning protein structure
prediction model, has proven to be remarkably accurate, and it is widely
employed in various aspects of diagnostic research, such as the study of
disease biomarkers, microorganism pathogenicity, antigen-antibody structures,
and missense mutations. Thus, AlphaFold2 serves as an exceptional tool to
bridge fundamental protein research with breakthroughs in disease diagnosis,
developments in diagnostic strategies, and the design of novel therapeutic
approaches and enhancements in precision medicine. This review outlines
the architecture, highlights, and limitations of AlphaFold2, placing particular
emphasis on its applications within diagnostic research grounded in disciplines
such as immunology, biochemistry, molecular biology, and microbiology.
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1 Introduction

AlphaFold2 (AF2), developed by DeepMind, is a modeling method that harnesses
the cutting-edge technologies of artificial intelligence and deep learning for predicting
protein structures with extremely high prediction accuracy (Figure 1). Rooted in the
principle of co-evolution within protein structures, AF2 integrates novel deep learning
approaches through the deployment of a suite of trained deep neural network models
based on MSA-Transformer, a classical neural network model. These models can
generate three-dimensional protein structures with atomic-level precision, informed by
both specific amino acid sequence data and information from homologous proteins
and multiple sequence alignments (MSAs) (Jumper et al., 2021; Yang et al., 2023). Its
outstanding performance at the international CASP14 protein structure prediction
competition showcased a significant breakthrough in both speed and accuracy, leading
to its decisive triumph (Kryshtafovych et al., 2021). The success of AF2 relies on
the accumulation of experimental data on protein structures and the comprehensive
research conducted on protein structure prediction. Additionally, the active development
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FIGURE 1
Comparison of X-ray- and AF2-predicted structures of the SLC3A1
homodimer, made using ChimeraX. The X-ray structure is depicted in
red, and the AF2-predicted structure is depicted in green. The root
mean square deviation between them was 0.333.

community surrounding AF2 ensures a constant influx of fresh
talent into the AF2 series, including updates and derivative
versions.

Proteins play a vital role in physiological processes, and
alterations in the structure and function of specific proteins
can lead to distinct diseases. Detecting changes in these specific
proteins serves as a crucial diagnostic indicator. Proteins are
also essential players in the biological functions of pathogenic
microorganisms, simultaneously driving disease and influencing
treatment strategies. Furthermore, proteins with strong antigenicity
not only act as antigens but also serve as potential targets
and essential tools in disease diagnosis. Clinical serum antibody
detection is one of the many diverse applications of these proteins.
The application of specific proteins in disease diagnosis relies on
comprehensive research into their unique functions and disease-
related changes, involving multiple fields of biology, such as
immunology, biochemistry, molecular biology, and microbiology.
Since the release of AF2, it has been widely used in various
protein research areas. For these studies, numerous excellent
reviews have thoroughly explained AF2’s multifaceted functions
in biological and medical research, demonstrating its superior
performance in predicting protein structures, analyzing mutations,
and predicting catalytic and binding sites (Bongirwar andMokhade,
2022; Paiva et al., 2022; Bertoline et al., 2023). In the meantime,
a lot of studies have demonstrated AF2’s robust and exceptional
capabilities in investigating disease-related protein structures,
functions, interactions, and proteomics. Consequently, research
findings utilizing AF2 not only facilitate the development of

diagnostic tools and therapeutic drugs, including antibodies and
antigens, but also advance our understanding of protein structures,
functions, and mutations related to diseases. This helps better
understand the impact of specific proteins on the onset and
progression of disease, leading to the development of novel disease
indicators, targets, detection tools, and treatments (Figure 2).
However, there is a lack of comprehensive reviews on AF2’s research
in the field of disease diagnosis.

This review aims to comprehensively examine the model
architecture, key features, and limitations of AF2. It performs a
deep investigation into the extensive applications of AF2 in protein-
related research across several disciplines. Finally, this paper briefly
touches upon the prospective future development of AF2 and
discusses the promotion of basic biological research using AF2 in
disease diagnosis.

2 AF2

2.1 The model structure of AF2

AF2 is DeepMind’s foremost protein structure prediction
method, distinguished by its utilization of the innovative neural
network architecture known as Evoformer. Inspired by the
MSA-Transformer (Figure 3) (Vaswani et al., 2017; Rao et al.,
2021), Evoformer combines evolutionary mechanisms, physical
principles, and geometric constraints inherent in protein
structures to yield exceptional protein structure predictions.
Evoformer, comprising two sets of MSA-Transformer-
based structures, captures information from MSAs and
features related to structural constraints between amino acid
residues. This dual-focus approach significantly enhances the
prediction quality.

At the core of AF2 lies the application of structural information
embedded in protein co-evolution (Pazos and Valencia, 2008;
Ashenberg and Laub, 2013). MSA is a bioinformatics technique
used to align three or more biological sequences, such as
proteins, DNA, or RNA. The objective of MSA is to identify
regions of similarity that suggest functional, structural, or
evolutionary relationships among the sequences. This method
arranges the sequences so that homologous residues, which
are derived from a common ancestor, are aligned in columns
(Prjibelski et al., 2019). By doing so, MSA can uncover crucial
information, including conserved sequences and mutation
events like point mutations, insertions, and deletions, and
can also help infer phylogenetic relationships. MSAs of AF2
sequences are used to extract conservation and covariation
information from protein sequences exhibiting co-evolutionary
relationships with the target proteins. By integrating this valuable
information with structural constraints between amino acid
residues, AF2 achieves high-precision and efficient predictions
of the target protein’s structure (Yang et al., 2023). Moreover,
AF2 incorporates various optimization techniques, such as
specific loss functions (Jumper et al., 2021) (e.g., frame point
alignment error loss, auxiliary loss and violation loss), a recycling
mechanism, self-distillation (Xie et al., 2020), and self-accuracy
estimation (Jumper et al., 2021), and other methods to enhance the
predictive performance of the model.
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FIGURE 2
The application of AF2 in the diagnostic strategies for disease. Containing AF2 applications in four areas, the arrows represent progressive relationships.

FIGURE 3
The comparison of MSA-Transformer and Evoformer. (A) Architecture of MSA-Transformer. (B) Architecture of Evoformer. Compared with (A), a set of
modules is added in (B) to handle paired information.
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FIGURE 4
The overall framework of AF2. It is divided into three parts: 1) the feature extraction module, 2) the encode module, and 3) the structure decode
module. The arrows represent the execution direction of each output in the runtime architecture. The outputs of the encode module and the structure
decode module are continuously optimized through the recycle mechanism.

Thecomprehensive architecture ofAF2 (Tunyasuvunakool et al.,
2021; Yang et al., 2023), outlined in Figure 4, comprises three
main modules: a feature extraction module, an encoder module,
and a structure decoding module. The input module initiates a
search for sequences homologous to the template in the sequence
database and performs MSA, which reveals similarity and co-
evolution information between the protein sequences and is
crucial for accurate protein structure predictions. Simultaneously,
the input module checks for homologous sequences with
known three-dimensional structures and constructs a pairwise
distance matrix in the protein structure database to depict
the spatial distance between each pair of amino acids. The
input module then generates MSA representations and pair
representations, which capture co-evolution information and
structural constraint features, respectively. The generated MSA
pairwise representations are fed into the encode module,
which is composed of Evoformer and infers both spatial and
evolutionary relationships between proteins using the collected
co-evolution information. In the final module, the structure
decode module, the output of the encode module is converted
into the three-dimensional structure of the target protein. The
encoding module and the structure decoding module continuously
optimize the predicted structure through the recycling mechanism
(Jumper et al., 2021; Yang et al., 2023).

2.2 Highlights and limitations of AF2

AF2 utilizes various deep learning training methods combined
with efficient search algorithms to collect information from
protein sequences and structural data, resulting in more accurate
predictions of unknown protein structures.

2.2.1 The neural network architecture adopted by
AF2

AF2 uses the Evoformer to learn features of protein sequences
and structures from different perspectives. The Evoformer consists
of two sets of MSA-Transformer-based modules, which operate
on the original MSA and pairwise information and combines a
gated mechanism and an attention mechanism to dynamically
adjust the network’s output based on the input information
(Makkuva et al., 2020). The MSA row-wise gated self-attention
mechanism enables the model to capture long-range dependencies
in amino acid sequences and protein structures, while the
MSA column-wise gated self-attention mechanism allows for
element exchange between different species. The Evoformer also
learns the geometric constraints inside protein molecules through
a triangular self-attention mechanism. The structure decoding
module is based onmethods similar toMSA-Transformer, encoding
residue geometry into a directed reference frame in three-
dimensional space (Jumper et al., 2021). AF2 also allows the model
to update and optimize its output several times throughout the
recycling mechanism to achieve better convergence and stability.

2.2.2 Databases and search algorithms adopted
by AF2

AF2 utilizes sequence data from excellent protein sequence
databases such as MGnify, Uniclust30, Uniref90, and the Big
Fantastic Database, which helps it construct high-quality MSAs
(Suzek et al., 2015; Mirdita et al., 2017; Mitchell et al., 2020).
The protein structure data are derived from widely recognized
databases, including Protein Data Bank (PDB) and PDB70/100
(Steinegger et al., 2019). Such a large amount of amino acid
sequence and structure data enables deep learning neural networks
to explore various dependencies between protein sequences and
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structures (Yang et al., 2023), helping to improve the accuracy of
AF2 prediction results. AF2 also uses several algorithms, including
JackHMMER (Johnson et al., 2010), HHBlits (Remmert et al.,
2011), and HHSearch (Steinegger et al., 2019), to significantly
improve the search efficiency.

2.2.3 The training methods adopted by AF2
The training set of AlphaFold2 consists of 75% self-distilled

data and 25% known structures from the PDB. Self-distillation
is a popular method of knowledge distillation that involves
the student model learning from the teacher model, thereby
enhancing the model’s performance and efficiency. It avoids the
complexity and time costs associated with the independent training
and optimization of the teacher model in traditional knowledge
distillation (Zhang et al., 2019; Xie et al., 2020). During the self-
distillation training phase of AF2, the model is initially trained
with data from the PDB and then predicts the structures of
approximately 350,000 protein sequences in the Uniclust database.
These predicted structures are used as data for subsequent training,
with the model being retrained on a small subset of random samples
in each training cycle. To improve the model’s generalization ability
and predictive accuracy, the training data is enhanced through a
series of data augmentation processes, including random filtering,
MSA preprocessing, and amino acid cropping. Such methods
allow the model to make more effective use of limited data and
enhance its capability to handle different protein domains and
diverse MSA data (Jumper et al., 2021).

2.2.4 The robust AF2 development community
AF2 also boasts a thriving development ecosystem, with

DeepMind and researchers in related fields continually updating
and expanding on it to meet their investigative needs. For instance,
Evans et al. modified AF2 to facilitate predictions of multi-chain
complexes, dubbing this enhanced model AlphaFold-Multimer
(Evans et al., 2022). Gao et al. built upon AF2 to devise a system,
AF2Complex, capable of predicting direct physical interactions
between multi-protein assemblies without requiring paired
MSA input (Gao et al., 2022). Wayment-Steele et al. employed
sequence clustering of protein sequences based on similarity and
subsequently applied AF2 to each cluster to predict alternative
conformations, a methodology they termed AF-Cluster (Wayment-
Steele et al., 2023). Recently, in collaboration with Isomorphic
Labs, DeepMind unveiled the latest iteration of AlphaFold,
AlphaFold3 (AF3), which, beyond predicting protein-protein
interfaces, is capable of forecasting interactions between proteins
and nucleic acids and proteins and small molecule ligands, as
well as those between antigens and antibodies (Abramson et al.,
2024).However, DeepMind is not releasing the AF3 as open source.
The multidimensional advancements surrounding AF2 showcase its
immense potential across various scientific disciplines.

2.2.5 However, AF2 lacks sufficient predictive
ability for the fine structure of proteins

A study by He et al. showed that there are significant
differences between the AF2-predicted structures and experimental
structures in many aspects, such as the assembly of extracellular
and transmembrane domains, the shape of ligand-binding
pockets, and the conformation of the transduction binding

interface (He et al., 2023).The predicted structure and relative
positioning of each domain in AF2 exhibit uncertainty, regardless
of the confidence level. This uncertainty can be attributed to
several factors (Akdel et al., 2022). One such factor is the presence
of indecipherable protein disorder regions in the X-ray data
used for AF2 training, which results in the generation of low-
confidence, disordered segments in AF2 predictions. Another factor
is that some highly confident structural domains are connected by
flexible links, leading to errors in the relative positioning of the
domains. This uncertainty introduces the possibility of inaccurate
results or identifications in structural similarity, structure of
pockets, mutational effects, or model construction. These findings
underscore the highlight of experimental research in protein
structure analysis and emphasize the need for manual inspection
and correction of AF2-predicted structures with experimental data.
Consequently, the integration of experimental data and artificial
intelligence has emerged as a potential solution to addressing these
challenges.

During our usage, we observed that AF2 failed to simulate the
natural conformation of the receptor-binding domain (RBD) of
the SARS-CoV-2 spike protein that “pops out” due to enzymatic
cleavage, regardless of whether or not a custom template was
provided. We speculate that this limitation may stem from the
development of AF2 based on protein structures in aqueous
solutions, which are unable to replicate the effects of environmental
conditions such as solvent conditions, pH, and ion strength on
protein structure (Rey et al., 2023).

2.3 Other methods of protein structure
prediction

Before the advent of AF2, the first generation of AlphaFold
(AF1) had already made significant strides in the field of
protein structure prediction by employing deep learning to
forecast the distances between protein residues. AF1 constructed
a potential of mean force based on these distances, which allowed
for the creation of highly accurate protein structures without
complex sampling procedures (Senior et al., 2020). Subsequently,
AF2 has built upon these achievements by incorporating new
neural network architectures and training methodologies. By
integrating evolutionary, physical, and geometric insights into
protein structures, AF2 has notably increased the precision of
predictions, achieving atomic-level accuracy even for proteins
without known homologous structures. In addition to AlphaFold,
this section will introduce four other protein structure prediction
models: Rosetta, RoseTTAFold All-Atom, ESMFold, and RGN2,
each with its own distinctive features and strengths (Table 1).

2.3.1 Rosetta
Rosetta (Rohl et al., 2004) is a classical de novo protein structure

prediction method based on fragment assembly, developed by the
Baker Lab at the University of Washington, which has had a
long-standing impact and wide application in the field of protein
structure prediction. The core principle of Rosetta relies on an
energy function that utilizes information from fragments of known
protein structures, assembling these fragments through Monte
Carlo strategies to simulate the natural folding process of proteins,
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TABLE 1 Features, advantages and limitations of 5 different protein structure prediction models.

Method Feature Advantages Limitations

AlphaFold2 A neural network architecture
combining attention mechanisms and
evolutionary information

1. High accuracy in protein structure
prediction

2. Continuous updates and
development

1. High computational resources
requirements

2. Homologous sequence dependence
3. Lack of fine structure prediction

ability

Rosetta Uses energy functions with fragments,
Monte Carlo strategies

High computational efficiency with low
search space

1. Limited exploration for intricate
topology proteins

2. Low-resolution energy functions

RoseTTAFold All-Atom Merges sequence-based representations
of biopolymers with atomic graph
representations of small molecules and
covalent modifications

Prediction of proteins, nucleic acids,
small molecules, metals, covalent
modifications

1. Average accuracy
2. Small training datasets

ESMFold Utilizes protein language model with
training parameters instead of MSA.

1. Faster prediction speed.
2. Efficient exploration of large-scale

protein structure space

1. Limited prediction accuracy
2. Less effective with complex structures

RGN2 Uses AminoBERT language model and
recurrent geometric network

Prediction of orphan and de
novo-designed protein structures

1. Poor prediction with sufficient
sequence homologs

2. Hard to predict beta-sheet structures
3. Limited to local dependencies

between Cα atoms

thereby generating conformations close to the native state. This
approach ingeniously transforms the continuous conformational
space optimization problem into a discrete fragment combination
optimization problem, effectively reducing the search space and
enhancing computational efficiency.

Nonetheless, Rosetta is accompanied by several drawbacks
(Simkovic et al., 2017; Kuenze and Meiler, 2019). 1) When dealing
with proteins of high molecular weight or those possessing intricate
topologies, the conformational search strategy based on fragment
assembly may fall short in thoroughly exploring the complete
conformational space. Consequently, this limitation can lead to
the omission of the globally optimal solution. 2) Employing
low-resolution energy functions, while enhancing computational
tractability, inadvertently compromises the precision in depicting
detailed interactions.

2.3.2 RoseTTAFold All-Atom
RoseTTAFold All-Atom (RFAA) is a deep learning network that

extends the capabilities of conventional protein structure prediction
(Krishna et al., 2024; Marchal, 2024). It incorporates the ability to
simulate complete biological assemblies, encompassing proteins,
nucleic acids, small molecules, metals, and covalent modifications.
RFAA merges sequence-based representations of biopolymers with
atomic graph representations of small molecules and covalent
modifications to predict the three-dimensional structures of these
biological assemblies. This enables RFAA to predict the structure
of biomolecules more comprehensively, not limited to pure protein
systems alone. In terms of protein structure prediction accuracy,
RFAA is on par with AF2.

While RFAA has an immediate effect in protein-small molecule
binding design and complex biomolecular assembly modeling, its
accuracy still needs to be further improved (Krishna et al., 2024).

The RFAA’s training set is relatively small, so larger training datasets
are needed to improve prediction accuracy for novel protein-small
molecule complexes.

2.3.3 ESMFold
ESMFold (Lin et al., 2023; Meng et al., 2023) is a protein

structure prediction method built upon pretrained language models
capable of directly generating atomic-level three-dimensional spatial
structures from a single protein sequence, eliminating the need
for multiple sequence alignments or external modeling programs.
It employs the extensive pretraining of the ESM-2 protein
language model, currently the largest with 15 billion training
parameters (Lin et al., 2023), as a replacement for MSA. The
predictive performance of ESMFold in terms of structure improved
with both the size of the language model and the comprehension
of the protein sequence, which exhibited a negative correlation with
perplexity. Notably, the prediction speed of ESMFold is one order
of magnitude faster than that of MSA-based methods, enabling
efficient exploration of large-scale protein structure space.

However, ESMFold is not without its challenges (Lin et al.,
2023). 1) The accuracy of ESMFold predictions shows a negative
correlation with the perplexity of the sequence, implying difficulty
in inferring the structure when the language model struggles to
comprehend the sequence. 2) Currently, there is a disparity in the
prediction ability of more intricate structures, such as multiple
chains or complexes, comparedwith that of AF2. Further refinement
and optimization of ESMFold are required to bridge this gap.

2.3.4 RGN2
RGN2 (Chowdhury et al., 2022) represents an innovative

approach to protein structure prediction that utilizes language
models and deep learning to directly generate three-dimensional

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1414916
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Zhang et al. 10.3389/fmolb.2024.1414916

structures from a single protein sequence, eliminating the need for
multiple sequence alignments or external modeling programs. The
method incorporates AminoBERT, a protein language model, along
with a recurrent geometric network to forecast the local geometry
of each residue. AminoBERT, employing a Transformer-based
architecture, captures latent structural information from unaligned
protein sequences. The recurrent geometric network predicts the
local geometry of each residue using a rotation matrix, ensuring
rotational and translational invariance and avoiding unrealistic
torsion angles. Notably, RGN2 excels in predicting the structures of
orphan and de novo-designed proteins, which traditionally poses
challenges for MSA-based methods.

Nevertheless, RGN2 exhibits certain limitations: 1) When
applied to proteins with sufficient sequence homologs to generate
multiple sequence alignments (MSAs), RGN2 underperforms
compared to AF2 which utilizes MSA for protein structure
prediction. 2) Challenges persist for RGN2 in accurately predicting
beta-sheet structures from single sequences, particularly for
orphan and designed proteins. 3) RGN2 primarily predicts local
dependencies between Cα atoms and does not directly consider
arbitrary pairwise dependencies across the entire protein structure.

3 The application of AF2 in the
diagnostic strategies for disease

3.1 AF2 in antigen research and design of
immunological tool in disease diagnosis

In clinical practice, the immunological assays based on antigen-
antibody interactions are an important method for identifying
pathogenic agents. Utilizing known antibodies or antigens, we can
detect their counterparts in test samples. Concurrently, exploring
the structure, functionality, and mutations of pathogenic antigens
deepens our comprehension of pathogen traits, supports vaccine
creation, and aids in identifying receptors that bind to pathogens.
This comprehensive strategy in immunology significantly improves
diagnostic accuracy. Presently, AF2 has been effectively employed in
a variety of research and design endeavors related to immunology.
In this section, we will explore its applications within this field.

3.1.1 Antigen structure prediction and function
analysis

AF2 is widely employed in the prediction of antigenic structures
in pathogens, analysis of the structural and functional characteristics
of antigen proteins, and assessment of the impact of antigenic
variations. For example, Hu et al. utilized AF2 to predict the novel
fold of the rotavirus glycan-binding domain, which was confirmed
through X-ray crystallography (Hu et al., 2022). Veit et al. (2022)
used AF2 to predict the structure of the Gp5/M dimer of porcine
respiratory and reproductive syndrome virus (PRRSV) and analyzed
the heterogeneity of PRRSV Gp5 signal peptide cleavage sites. Both
Fang et al. and Yang et al. employed AF2 to predict the structure of
the S protein of SARS-CoV-2 and its Omicron variant (Yang et al.,
2021; Fang et al., 2023). They investigated the impact of mutations
in the S protein on its binding arrangement and affinity to the
ACE2 receptor. Yang et al. used AF2 to create a high-precision
structural model (pLDDT>70) and compared it with experimental

data, considering the root mean square deviation (RMSD) values
and amino acid charge properties. The results indicated that the
Omicron variant affects the interaction between the RBD region
of the S protein and ACE2 without altering the interaction site.
Additionally, Fang et al. utilized ColabFold (Mirdita et al., 2022), a
protein-protein complex prediction model based on AF2, to analyze
the S protein complex with two co-receptors, AXL and LDLRAD3.
Based on the predictive complex model, they found that the binding
modes of AXL and LDLRAD3 are different: AXL binds to the NTD
region of S protein, while LDLRAD3 binds to the RBD region of S
protein, and there are competitive binding sites with ACE2. These
findings align with their experimental results.

3.1.2 AF2 in immunology-related design
There are numerous applications for immunological study in

disease diagnosis and prevention, including pathogen detection,
antibody level measurement, immune cell analysis, and vaccine
development. These tests require antibodies that can react
immunologically with the target antigen, as well as auxiliary anti-
antibodies as detection tools. AF2 and its derivative models possess
the capability to predict protein structures and protein-protein
docking. Numerous experiments have demonstrated that AF2
can accurately predict vaccine and antibody structures, as well as
optimize antibody-antigen complexes. This highlights its potential
in designing tools for immunological detection.

3.1.2.1 Antibody design
Antibodies serve as critical tools for immunological detection.

Their ability to bind to antigens largely relies on the topological
complementarity between the variable domain of antibodies and
the spatial structure of antigen epitopes (Graham et al., 2019).
Therefore, accurate identification of the antibody structure and a
precise understanding of the antibody-antigen (Ab-Ag) interface
(i.e., the antibody epitope) are essential for antibody design (Sela-
Culang et al., 2013; Guest et al., 2021; Hummer et al., 2022). Due to
the superior performance of AF2 in predicting protein structures,
it has been used in several studies to predict antibody structures
and epitopes.

There are two major obstacles in predicting antibody
structures: 1) determining the relative orientation of the heavy
chain (Vh) and light chain (Vl) domains and 2) predicting the
complementary determining regions (CDRs), especially highly
variable and conformationally diverse CDR-H3 loop structures
(Jaszczyszyn et al., 2023). Polonsky et al. achieved highly accurate
predictions of 50% of the positions within the Fab region of
222 antibodies using AF2, with an average TM-score of 0.83
for individual Vh and Vl (Polonsky et al., 2023). This not only
implies identical folding but also signifies very close proximity
between the predicted and native structures. Ruffolo et al. tested the
performance of AF2 and AlphaFold-Multimer in antibody structure
prediction (Evans et al., 2022; Ruffolo et al., 2023) and found that
AlphaFold-Multimer can accurately predict the backbone structure
of antibodies, the relative orientation of Vh and Vl, and the CDR
loop structure. For the relative orientation of Vh and Vl, they
calculated the orientation coordinate distance (OCD) (Marze et al.,
2016) of the predicted models to determine the accuracy of the
relative orientation between Vh and Vl in the predicted models. The
results indicate that the Fv (variable region of antibody) structure
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predicted by AlphaFold-Multimer has an OCD of 4.18, which is
within one standard deviation of the native structure. Moreover,
AlphaFold-Multimer demonstrated sub-angstrom accuracy in
predicting the CDR1 and CDR2 loop structures, and for CDR3,
it exhibited greater prediction accuracy and novel predicted
structures compared to many other models, demonstrating superior
performance in predicting antibodies such as the PDB identifier
7N3G. AF2 performs best in predicting the CDR structures of
nanobodies, as it considers various structural arrangements during
the training process, giving it an advantage in predicting the
secondary structures of nanobodies. Although both AlphaFold-
Multimer and AF2 can predict the structure of antibody CDRs,
their ability to predict CDR-H3 loop structures is still insufficient.
Continuous updates to AF2 may improve this issue in the future.

The advancement of deep learning methods has allowed
researchers to work toward enhancing the accuracy of antibody
epitope prediction through the integration of models that combine
sequences and structures and incorporate both local and global
features (Zeng et al., 2023). Researchers have leveraged AF2’s
remarkable monomer protein structure prediction capabilities to
forecast antibody epitopes, utilizing the predicted antibody structure
model as input data for the prediction system (Desta et al., 2023a;
Desta et al., 2023b). Desta et al. devised a method for antibody
epitope prediction known as PIPER-Map (Desta et al., 2023b).
This approach utilizes AF2 to anticipate antibody structures and
employs the docking program PIPER, which is based on fast Fourier
Transform (FFT), to perform docking between the antibody models
and antigens. The docking results are subsequently ranked for
analysis. Studies have shown that this method predicts antibody
epitope structures with excellent accuracy, with the AF2 predictions
comparable to those based on existing antibody crystal structures.
In addition, Desta et al. reviewed the advanced antibody epitope
localization software ServerClusPro AbEMap Web Server and
investigated the effectiveness of predicting antibody epitopes using
the AF2 prediction model as input (Desta et al., 2023a). The results
indicated that the antibody epitope predictions generated by AF2
were similar to those generated based on established antibody
structure templates, with improved predictive power for partial
antibody epitopes such as PDB ID 2W9D compared to X-ray
structures. Notably, the performance of AF2 for antibody epitope
prediction using existing antibody templates was inferior to that
achieved without utilizing antibody templates for prediction.

3.1.2.2 Optimization of antigen-antibody dockingmodels
Antigen-antibody binding serves as the foundation for

immunoassays and holds significant value in medical and
immunological research. However, the current challenge lies in
achieving effective antigen‒antibody docking, and a universal
solution to this problem remains elusive (Hogues et al., 2018).
Despite these obstacles, AF2 canmake robust predictions of protein-
protein binding, and it has been successfully used to predict
structural aspects of antigen-antibody docking and assess the
outcomes of the predictions.

In a study by Yin et al., the ability of AF2 to predict antigen-
antibody docking was scrutinized using over 400 nonredundant
antigen-antibody complexes (Yin and Pierce, 2024). Their
findings indicated that the their than-latest version of AlphaFold,
v.2.3, has a higher prediction success rate compared to the

previous version, v.2.2. Additionally, the updated AlphaFold
demonstrated increased efficacy in predicting nano antigen-
antibody docking, underscoring the potential of AF2 in identifying
antigen-antibody docking structures. This research emphasized
that the accuracy of AF2 can be improved by optimizing the
framework or model, enhancing sequence information within
the MSA, and establishing a positive correlation between subunit
prediction accuracy and the success rate of antigen-antibody
interaction predictions. Consequently, the modification of AF2’s
architecture, particularly the structural module, holds promise
for augmenting prediction accuracy by integrating contemporary
factors (Abanades et al., 2023; Ruffolo et al., 2023) that enhance
antibody prediction precision, potentially refining AF2’s overall
predictive capabilities.

Gaudreault et al. (2023) used AF2 to augment the predictive
accuracy of antigen-antibody docking structures, refining the
expected docking models and improving early success rates.
They employed standardized pLDDT and pTMscore (ZpTMscore
and ZpLDDT) to compute a composite score, the AF2Composite
score, which measures the confidence levels associated with these
docking models (Eq. 1). The experimental results demonstrate the
practicality, simplicity, and efficacy of this scoring method, which
is free from the constraints of a specific physical methodology and
remains uninfluenced by any subjective biases introduced during
training or calibration. Notably, the correlation between the score
and the experimentally observed docking structure strengthened
with increasing quality of the predicted docking models. For
instance, when R2 < 0.4 (indicating poor mutual correlation
between pLDDT and pTMscore), the correlation is significant only
for models of acceptable quality. For models exhibiting superior
prediction quality, the score proves instrumental in elevating the
ranking of true positives within the predictive structure, thereby
enhancing the discriminatory ability of these prediction models in
the negative/positive classification of antibody-antigen docking.

AF2Composite = ΖpLDDT +ΖpTMscore (1)

3.1.3 Vaccine design
The vaccine development for respiratory syncytial virus

(RSV) has demonstrated the importance of structure-based
vaccine design (Graham et al., 2019). Using AF2 to predict
protein structures could aid in structure-based design, potentially
overcoming difficulties faced in previous vaccine developmentwork.

Currently, various antibodies targeting the hemagglutinin (HA)
stem region have been identified as neutralizing antibodies against
influenza B virus (IBV). Therefore, vaccines designed based on HA
can broadly prevent IBV infection. Zheng et al. used AF2 to design a
hemagglutinin stem cell vaccine specific to IBV, named “B60-Stem-
8071” (Zeng et al., 2022). They used AF2 to predict the vaccine’s
structure and screened for vaccine sequences that could correctly
fold and maintain the natural conformation of the HA stem region
in prokaryotic systems. Additionally, to enhance the stability of the
HA stem region structure and improve the immune response against
HA vaccine in vivo, they rationalized and engineered the epitope
linker of the neutralizing antibody CR8071 using AF2, connecting
the optimized structure to the vaccine, allowing it to target the
CR8071 epitope.
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3.2 AF2 in biochemical studies

3.2.1 Development of auxiliary protein targets
and biomarkers

Proteins that perform crucial functions in vital life processes,
such as enzymes, receptors, and ion channels, serve as significant
targets for biochemical detection and drug therapy. While protein-
protein interaction has been identified as a new path to discover
protein targets (Liu et al., 2024), the structure and function of novel
proteins are often difficult to determine. Studying protein targets
with AF2 can not only predict the interaction between proteins
to find protein targets but can also improve the understanding
of protein structure and function, accelerate drug design, and
contribute to advances in biology and medicine. Gόmez-Marίn
et al. used AF2 to predict the structure and interaction domain of
high mobility group 20A (HMG20A) and PHD Finger Protein 14
(PHF14) and found that they form a stable nuclear complex through
coiled-coil domain interactions, identifying them as potential
protein targets (Gómez-Marín et al., 2022). It can affect important
biological processes, such as epithelial–mesenchymal transition and
the TGF and Hippo signaling pathways.

Transmembrane proteins are recognized as significant targets
in drug design. Hegedűs et al. reported that AF2 can accurately
predict the structure of transmembrane proteins, highlighting the
usefulness of AF2 in transmembrane protein studies (Hegedűs et al.,
2022). This study provides valuable information for research into
the ability of transmembrane proteins to correct structural errors,
discover new conformational states, and simulate kinetic processes.
Loring et al. used AF2 to predict the structures of different subtypes
of resistance to inhibitors of cholinesterase 3 (RIC-3) (Loring, 2022).
Based on these predicted structures, they analyzed how RIC-3
interacts with the alpha7 nicotinic receptor (α7 nAChR) subunits
and promotes the folding and assembly of the α7 nAChR into the
final conformation and subsequently proposed two possible models
for the interaction between RIC-3 and α7 nAChR.

The function of these critical proteins often relies on their
essential active residues. When the structures of these residues
change, it can lead to alterations in protein function and
concentration, which frequently preludes the onset of disease.
Several studies have utilized AF2 to gain insight into protein
function, uncover protein interactions, and identify crucial protein
active sites, contributing to the advancement of disease diagnosis.
Freeman et al. (2023) used AF2 to construct a structural model
of the nuclease Ankyrin Repeat and LEM Domain Containing 1
(ANKLE1) and analyze its key active residues. The results indicated
that themutation of each of these residues impaired enzyme activity.
ATG8/LC3 is the key protein involved in the autophagic process,
and the ATG8-interacting motif/LC3-interacting region (AIM/LIR)
facilitates the binding of ATG8 to autophagy cargo receptors and
adaptors (Fracchiolla et al., 2017). Ibrahim et al. used AlphaFold-
Multimer to analyze the spatial structure of the ATG8/LC3 protein
family and accurately predicted the pockets formed by both typical
and atypical AIM/LIR within the family (Ibrahim et al., 2023). The
functions and effects of these pockets in the autophagy pathway
were further analyzed in this way. They also utilized three pathogen
virulence factors to demonstrate that AlphaFold-Multimer could
effectively identify motifs from a variety of AIMs that bind ATG8.

Proteins can serve as molecular biomarkers and are frequently
utilized for early disease screening, diagnosis, prognosis assessment,
individualized treatment plan formulation, and prediction
of adverse drug reactions (Aronson and Ferner, 2017). The
development and screening of characteristic molecular biomarkers
are crucial for determining the specificity and accuracy of molecular
disease diagnosis (Molinski et al., 2020). Proteins with specific
modifications during disease development, along with their crucial
active residues, can serve as biomarkers of disease. Consequently,
AF2’s ability to investigate protein targets and their associated
residues could significantly contribute to biomarker development.
Zhuo et al. used next-generation sequencing (NGS) to determine the
amino acid sequences of the immunoglobulin and T-cell receptor V-
(D)-J region in bone marrow samples of 47 children with precursor
B-cell acute lymphoblastic leukemia (pre-B-ALL), and they used
AF2 to predict the protein structure based on the results (Zhuo et al.,
2023). They extracted the immunoglobulin heavy chain gene (IGH)
CDR3 consensus sequence with rod-shaped α-helix structure
similarity from the predicted protein structure as an IGH rod-
shaped tracker. They further validated the predictive value of the
IGH rod tracker using published IGH data from an additional 203
childrenwith pre-B-ALL.They found that the prognosis for children
who tested positive for NGS-IGH was poorer than that of those
who tested negative, and they also found that the protein structure
encoded by the IGH CDR3 was consistent across all NGS-IGH (+)
samples. These findings suggested that the sequence could serve as a
marker for monitoring minimal residual disease in children during
treatment.

3.2.2 Characterization of effect of mutation on
enzyme activity and the difference of enzyme
activity among different subtypes

Enzyme activity and enzyme metabolites are two crucial
markers in biochemical detection. Alterations in either can signify
changes in associated physiological indicators and the onset of
related diseases. AF2 has been widely used to study the effects
of structural differences and variations in enzyme activity and
enzymemetabolites, providing a basis for biochemical detection and
mechanism interpretation of enzymes involved in vital activities.
Aminolevulinic acid synthase (ALAS), a key regulator of catalytic
heme synthesis during the initial steps of key enzymes (Taylor
and Brown, 2022; Freeman et al., 2023), can carry a mutation in
the extended C-terminus of the erythroid isoform (ALAS2) that
impacts its ability to efficiently catalyze heme synthesis, resulting in
increased risk of X-linked protoporphyria. Hunter et al. used AF2
to study the structural differences among various ALAS variants, as
well as the mechanism by which the C-terminal extension of ALAS
controls the rate of porphyrin synthesis (Hunter and Ferreira, 2022).
They predicted the structure of six mammalian ALAS subtypes and
compared the predicted structure of ALAS1 with that of ALAS2.
They found that the CXXC motif and the heme regulatory motifs
(HRM) 4 and 5, which extend the C-terminus of ALAS, regulate
ALAS activity. Their analysis of the ALAS1 structure revealed that
the CXXC motif forms disulfide bonds in its oxidized state, causing
HRM4 and HRM5 to fold and thereby preventing their inhibitory
effect. The CXXC motif is reduced to expose HRM4 and HRM5,
inhibiting excessive heme synthesis. Furthermore, the different
positions of HRM4 and HRM5 in ALAS2 compared to those in
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ALAS1 prevent the closure of HRM4 and HRM5 at the extended
C-terminus, resulting in the inability of the cellular redox state to
regulate excessive hemoglobin concentrations.

Wiedemann-Steiner syndrome (WDSTS) is a neurodevelopmental
disorder caused by de novo mutation of lysine methyltransferase
2A (KMT2A, a multidomain histone methyltransferase)
(Jones et al., 2012). Reynisdottir et al. (2022) reported that the onset
of WDSTS was closely related to the loss of the ability to recognize
and bind unmethylated CpG in the CXXC domain of KMT2A due
to variation. They used AF2 to predict the structure of various
variations in the CXXC domains and established a high-precision
classification scheme for the effects of these variations. All possible
missense variations in the CXXC domain were predicted, and the
variants were classified into three types based on the predicted
results: no effect, damage to DNA binding, or non-folding of the
domain. This allowed for the accurate determination of potential
pathogenicity and effects on function that the missense variations
in the CXXC domain have, thereby providing a reference resource
for disease diagnosis.

3.3 AF2 in molecular biology studies

3.3.1 Proteomic research
Proteomic research involves the qualitative and quantitative

study of proteins with the aim of understanding the mechanisms
by which they carry out their physiological activities and exploring
disease process and pathogenicity to guide diagnosis and novel
drug development (Hanash, 2003; Aslam et al., 2017). Technological
advancements have allowed proteomics to play a pivotal role in
disease diagnosis. By comparing protein expression and functional
changes between control and case groups, researchers can study
specific protein characteristics associated with disease. This aids
in early disease diagnosis and prognostic monitoring while also
allowing for the analysis of individual protein variations to
inform personalized diagnosis and medical treatment. However,
due to the dynamic range and large scale of the proteome,
traditional mass spectrometry methods still face challenges in
terms of data acquisition and verification. With its strong data
processing and mining capabilities (Zhang et al., 2014), AF2 is able
to predict the three-dimensional structure of single-chain proteins
as well as of protein complexes, making it particularly useful for
proteomic studies.

3.3.1.1 The function of AF2 as a proteomic tool
Functional proteomics is the study of protein-to-protein or

protein-to-nucleic acid interactions in a specific time and space,
focusing on a functional subgroup of proteins within a cell. AF2
has been widely used in functional proteomics research due to
its excellent predictive speed and accuracy, enabling large-scale
research and cluster analysis of protein functions (Huang et al.,
2023). By searching for proteins containing the Z-DNA/Z-RNA
binding protein (Zα) domain in the AF2 predictive structure
database, Bartas et al. identified 185 proteins that may bind
to Z-DNA/Z-RNA and play an important role in a variety of
cellular processes (Bartas et al., 2022). Huang et al. (Huang et al.,
2023) selected 15 genes with a length greater than 100 bp from
the deaminase family, predicted their structures, and compared

them with those in the AF2 database. Based on the comparison
results, a similarity matrix was generated, and a structure tree was
constructed to perform a cluster analysis on the deaminase family to
elucidate the structural and functional differences among different
deaminases within the family. Al-Masri et al. (2023) analyzed
known protein kinase structures in the AlphaFold protein structure
database to predict the specific structures of several protein kinases,
subsequently using Smina to perform molecular docking on protein
kinase crystals matching the protein kinase structure to evaluate the
effectiveness ofAF2 in virtual filtering.The results show thatAF2 can
effectively simulate kinase active sites that are highly characteristic
of conformational states, providing a foundation for the study of
protein kinase pathogenicity and the development of new drugs
based on kinase active sites.

3.3.1.2 Establishment of protein database
AF2 provides a high-quality and efficient method for generating

and analyzing large-scale protein structure databases, which is
crucial in proteomic research (Domon and Aebersold, 2006;
Fremdling et al., 2022). The construction of a protein information
database is an essential step that significantly increases the speed of
protein identification and the development of mass spectrometers.
AF2 can be used to construct large-scale protein structure databases,
providing rich and reliable protein structure resources for proteomic
research and facilitating the establishment of relevant datasets for
mass spectrometers. Varadi et al. created a comprehensive, open
access database of high-accuracy protein structure predictions
(Varadi et al., 2022). AlphaFold database contains a considerable
number of high-accuracy protein structure prediction models,
offering valuable resources for biological research. Hekkelman
et al. used small molecules and ions in experimentally determined
protein structures to “transplant” the protein model in the
AlphaFold protein structure database, thereby establishing the
AlphaFill database (Hekkelman et al., 2023). The database contains
12,029,789 “transplant” results of 995,411 AF2 models, providing
relevant validation indicators and visual interfaces, enriching model
information in the AlphaFold database, and offering researchers
clues to new protein function hypotheses. Consequently, AF2 can
deliver high-quality and efficient generation and analysis methods
for the construction of large-scale protein structure databases,
providing more possibilities for proteomic research and mass
spectrometer development.

3.3.2 AF2 in the study of missense mutation on
protein structure and function

Missense mutations can serve as biomarkers in clinical
molecular biology tests. These mutations may alter the amino acid
sequence and structure of proteins, thereby affecting their function
and pathogenicity. Many studies have utilized AF2 to predict and
compare the structures of normal and mutated proteins, thereby
revealing the mechanisms and effects of missense mutations.

Wang et al. (2023) reported a novel mutation in the lysosomal
membrane structural protein (LAMP2) gene and used AF2 to
predict the three-dimensional structures of wild-type and mutant
LAMP2. They found that the mutant LAMP2 is composed of
only six amino acids and that it is unable to form functional
peptides or proteins, confirming that LAMP2 deficiency is caused
by this mutation. The LMNA gene encodes the lamin A/C protein,
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which is involved in the construction of nuclear membranes, and
mutation of LMNA results in a series of lamin diseases. Chang et al.
(2023) used AF2 to predict the spatial structure of the lamin
A/C mutant protein and found an interruption in the alpha-helix
region. They used this protein structure to visualize the impact
of the mutation on protein morphology and interaction compared
to the wild-type protein. Finally, they used AF2’s predictions
to elucidate the mutation’s pathogenicity at the protein level,
revealing the function of different protein domains and potential
therapeutic targets.

Despite great progress in AF2’s ability to predict the structure of
mutant proteins, some researchers have pointed out the limitations
of AF2 in predicting the impact of missense mutations on protein
stability. Buel et al. emphasized these limitations by comparing AF2-
predictedmodels ofwild-type andmutant structures of three protein
domains to the experimentally determined structures of the wild-
type proteins (Buel and Walters, 2022). This comparison revealed
that the predicted models did not accurately reflect the structural
changes and functional losses induced by the mutations. To address
this issue, researchers have developed AF2 prediction models to
deduce the structure and stability of proteins after mutation. For
example, Iqbal et al. developed a predictive model, protein stability
(PROST), that can estimate the changes in protein stability caused
by single-point missense mutations (Iqbal et al., 2022). In two blind
test datasets, PROST outperformed the other models in terms of
predictive performance, achieving the highest Pearson’s correlation
coefficient and the lowest root mean squared error. This indicates
that PROST has good accuracy and can serve as an important
tool in the prediction of the three-dimensional structure of mutant
proteins. Cheng et al. developed a model based on AF2, called
AlphaMissense (Cheng et al., 2023), that was fine-tuned based on
AlphaFold 2.3.0 using human and primate variant frequency data as
weak labels and avoiding circularity arising from the use of manual
annotations. AlphaMissense can simulate all possible single amino
acidmutations and can distinguish 89%ofmissense variants as likely
pathogenic or likely benign.

AF2 not only predicts the structural changes in proteins
resulting from missense mutations but also analyzes the impact of
these changes on protein function. It generates various models to
predict the stability changes caused by missense mutations and the
likelihood of pathogenicity. AF2 therefore plays a crucial role in
missense mutation research—it can not only explain the pathogenic
mechanisms of missense variants but can also identify missense
mutations with potential clinical significance, providing biomarkers
for disease diagnosis.

3.4 AF2 in pathogenic microbiology
research

Pathogenic microorganisms play a crucial role in laboratory
disease diagnosis. Factors such as biological characteristics, drug
resistance, and variant typing all affect the pathogenicity of
microorganisms, the symptoms of disease, and the effect of drug
treatment. For example, the major resistance mechanism in MRSA
is via the acquisition of the gene mecA, which encodes the protein
PBP2a. MecA, however, has a significantly low affinity for β-
lactam, which makes all currently available β-lactam drugs largely

ineffective for the treatment of MRSA (Peacock and Paterson,
2015). The key proteins involved in the pathogenic process of
microorganisms are also important targets for drug development
and screening.

Traditional laboratory diagnostic methods for pathogenic
microorganisms (Rajapaksha et al., 2019) include culture and
isolation, biochemical and serological detection, and immunological
and nucleic acid assays. However, these methods have significant
limitations, such as extended diagnostic time, low detection
rate, inability to fully interact with in vivo infections, and
inability to culture certain microorganisms. The advancement
of cutting-edge biological theories and technologies, such
as mass spectrometry (Schubert and Kostrzewa, 2017) and
molecular diagnostics (Lai and Stayton, 2015; Visconti et al.,
2017; Yasemin et al., 2019), coupled with the progress of artificial
intelligence (Jumper et al., 2021; Tunyasuvunakool et al., 2021),
makes it possible to examine clinical pathogenic microorganisms
based on studies of the structure, function, and distribution of
microbial proteins. To date, many studies have used AF2 to
determine the pathogenicity, microbial resistance, and potential
drug targets of microorganisms.

3.4.1 Study of pathogenic substances
Considering its direct impact on clinical manifestations and

disease progression, studying the pathogenicity of microorganisms
is key to revealing the core pathogenic mechanisms and promoting
the identification and targeted treatment of pathogens. Use of
AF2 in the in-depth analysis of the structural and functional
properties of these key proteins that considers the composition
of a variety of pathogenic proteins and biomolecules is driving
the rapid development of the detection and treatment of
pathogenic microorganisms. With the assistance of AlphaFold-
Multimer, Le et al., 2023 predicted the structural model of
the outer membrane lipoprotein Tle3, its cognate immune
protein Tli3, and their immune complexes of adhesively invasive
Escherichia coli (AIEC) and optimized themodel throughmolecular
replacement. They found that a β-lamellia stacking region in the
C-terminal extension domain of Tli3 intercalates into the active
cleave of Tle3, suggesting that Tli3 physically blocks Tle3 from
contacting its substrate and thereby inhibits its phospholipase
A1 activity. They used similar methods to predict the mode
of interaction between Tle3 and VgrG, a protein constituting
the spinous process of the type VI secretion system, and found
a potentially specific interaction between the N-terminal loop
of Tle3 and the C-terminal transthyretin-containing domain of
VgrG. This provided vital structural and biochemical information
for understanding the function and mechanism of type VI
secretion system effectors and immune proteins in AIEC, which
is of great significance for revealing the pathogenesis of AIEC
and identifying new therapeutic targets. These findings will
aid in the development of new anti-AIEC drugs or diagnostic
reagents, thereby enhancing the efficiency and accuracy of clinical
microbiology.

3.4.2 Assessment of genetic relationships and
variability

AF2 has been used to analyze the differences in the protein
structures of various strains or phages and evaluate their
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genetic relationships and variability. This has proven beneficial
for the classification and identification of different species
of microorganisms, providing a reference for epidemiological
surveillance and control. Goulet et al. employed AF2 to predict
three-dimensional models of the components of the adhesion
apparatus of two bacteriophage types, OE33PA (Jaomanjaka et al.,
2018) and Vinitor162 (Philippe et al., 2020), that infect Oenococcus
oeni (Goulet andCambillau, 2021). Based on the known architecture
of the phage adhesion apparatus, a topological model was
reconstructed. OE33PA possesses an evolved distal tail protein
(Dit) (Veesler et al., 2010) and an exotic receptor-binding protein
(RBP), composed of two domains similar to the RBPs of different
phages, and forms a chimeric structure. By contrast, Vinitor162
has a long tail-associated lysozyme protein (Tal) that is rich in
carbohydrate-binding modules (CBMs). This finding suggests
distinct infection mechanisms between OE33PA and Vinitor162:
OE33PA employs a dual binding strategy involving its Dit-CBM
and RBP head domain to engage receptors on the host cell wall for
entry, whereas Vinitor162 utilizes a multipoint attachment mode
through its Tal-CBM and RBD to infect host cells by interacting
with receptors on the host cell wall. Monzon et al. used AF2 to
predict structures lacking known adhesion domains in more than
6,500 credible fibrillar adnexins and identified 24 potential novel
families of adhesion protein domains, 15 of which showed structural
similarity to known adhesion domains. This contributes to the
discovery of novel bacterial interaction mechanisms (Monzon and
Bateman, 2022).

3.4.3 Research on drug resistance
AF2 can be used to predict mutation-induced changes in the

protein structure of microorganisms as well as unreported protein
structures, thereby assisting in the analysis of microbial resistance
mechanisms. Multidrug-resistant Acinetobacter baumannii (A.
baumannii) is one of the leading pathogenic causes of severe
nosocomial infections. A. baumannii CipA has been identified as a
plasminogen-binding and complement-inhibitory protein that plays
a significant role in its immune evasion process. The use of AF2
in the structural prediction of CipA aptly explained the results
obtained from several CipA variants (Ries et al., 2022). According
to the structural prediction of AF2, replacing the glutamic acid (E)
at position 360 with a proline (P) will induce a significant structural
change in the C-terminal region of the DUF4377 domain, and the
hydrogen bond pairing of the adjacent β-fold is completely lost.
This change greatly inhibits the ability of CipA to interact with
complement factor I, which will provide potential targets for new
therapeutic interventions.

Some researchers have also successfully predicted unresolved
structures using AF2. Willems et al. used the AF2 algorithm to solve
domain structures that were not resolved in the previously reported
Plasmodium falciparum Chloroquine Resistance Transporter
(PfCRT) protein 7G8 isoform cryo-EM structure (Willems et al.,
2023). When cryo-EM was used to analyze the 7G8 isoform of
PfCRT, many of the N- and C-termini, as well as the cytosolically
disposed “loop 2” connecting TM helices 2 and 3, were not
resolved, presumably due to masking by bound F’ (ab) (a type
of incomplete F (ab) fragment) used in solving the cryo-EM
structure and/or the intrinsic flexibility of these regions. They then
performed energy minimization through Monte Carlo molecular

dynamics simulations, revealing additional structures for the
previously unresolvedN- andC-termini.These results are crucial for
understanding the structure and function of PfCRT, the mechanism
of chloroquine resistance, and the development of novel second-
tier drug therapies active against chloroquine-resistant malaria. The
above examples further highlight the significant application and
value of AF2 in biomedical research.

3.4.4 Design of drug targets
In recent years, the emergence of drug-resistant strains has

gradually diminished the therapeutic effect of antibiotics on
pathogenic microbial infections (Davies and Davies, 2010). To
address these new challenges in anti-infection treatment and
drug screening, some studies have employed AF2 to study
the structure and function of proteins related to pathogenic
microorganisms. This has advanced research on potential drug
targets, the development of antibacterial drugs, and the screening
of drugs and antimicrobial peptides. Madi-Moussa et al. used
AF2 to predict the structure of Lacticaseicin 30, a rare gram-
positive bacteriocin that inhibits gram-negative bacteria (Madi-
Moussa et al., 2022). They found that it primarily consists in the five
helical segments and contains regions and amino acids involved in
anti-gram-negative activity. By studying the antimicrobial activity
of a series of shortened variants or those containing point
mutations in the five helical segments, they mapped these regions
and the amino acids involved in inhibition. These experiments
showed that at least two helical segments of the N-terminal
region are required for Lacticaseicin 30 inhibition of gram-
negative bacteria, which will aid in the design of additional
Lacticaseicin 30 variants as potential drugs treatments of gram-
negative bacterial infection. Alotaibi et al. screened a series of drug
target proteins against Vibrio by gene alignment and used AF2 to
predict the three-dimensional structure of 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase, a drug target protein
(Alotaibi et al., 2023). Furthermore, some effective inhibitors were
identified through virtual screening (Panwar et al., 2024) and
molecular docking studies (Pinzi and Rastelli, 2019), and their
binding stability with target proteins was verified using molecular
dynamic simulations (Koirala et al., 2024).

4 Conclusion and future perspectives

Proteins play a crucial role in disease diagnosis. They
serve as diagnostic indicators and detection tools, contributing
to accurate diagnosis, disease prevention, and personalized
medicine. AF2, a deep learning-based protein structure
prediction model, achieves remarkable accuracy and rapid
protein structure predictions through its unique principles and
architecture. As such, it has applications in diverse areas of
protein research (Yang et al., 2023).

AF2 significantly contributes to disease diagnosis by predicting
antibody structures for immunological tests and vaccines, verifying
antigen-antibody affinity, and aiding in diagnostic tool design. It’s
used to predict structures of disease-related proteins, enhancing
our understanding of their structural, functional, and activity
changes. These insights form the basis for improving diagnosis,
prevention, and treatment. AF2 also analyzes key enzyme variations

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1414916
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Zhang et al. 10.3389/fmolb.2024.1414916

during disease progression, establishing diagnostic criteria.
It supports proteomic data analysis, database creation, and
research. Additionally, AF2 assesses missense variation impacts,
aiding in biomarker design. It studies pathogenic substances’
functions, drug resistance, and classification by microorganisms,
aiding in accurate infection diagnosis and drug target
development.

AF2 is highly adaptable and presents with unlimited
potential for extensive application in several biological fields.
Various prediction models based on AF2 with expanded
functions have emerged, examples of which include AlphaFold-
Multimer (Evans et al., 2022; Yin et al., 2022; Ibrahim et al., 2023),
AF2Complex (Gao et al., 2022), ColabFold (Mirdita et al., 2022),
and AlphaMissense (Cheng et al., 2023). Future versions of
AlphaFold may prioritize the optimization and refinement of
its architecture to enhance its predictive ability and broaden its
functionality (Abramson et al., 2024), for example, with revamped
diffusion-based architecture, AF3 has transcended the capabilities
of its predecessor by not only predicting protein structures with
higher fidelity but also accurately modeling a diverse array of
biomolecular complexes. However, it is important to note that AF3 is
currently not available as an open-source tool. With the continuous
development and in-depth research of AF2 and its derivatives,
they are expected to provide broader assistance in theoretical
research and direct application in disease diagnosis in the future,
becoming more powerful and effective tools for disease diagnosis.
We have some ideas, for instance, AF2 can predict the structures and
binding interfaces of antigens and antibodies, making it invaluable
to the design of immunological assays and detection tools. It
can also be utilized to reverse design corresponding antibodies
or antigens with high affinity based on the predicted structures.
Using AF2’s reverse network, protein sequences corresponding
to the designed structures can be predicted (Goverde et al.,
2023). Moreover, AF2 can integrate with sequencing technologies
to not only detect pathogenic genes but also predict the
pathogenic potential of mutations and their impact on biological
activities.

During the paper-writing process, we encountered numerous
applications of deep learning predictive models such as
IgFold (Ruffolo et al., 2023), DeepAb (Ruffolo et al., 2022), and
ImmuneBuilder (Abanades et al., 2023). These examples underline
the evolving landscape of disease diagnosis, where deep learning
models, driven by artificial intelligence, have the potential to
facilitate the design of swift and convenient researchmethodologies.
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