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Background: Tuberculosis is a worldwide epidemic disease, posing a serious
threat to human health. To find effective drug action targets forMycobacterium
tuberculosis, differentially expressed genes in tuberculosis patients and healthy
people were screened by mRNA sequencing in this study. A total of
556 differentially expressed genes in tuberculosis patients and healthy
people were screened out by mRNA sequencing technology.
26 transcription factors and 66 corresponding target genes were screened
out in the AnimalTFDB 3.0 database, and a transcription factor regulatory
network was constructed.

Results: Three key transcription factors (TP53, KLF5 and GATA2) and one key
gene (AKT1) were screened as new potential drug targets and diagnostic targets
for tuberculosis by MCODE cluster analysis, and the key genes and key
transcription factors were verified by RT-PCR. Finally, we constructed the and
a key factor and KEGG signaling pathway regulatory network to clarify the
possible molecular pathogenesis of tuberculosis.

Conclusion: This study suggested M. tuberculosis may activate the AKT1 gene
expression by regulating transcription factors TP53, KLF5, and GATA2, thus
activating the B cell receptor signaling pathway to induce the infection and
invasion of M. tuberculosis. AKT1, TP53, KLF5, and GATA2 can be used as new
potential drug targets for tuberculosis.
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1 Introduction

Tuberculosis is one of the most deadly infectious diseases in the world, and about
one-quarter of the world’s population has been infected with Mycobacterium
tuberculosis (Wilkins et al., 2022). According to the latest World Health
Organization (WHO) report, there were approximately 10.6 million new cases
and 1.3 million deaths worldwide in 2022 (Mi et al., 2024). The incidence and
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TABLE 1 Primers for RT-qPCR.

Primers Forward primer sequence Reverse primer sequence

AKT1 AGGAGATGGACTTCCGGTCG CAAACTCGTTCATGGTCACGC

TP53 GCGCTTCGAGATGTTCCGAG ATGGCGGGAGGTAGACTGAC

KLF5 ACTGCGATTACCCTGGTTGC TCCCAGGTACACTTGTATGGCT

GATA2 TATGGCGCCGAAACGCCAA GGTCAGTGGCCTGTTAACATTGTG

FIGURE 1
Hotspot map of mRNA sequencing results. The red represents upregulated differentially expressed genes, and the green represents downregulated
differentially expressed genes.
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mortality of tuberculosis are still high worldwide, although its
prevention and treatment have cost a lot (Drain et al., 2018;
Huang et al., 2019). The main reason is the long-term
incubation of tuberculosis and the delay in the emergence of
new and effective anti-tuberculosis drugs (Venketaraman et al.,
2015; Cole, 2016). Therefore, the research on new drug targets
for tuberculosis is the focus of developing anti-tuberculosis
drugs (Gashaw et al., 2011).

Drug targets refer to the binding sites of drugs in vivo,
including biological macromolecules such as gene sites,
receptors, enzymes, ion channels and nucleic acids. The key to
modern new drug research and development is first to find,
determine and prepare drug screening targets (Eder and
Herrling, 2016). Transcription factors are important molecules
that control gene expression and the convergence point of multiple
signal pathways in eukaryotic cells, and play an important role in
the function of cells and the healthy development of the body
(Vaquerizas et al., 2009; Papavassiliou and Papavassiliou, 2016).
Transcription factors and their corresponding target genes
construct a corresponding regulatory network, and the key
factors in this regulatory network are the targets of drug action
or clinical diagnosis. Therefore, new potential drug targets for
tuberculosis can be explored by constructing a transcription factor
regulatory network for tuberculosis.

In this study, differentially expressed genes were screened in
tuberculosis patients and healthy people by using mRNA
sequencing technology. The transcription factors of the
differentially expressed genes were screened in the
AnimalTFDB 3.0 database (Hu W. et al., 2019) to construct
a regulatory network, then the key targets and their related
pathways were further screened by MCODE cluster analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis (Kanehisa et al., 2017) and the

pathogenesis of tuberculosis and its potential new drug
targets were analyzed.

2 Materials and methods

2.1 Data source and grouping

This study was approved by the Ethics Committee of Jilin
Provincial Tuberculosis Hospital. In this study, 10 patients with
pulmonary tuberculosis diagnosed in clinics were included (case
group), and 10 healthy volunteers were taken as the normal control
group (control group). After signing the written informed consent
approved by the Ethics Committee of Jilin Provincial Tuberculosis
Hospital, peripheral blood samples from the patients and
volunteers were collected, and there were 10 sequencing
samples in each group.

The sequences generated in the present study are available
through the SRA Sequence Read Archive (https://www.ncbi.nlm.
nih.gov/bioproject/PRJNA876021).

2.2 mRNA sequencing

The quality of total RNA extracted and purified from the
whole blood samples was controlled by using Agilent Bioanalyzer
2100 (Agilent Technologies, United States). The RNA with RIN ≥
7.0 was used in the study to ensure the construction of a high-
quality downstream Total RNA-Seq library. The double-stranded
cDNA was purified by using Agencourt AMpure XP magnetic
beads. The concentration of cDNA in the library was quantified
with an Invitrogen Qubit 3.0 Spectrophotometer (Thermo Fisher
Scientific, United States) and the size distribution of library

FIGURE 2
Volcano plot of mRNA sequencing. The red represents upregulated differentially expressed genes, and the green represents downregulated
differentially expressed genes.
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fragments was determined with an Agilent 2100 Bioanalyzer, and
finally, the library was sequenced by 2 × 150 bp double-ended
sequencing.

2.3 Construction of PPI network

The differentially expressed genes were input into the STRING
(https://string-db.org/) database (Szklarczyk et al., 2021), and the
research species was selected as Homes sapiens and the free nodes
were removed to construct a protein-protein interactions (PPI) network

of the differentially expressed genes. TheCytoNCAplug-in (Zhang et al.
, 2012) for the analysis of network centrality analysis in Cytoscape 3.9.
1 was used to sort the PPI networks according to Degree.

2.4 Screening of transcription factors

The differentially expressed genes were input into the
AnimalTFDB 3.0 database (https://guolab.wchscu.cn/
AnimalTFDB4//#/) (Tang et al., 2015), and the research
species was selected as Homo sapiens, and the transcription

FIGURE 3
PPI regulation network of 430 important differentially expressed genes. The green nodes are the downregulated expressed genes, and the red nodes
are the upregulated expressed genes.

Frontiers in Molecular Biosciences frontiersin.org04

Wang et al. 10.3389/fmolb.2024.1410445

https://string-db.org/
https://guolab.wchscu.cn/AnimalTFDB4//#/
https://guolab.wchscu.cn/AnimalTFDB4//#/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1410445


factors with specific binding sites were selected as the
research objects.

2.5 Construction of transcription factor
regulatory network

Twenty transcription factors (TF) and 66 target genes were
predicted to combine the total of 165 TF-to-target pairs
(Supplementary Table S1). The relation obtained from the analysis
of the differential co-expression was mapped to the human
transcription factors and target gene pairs to obtain transcription
regulation pairs. Finally, Cytoscape3.9.1 software was used for plotting.

2.6 MCODE cluster analysis

MCODE, a density-based algorithm for multi-component
protein complexes, can grasp the correlation between targets as a

TABLE 2 Differentially expressed genes in the top 10 order of Degree in the
PPI regulatory network.

No.. Gene Gene ID Degree Description

1 AKT1 207 138 AKT serine/threonine
kinase 1

2 TP53 7157 118 tumor protein p53

3 EGF 1950 44 epidermal growth factor

4 NCK1 4690 42 NCK adaptor protein 1

5 ARF1 375 38 ADP ribosylation factor 1

6 CD274 29126 32 CD274 molecule

6 ITGB1 3688 32 integrin subunit beta 1

8 PRKCZ 5590 30 protein kinase C zeta

8 RHOC 389 30 ras homolog family member C

10 PLK4 10733 26 polo like kinase 4

FIGURE 4
TB transcription factor regulatory network. The yellow circles represent the transcription factors, and the blue circles represent the regulated
target genes.
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whole, and is considered to be a module division method with a
lower entropy value compared with the direct screening of key
targets by using the average value and medium centrality (Bader and
Hogue, 2003). The transcription factor regulatory network was
imported into Cytoscape 3.9.1 software, and the MCODE plug-in
was used to further screen the possible drug targets of tuberculosis
and its diagnostic targets.

2.7 GO function annotation enrichment
analysis and KEGG pathway
enrichment analysis

DAVID (Database for Annotation Visualization and
Integrated Discovery) database (Dennis et al., 2003) was used
for the Gene Ontology (GO) function annotation enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis (Kanehisa et al., 2017) on the
screened differential genes. According to the GO significance
reflected by the differentially expressed genes (p < 0.05), the
differentially expressed genes were further analyzed from the
functional perspective.

2.8 RT-qPCR verification

Total RNA of peripheral blood samples was extracted by the
TRIzol (Life Technologies) method according to manufacturer’s
instructions. The RNA will then be transcribed into cDNA. The RT-
qPCR program is set as follows: Keep at 95°C for 30 s; Denatured
95°C 15 s and anneal or extend at 60°C 1 min in 40 cycles. Primers
are shown in Table 1.

TABLE 3 26 Transcription factors.

TF Target gene number Gene ID Description

TP53 59 7157 tumor protein p53

GATA2 9 2624 GATA binding protein 2

NFATC1 8 4772 nuclear factor of activated T cells 1

PBX1 7 5087 PBX homeobox 1

SMAD1 6 4086 SMAD family member 1

FOXP1 6 27086 forkhead box P1

EBF1 5 1879 EBF transcription factor 1

TCF4 5 6925 transcription factor 4

AFF1 4 4299 ALF transcription elongation factor 1

CREB3L4 4 148327 cAMP responsive element binding protein 3 like 4

IRF5 4 3663 interferon regulatory factor 5

IRF6 4 3664 interferon regulatory factor 6

NFATC2 4 4773 nuclear factor of activated T cells 2

POU2F1 4 5451 POU class 2 homeobox 1

ZBTB16 4 7704 zinc finger and BTB domain containing 16

KLF5 3 688 Kruppel like factor 5

RARB 3 5915 retinoic acid receptor beta

TCF12 3 6938 transcription factor 12

AFF3 2 3899 ALF transcription elongation factor 3

JDP2 2 122953 Jun dimerization protein 2

HOXA1 1 3198 homeobox A1

RBAK 1 57786 RB associated KRAB zinc finger

RERE 1 473 arginine-glutamic acid dipeptide repeats

ZNF148 1 7707 zinc finger protein 148

ZNF169 1 169841 zinc finger protein 169

ZNF41 1 7592 zinc finger protein 41
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3 Results

3.1 Screened differentially expressed genes

Differentially expressed genes in the case group and control
group were screened with p-value < 0.005 and |log2 (fold change)| ≥
2 as conditions, in which 556 differentially expressed genes were
screened out (Supplementary Table S2), including 256 upregulated
differentially expressed genes and 300 downregulated differentially
expressed genes (Figures 1, 2).

3.2 Construction of PPI regulatory network
of differentially expressed genes

We imported 556 differentially expressed genes into the STING
database, then the free nodes deviating from the main network were
removed, and finally the PPI regulatory network of 430 important
genes was obtained (Figure 3). They were ranked according to
Degree (Yang et al., 2019), and the top 10 important genes were
AKT1, TP53, EGF, NCK1, ARF1, CD274, ITGB1, PRKCZ, RHOC,
and PLK4 (Table 2).

3.3 Transcription factor regulatory
network diagram

Transcription factors of 430 important genes in the PPI
regulatory network were screened in the AnimalTFDB
3.0 database, and 26 transcription factors and 66 target genes
regulated by them were screened out (Figure 4; Table 3).

It was found in the transcription factor regulation network
(Figure 4) that 10 target genes were regulated by more than
2 transcription factors (Table 4), among which TP53, AKT1,
GATA2, and PBX1 were the targets regulated by the most
transcription factors, 11, 9, 7, and 6 transcription factors,
respectively.

3.4 Key factors screened by MCODE
cluster analysis

The MCODE cluster analysis on 26 transcription factors and
66 target genes regulated by them in the transcription factor
regulatory network was also performed with the plug-in in

TABLE 4 Genes regulated by transcription factors.

Genes regulated by TF No. of TF regulating target genes Node

TP53 11 59

AKT1 9 9

GATA2 7 9

PBX1 6 7

FOXP1 4 6

EBF1 4 5

TCF12 3 3

PRKCZ 3 3

NFATC1 3 8

MEN1 3 3

TF, transcription factor.

FIGURE 5
Core regulation sub-network. The yellow represents the transcription factors, and the blue represents the target genes; (A) score = 3 and (B)
score = 4.
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Cytoscape 3.9.1 software, and two core regulatory sub-networks
were obtained (Figures 5A, B). The core regulatory sub-network
with the highest score (score = 4) was selected for research
(Figure 5B), and four key factors (AKT1, TP53, KLF5, and
GATA2) were obtained, of which TP53, GATA2, and KLF5 were
the key transcription factors, and AKT1 was the key target gene
regulated by transcription factors.

3.5 GO cluster analysis

The Gene Ontology analysis of 430 differentially expressed genes
was performed in the DAVID database, and a total of 222 items were
obtained. Among them, 121 items were related to Biological Process
(BP), of which the item with the highest p-value significance was the
mitotic cell cycle, 61 items were related to the Cellular Component (CC),
of which the item with the highest p-value significance was cytoplasm,
and 40 itemswere related toMolecular Function (MF), of which the item
with the highest p-value significance was protein binding (Figure 6).

3.6 KEGG channel analysis

We analyzed 430 differentially expressed genes in the KEGG
database and obtained 16 signal pathways (p < 0.05), mainly
related to immunity and cancer. Among them, the most
significant pathway was the central carbon metabolism in
cancer, and there were three signal pathways (B cell receiver
signaling pathway, Sphingolipid signaling pathway and AMPK
signaling pathway), of which B cell receiver signaling pathway
was the most significant signal pathway, mainly related to
immunity (Figure 7).

3.7 Construction of functional relationship
network diagram of key genes

A network diagram of the relationship between network
nodes (Figure 8) was constructed by combining the three key
transcription factors (TP53, GATA2, and KLF5), one key gene

FIGURE 6
GO enrichment analysis.
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(AKT1) and the related pathway (B cell receiver signaling
pathway) previously screened. It was found in the network
diagram of the relationship between network nodes that
AKT1, TP53, KLF5, and GATA2 were all related to the
protein binding function, and AKT1, TP53 and GATA2 were
also related to the cytoplasm function. The target gene
AKT1 mainly played a regulatory role in the immune-related
pathway B cell receiver signaling pathway, so it was inferred that
M. tuberculosis may activate the expression of the AKT1 gene by
regulating the transcription factors TP53, KLF5 and GATA2,
thus leading to the infection and invasion of M. tuberculosis
through B cell receiver signaling pathway.

3.8 RT-qPCR verification experiment

The four key factors (AKT1, TP53, KLF5, and GATA2) screened
were verified by RT-PCR. AKT1, TP53, KLF5, and GATA2 were all
upregulated genes, and the results of RT-PCR experiment were
consistent with the results of mRNA sequencing (Figure 9).

4 Discussion

In recent years, tuberculosis has made a comeback, with a
significant rise in its incidence and mortality, and the resistance
of M. tuberculosis to anti-tuberculosis drugs commonly used at
present has become increasingly serious, which has become a
thorny problem in the clinical treatment of tuberculosis (Suárez
et al., 2019; Olivença et al., 2022). In the past 30 years, no new
and efficient anti-tuberculosis drugs have been developed.
Therefore, it is urgent to find potential targets of new anti-
tuberculosis drugs for studying and developing new anti-

tuberculosis drugs to achieve effective control of tuberculosis
(Rode et al., 2019). In this study, 556 differentially expressed
genes were screened out by mRNA sequencing, and
430 important differentially expressed genes were identified
by constructing a PPI regulatory network and removing free
genes. Twenty-six transcription factors and 66 target genes
regulated by them were identified from 430 important
differentially expressed genes through the AnimalTFDB
3.0 database.

A transcription factor regulatory network of 26 transcription
factors and 66 target genes regulated by them was constructed. It
was found by the analysis of the transcription factor regulatory
network that the target genes corresponding to TP53 were the
most common (59), and its Degree value ranked second in the
PPI regulatory network. TP53 is the coding gene of the tumor
suppressor gene p53 protein, located on human chromosome 17
(Hu H. et al., 2019). TP53 wild-type mutation will lead to
apoptosis of cancer cells, while TP53 mutant will increase the
risk of cancer, so that the mutation status of TP53 may be a
biomarker to predict the response of different cancer types to
cancer immunotherapy (Li et al., 2020). In addition, some studies
have pointed out that TP53 can regulate human immune function
and affect the host immune system (Yuan et al., 2018). GATA2 is
the second most common transcription factor (9), corresponding
to the target gene. GATA2 is a zinc-finger transcription factor
expressed in human hematopoietic stem cells and various
hematopoietic progenitor cells (Oleaga-Quintas et al., 2021).
There are also many target genes corresponding to the
transcription factor GATA2 (9), and the GATA2 gene is
believed to regulate the ontogeny and function of monocytes,
macrophages, dendritic cells, B cells and NK cells (Yuag et al.,
2017; Monif et al., 2018). Therefore, we find that both TP53 and
GATA2 are closely related to the body’s immune system.

FIGURE 7
KEGG pathway enrichment analysis.
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The analysis of target genes regulated by transcription factors
showed that TP53, AKT1, GATA2 and PBX1 were the four target
genes most regulated by transcription factors, regulating 11, 9,
7 and 6 target genes, respectively. Our previous study has shown
that genes TP53 and GATA2 are very important transcription
factors and are closely related to immune function. AKT1 is a
serine/threonine protein kinase, also known as Akt kinase. Akt
can regulate the development and function of innate immune
cells such as neutrophils, macrophages and dendritic cells, which
play an important role in the regulation of immune cells (Xia
et al., 2020). AKT1 plays a key role in the process of controlling
the growth ofM. tuberculosis cells and is a key kinase involved in
controlling the growth of M. tuberculosis cells. AKT1 inhibitors
have the potential to be used as antibiotics to treat tuberculosis
(Wang et al., 2010). The PBX1 gene promotes the early
development of NK cells by directly up-regulating the

expression of Nfil3 (Xu et al., 2020). PBX1 is required to
maintain the self-renewal of hematopoietic stem cells during
the development of the immune system. PBX1 deficient
embryonic stem cells cannot produce lymphoid progenitor
cells, leading to the loss of B and NK cells as well as the
impaired development of T cells (Niu et al., 2017; Gu et al.,
2023). Therefore, these four target genes that are most regulated
by transcription factors are also closely related to the immune
function of the body.

Through MCODE cluster analysis, a core sub-network of the
transcription factor regulatory network was constructed, and four
important nodes, AKT1, TP53, KLF5, and GATA2 were screened
out. As described above, AKT1 is an important gene regulated by
transcription factors, TP53 and GATA2 are important transcription
factors, and AKT1, TP53, and GATA2 are all related to the immune
function of the body. The MCODE cluster analysis showed that

FIGURE 8
Network diagram of the relationship between network nodes. The orange pentagons represent transcription factors, the red pentagons represent
target genes regulated by transcription factors, the blue circles represent Gene Ontology, and the green quadrangles represent the B cell receptor
signaling path.

Frontiers in Molecular Biosciences frontiersin.org10

Wang et al. 10.3389/fmolb.2024.1410445

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1410445


transcription factor KLF5 was closely related to other key genes
(Figure 5B) although it only regulated three target genes (Table 3).
Some studies have shown that KLF5 plays an important role in the
differential regulation of angiogenesis progress induced by M.
tuberculosis, closely related to the pathogenesis of pulmonary
tuberculosis, and the expression of the KLF5 gene has also been
verified by immunofluorescence imaging in these studies
(Mukherjee et al., 2022). It can be inferred that tuberculosis may
activate the expression of the AKT1 gene by regulating the
transcription factors TP53, KLF5, and GATA2, thus leading to
the infection and invasion of M. tuberculosis.

The GO analysis and KEGG analysis of 430 important
differentially expressed genes screened were also performed in
this study. The GO analysis showed that the enrichment of the
mitotic cell cycle was the most significant in the biological processes
(BP), and it is well known that mitosis is an important process to
maintain the normal growth and development of individuals. It has
been indicated in some studies that the mitotic index of tuberculosis
patients who have received treatment with anti-tuberculosis drugs
will improve (Jaju et al., 1983). In the cell components (CC), the
enrichment of cytoplasm was the most significant. The cytoplasm is
the main place for metabolism and plays a regulatory role in the
nucleus. In the molecular functions (MF), the enrichment of protein
binding was the most significant. The GO enrichment analysis
results suggest that M. tuberculosis may play a regulatory role in
the nucleus by changing the function of the main metabolic sites,
thus affecting the protein binding function.

In the KEGG pathway analysis of differential genes, we screened
out 16 pathways, of which central carbon metabolism in cancer was
the most significant. Tuberculosis and cancer are two diseases that
tend to produce resistance to the host immune system, with certain
similarities in the regulation of immune response (Bickett and Karam,
2020). B cell receiver signaling pathway is one of the most significant
signal pathways, mainly related to immunity (Sun et al., 2020; Tanaka
and Baba, 2020). The key gene AKT1 can regulate this pathway, and
the gene AKT1 is one of the four key nodes we screened out.
Therefore, the gene AKT1 is likely to be the key gene to activate
the B cell receiver signaling pathway.

5 Conclusion

Four key genes and a pathway closely related to tuberculosis
were screened out by constructing the tuberculosis transcription
factor network, of which TP53, KLF5, and GATA2 are transcription
factors and AKT1 is the target gene. Mycobacterium tuberculosis
may activate the expression of the AKT1 gene by regulating the
transcription factors TP53, KLF5 and GATA2, thus leading to the
infection and invasion ofM. tuberculosis through the B cell receptor
signaling pathway.
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The results were verified by RT-qPCR. *: p < 0.05, **: p < 0.01.
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