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Introduction: Accurate post-mortem interval (PMI) estimation is essential in
forensic investigations. Although various methods for PMI determination have
been developed, only an approximate estimation is still achievable, and an
accurate PMI indication is still challenging. Therefore, in this study, we employed
gas chromatography-mass spectrometry (GC-MS)-based metabolomics to
assess post-mortem changes in porcine blood samples collected with and
without the addition of anticoagulant (EDTA). Our study aimed to identify
metabolites dependent on the EDTA addition and time (taking into account the
biodiversity of the studied organism) and those that are time−dependent but
resistant to the addition of an anticoagulant.

Methods: The experiment was performed on blood samples collected from
16 animals (domestic pig, breed: Polish Large White), 8 with and 8 without
EDTA addition. The moment of death (time 0) and 15 additional time points
(from 3 to 168 h after death) were selected to examine changes in metabolites’
levels in specific time intervals. We employed linear mixed models to study the
relationship between metabolite intensities, time and presence of EDTA while
accounting for the effect of individual pigs.

Results and Discussion: We confirmed that the intensity of 16 metabolites
(mainly amino acids) significantly depends on PMI and the presence of EDTA.
However, the intensity of the ideal biomarker(s) for PMI estimation should be
determined only by the time after death and not by external factors such as
the presence of the anticoagulant agent. Thus, we identified 41 metabolites
with time−dependent intensities that were not susceptible to EDTA presence.
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Finally, we assessed the performance of these metabolites in a PMI predictive
model. Citraconic acid yielded one of the lowest errors in general PMI estimation
(32.82 h). Moreover, similar errors were observed for samples with and without
EDTA (33.32 h and 32.34 h, respectively). Although the small sample size and
information leak in predictive modelling prevent drawing definite conclusions,
citraconic acid shows potential as a robust PMI estimator.
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1 Introduction

One of forensic medicine’s most essential and challenging tasks
is estimating the post-mortem interval (PMI). This parameter is
defined as the time elapsed since an individual’s death. Precise and
accurate estimation of the PMI is remarkably important as it can help
establish the timeline of events surrounding death (Gelderman et al.,
2021). Forensic science currently offers many methods for PMI
estimation, including various conventional methods, such as
measurement of physical changes (Donaldson and Lamont, 2013;
Ciaffi et al., 2018), biochemical components in different tissues
and body fluids (Donaldson and Lamont, 2013), DNA or RNA
degradation (Ciaffi et al., 2018), or analysis of rigour and livor
mortis (Madea, 2016; Amendt et al., 2011). Nevertheless, only an
approximate estimation can be derived from conventional methods,
and an accurate PMI estimation is still difficult to obtain (Mathur
and Agrawal, 2011). Thus, more reliable and accurate methods to
estimate PMI are in demand.

Recent advances in the methods for estimating PMI have enabled
us to determine post−mortem intervals more precisely (Mathur
and Agrawal, 2011). Based on the literature review (Peyron et al.,
2021; Szeremeta et al., 2021), it has been suggested that analysing
the metabolomic composition of body fluids might provide a
better tool for PMI estimation (Locci et al., 2023). The analysis
of the post−mortem metabolomic changes in biological samples
with mass spectrometry opens the way to develop new methods
for PMI estimation. Different analytical platforms such as liquid
chromatography−mass spectrometry (LC−MS) (Szeremeta et al.,
2022; Zhang et al., 2022a; Zhang et al., 2022b; Pesko et al., 2020),
gas chromatography−mass spectrometry GC−MS (Dai et al., 2019;
Wu et al., 2018; Sato et al., 2015; Kaszynski et al., 2016), and
nuclear magnetic resonance (NMR) (Fischer et al., 2014; Locci et al.,
2021) have been used in PMI−oriented research. Among these,
GC−MS is known to be one of the most efficient analytical
platforms and, therefore, iswell−established inmetabolomics research
(Mojsak et al., 2022). GC−MS has a distinct advantage over the other
analytical platforms in terms of retention time, mass spectrometry
reproducibility, and the availability of well−established commercial
and in−house metabolite libraries (Beale et al., 2018). Due to all these
advantages, this high−throughput detection technique was chosen
to conduct the analyses.

Based on the literature review, it was confirmed that the
application of GC−MS to the estimation of PMI is also gradually
increasing (Dai et al., 2019; Wu et al., 2018; Sato et al., 2015;
Kaszynski et al., 2016). Most often, the samples of post−mortem
blood plasma (Donaldson and Lamont, 2013; Sato et al., 2015;

Costa et al., 2015; Zelentsova et al., 2020) and vitreous humour
(Zelentsova et al., 2020; Bonicelli et al., 2022) are used to search
for potential PMI estimation markers; however, cerebrospinal,
pericardial, and synovial fluids (Wenzlow et al., 2023) have also
been considered. Due to the popularity of the use of blood in PMI
estimation and its relatively easy collection at the crime scene, we
selected this material to perform our study.

Blood trail age estimation could offer valuable information for
reconstructing criminal events and their chronological assessment
(Costa et al., 2015). Death results in extensive biochemical changes
also in the blood due to the absence of circulating oxygen and
the consequent cessation of aerobic respiration, altered enzymatic
reactions, cessation of anabolic production of metabolites, cessation
of active membrane transport and changes in the permeability
of cells and diffusion of ions (Donaldson and Lamont, 2013).
In these circumstances, using anticoagulants, such as EDTA, aids
in suppressing the blood clotting mechanism to enable a longer
examination time. On the other hand, there are many controversial
studies regarding adding this anticoagulant (Bergmann et al.,
2021). Based on UV-VIS analysis, Bergmann et al. confirmed that
unnatural blood coagulation prevention is highly questionable
when estimating bloodstain age, since the blood’s physical and
chemical properties are altered (Bergmann et al., 2021). On the
other hand, in most studies where blood samples were used to
estimate PMI, it was anticoagulated with EDTA (Das et al., 2019;
Sibbens et al., 2017;Wang et al., 2017). For this reason, we attempted
to compare the metabolite profiles in both types of blood samples to
check the impact of EDTA addition on the PMI estimation.

To the best of our knowledge, this is the first approach to estimate
PMI in a porcine model using GC−MS−based metabolomics of
plasma samples with or without EDTA addition. Considering the
complementarityofGC−MSandLC−MStechniques inmetabolomics
studies(Zekietal.,2020;Yumba-Mpangaetal.,2019), thepresentstudy
is a valuable continuation of our previous research (Szeremeta et al.,
2022). Apart from finding the differences between the metabolic
profiles of blood samples with and without the addition of
anticoagulants, we want to find universal metabolites that depend
on the time since death, regardless of the addition of EDTA.

2 Materials and methods

2.1 Chemicals

O−methoxyamine hydrochloride, analytical grade of heptane
and pyridine were supplied from Sigma−Aldrich (Steinheim,
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Germany). N,O−bis−(trimethylsilyl)− trifluoroacetamide (BSTFA)
with 1% trimethylchlorosilane (TMCS) solution and acetonitrile
(HPLC grade) was purchased from Thermo Fisher Scientific
(Waltham, MA, USA). 4−nitrobenzoic acid (4−NBA) and stearic
acid methyl ester (C18:0 methyl ester) were acquired as well
from Sigma–Aldrich (Steinheim, Germany) and applied as internal
standards (ISs). The 4−NBA (IS1) solution was prepared in
acetonitrile, whereas methyl stearate in heptane (IS2). Two mixtures
of standards for GC−MS, one containing grain fatty acid methyl
esters (FAMEs) (C8:0−C22:1, n9) and another a mixture of
n−alkanes (C8:C40), were obtained from Supelco (Bellefonte, PA,
United States).

2.2 Sample collection and preparation

The experimental design used in this study was the same as
described previously (Szeremeta et al., 2022). Sample preparation
was carried out as previously described (Mojsak et al., 2022) with
minor modifications. Briefly, an aliquot of 40 µL of plasma and
120 µL of cold acetonitrile containing the IS1 (25 ppm) were mixed
for metabolites extraction. The mixture was vortexed for 2 min and
centrifuged at 15,000 g for 10 min at 4°C. Finally, each sample’s
supernatant (120 µL) was collected in a GC vial equipped with
an insert and evaporated to complete dryness using a vacuum
concentrator. All analysed samples were subjected to a two−step
derivatisation process. First, methoxymation was performed by
adding 30 µL of methoxylamine hydrochloride in pyridine solution
(15 mg/mL) and then incubating at room temperature in the dark
for 16 h. Following this, 30 µL of BSTFA with 1% TMCS was added
to each sample and placed in the oven to react for 1 h at 70°C. At last,
90 µL of IS2 (10 ppm) was added as instrumental IS.

2.3 Quality control samples

To monitor the analytical variability and assess the
reproducibility and repeatability of themethodology, quality control
(QC) samples were used (Kirwan et al., 2022). The QC samples were
prepared by pooling the study samples. Blank samples containing
cold acetonitrile were used to detect the column’s contamination
and the background noise produced during sample derivatisation,
data processing and GC/MS analysis.

2.4 GC−MS−based untargeted
metabolomics

Metabolic fingerprinting was performed using a 7890B gas
chromatograph connected to a 7000D mass selective detector
(Agilent Technologies, Palo Alto, CA, United States). A DB−5MS
capillary column (30 m × 0.25 mm × 0.25 µm) was used for the
chromatographic separation. One µL of each derivatised plasma
samplewas automatically injected at a split ratio of 1:10 using helium
as a carrier gas with a 1 mL/min flow rate. The temperature of
the injection was set to 250°C. The column oven temperature was
maintained at 60°C for 1 min and then increased by 10°C/min to
320°C. The transfer line, ion source and quadrupole temperature

were set at 280, 300°C and 150°C, respectively. Mass spectra were
acquired under electron impact (EI) ionisation conditions using
70 eV in the mass range of m/z 50–600 using the default instrument
scan rate. All samples (study samples, QCs and blanks) were
analysed using the above-mentioned conditions.

2.5 Data processing

The deconvolution and identification were performed using
Mass Hunter Quantitative Unknowns Analysis software (B.07.00,
Agilent), alignment using Mass Profiler Professional software
(version 13.0, Agilent) and peak integration using Mass Hunter
Quantitative Analysis software (version B.07.00, Agilent). The
identificationwas performedmainly based on the accuratemass and
product ion spectrum matching against the in–house library of 100
authentic standards and Fiehn’s and NIST 14 libraries. Before the
statistical analysis, peak areas were normalised by IS abundance to
minimise the response variability from the instrument. Finally, data
were filtered based on the coefficient of signal variation (CV) in QC
samples, considering values lower than 30% as acceptable.

2.6 Statistical analyses

The exploratory analysis indicated high data variability between
the timepoints and individual pigs. To adequately address this
data structure, we employed the linear mixed model, where we
considered the metabolite intensity to depend on both time (t) and
the presence of EDTA. Moreover, we have included the impact of
individual pigs as a random effect (bID). Thus, our model considers
the additional unknown variability affecting the intensity of a given
metabolite over time (Equations 1, 2). We applied ANOVA to verify
if the presence of EDTA is a significant variable in the model.

y = β0 + bID + β1t+ β2EDTA (1)

y = β0 + bID + β1t (2)

We predicted the measurement time considering the
known metabolite intensity for each metabolite using the
coefficients of model 2) to assess if the metabolite intensity could
estimate PMI (Patterson and Thompson, 1971). Due to the small
sample size, we performed a prediction on the samples used to fit
the model, which caused the information leak. We evaluated the
error of time prediction (in hours) for both models sensitive and
those not sensitive to the presence of EDTA. We have used mean
average error (MAE) as an error measure for samples with and
without EDTA. Total mean average error (TMAE) was computed
for all samples (with and without EDTA). Due to the limited dataset,
we computed the performance on the same data we used to produce
the model, leading to the information leak. The statistical analysis
was performed in R 4.2.

3 Results

After data pretreatment (deconvolution, alignment, data
normalisation and filtering), 126 entities were obtained,
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FIGURE 1
Ven diagram showing number for statistically significant metabolites.

and 79 metabolites were annotated (Supplementary Table S1;
Supplementary Materials), taking into account several derivatives
from one metabolite [mainly for certain amino acids (AAs) and
carbohydrates (Carbs)]. Finally, we chose 71 and 73 metabolites for
statistical analysis, representing different analytical classes [mainly
AAs, Carbs and fatty acids (FAs)], with RSD below 30% in plasma
with and without EDTA addition, respectively.

Using ANOVA, we compared which of the two models
significantly better captures the data structure. As model 2) is
nested in model 1), we interpreted the ANOVA result as an
indication of the presence of EDTA as a parameter necessary to
describe the change of the metabolite intensity over time. After
applying the Benjamini−Hochberg correction, we discovered 16
metabolites whose intensities depend on the EDTA presence and
the time after death. Relationships between significant metabolites
in EDTA−based and time−based tests were presented on the
Venn diagram (Figure 1).

The p−values for the 16 metabolites mentioned above are
presented in Table 1, whilst their intensity−time plots showing the
tested pigs’ biodiversity are presented in Supplementary Figure S1.
Metabolites in blood containing EDTA aremore stable than in blood
without anticoagulant (see Figure S1). Additionally, we present the
result of the PLS-DA analysis (Figure 2) performed for EDTA-
treated serum metabolomics data at different post-mortal time
points, illustrating the temporal variations in plasma composition.

Reversing this reasoning, we identified 41 metabolites that
depend significantly on time after death but do not show a significant
dependence on the presence of EDTA (Supplementary Table S2).
It must be emphasized that there was over−interpretation of the
ANOVA result by drawing such conclusions. However, the potential
usefulness of these metabolites as PMI estimators was demonstrated
while keeping the same linear mixed model framework.

Two factors are vital for selecting the best metabolite for PMI
estimation: low error (accuracy) and lack of sensitivity to blood
clotting (universality). Among the considered metabolites, alanine,
phosphate, and citraconic acid had the lowest TMAE (respectively,
29.29, 32.52, and 32.83 h) (Figure 3).

However, out of these three metabolites, only citraconic acid
kept a comparably low MAE, independently of the presence or
absence of EDTA (33.32 and 32.34 h, respectively). Both alanine and

phosphate had drastically differentMAE depending on the presence
or absence of EDTA (alanine: 21.01 and 37.56; phosphate: 35.11 and
29.92 h, respectively).

Next, we investigated whether citraconic acid was the only
metabolite that yielded equally accurate predictions regardless of
EDTA presence. When considering the mean absolute difference in
MAE, citraconic acid had the lowest score (0.98 h) (see Figure 4).
Benzoic and glyceric acid were two othermetabolites, with themean
absolute difference in TMAE being lower than 2 hours (1.37 and
1.50 h, respectively). However, they could not be reliably used to
estimate PMI as their TMAE was very high (56.62 and 49.66 h,
respectively).

This analysis does not exhaust the range ofmetabolites that could
be useful for PMI estimation. Our analysis yielded 41 metabolites
(Table S2) resistant to EDTA and with time−dependent intensity.
However, their statistical significance was not followed up due to
the low TMAE.

4 Discussion

Evaluation of the PMI has always been a major challenge for
forensic pathologists (Wu et al., 2018). Despite many studies on
PMI estimation and the development of various methods for PMI
assessment over the years (Peyron et al., 2021; Laplace et al., 2021;
Wilk et al., 2020; Wilk et al., 2021; Choi et al., 2019; Peng et al., 2020;
Sangwan et al., 2021; De-Giorgio et al., 2021; Palacio et al., 2021), an
accurate PMI indication, highly required in forensicmedicine, is still
complicated. The practical use of these methods in forensic science
is impossible because most proposed approaches lack the reliability
required to meet rigorous forensic standards (Locci et al., 2023).

Metabolomics analyses using mass spectrometry have recently
gained popularity in forensic analysis (Kaszynski et al., 2016). This
relatively new technology is often based on mass spectrometry,
which allows the comprehensive study of low−molecular−weight
metabolites (Lu et al., 2023). Especially during the agonal period,
supravital reactions (occurring from death until cellular functions
cease), leakage from degrading cells, and degradation of proteins
affect the metabolomics profile. Therefore, analysing metabolites
from biofluid samples can provide insights into the post−mortem
changing biochemical environment (Donaldson and Lamont, 2013).
Probably the most significant post-mortal changes in the blood
metabolome are induced by cell membrane damage: the lack of ATP
causes the dysfunction of intracellular Na+/K+ pumps, resulting in
sodium accumulation inside the cells, cell lysis due to the osmotic
pressure, and the leakage of the intracellular metabolites into the
blood. The post−mortem metabolomic changes are also caused by
the disruption of enzymatic cycles and microbial activity in the
vascular system (Zelentsova et al., 2020).

Since the metabolomics approach to PMI estimation is still
in its infancy, using animals as study subjects to determine the
precise PMI is justified. Therefore, we built the PMI estimation
model using porcine blood in the current study. Furthermore,
ethical concerns make it considerably preferable to perform such
a study with multiple time points on animal, not human blood
(Matuszewski et al., 2020). Additionally, due to their structural and
functional similarity to humans, pigs have been used as a model
in biomedical research to evaluate PMI. It has been confirmed

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1400622
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Mojsak et al. 10.3389/fmolb.2024.1400622

TABLE 1 List of statistically significant metabolites dependent on time and EDTA addition with their p−value, adjusted p−value (Benjamini−Hochberg
correction).

Group of metabolites Metabolites RT HMDB ID p−value Adjusted p−value

AAs, peptides and analogues

Creatinine 13.6 HMDB00562 5.29E−14 5.52E−13

Iminodiacetic acid 13.3 HMDB11753 4.01E−15 4.88E−14

Isoleucine 10.05 HMDB00172 2.11E−07 1.40E−06

Lysine 17.5 HMDB00182 0.000307 0.0014

Ornithine 15.8 HMDB00214 3.29E−06 2.00E−05

Phenylalanine 14.2 HMDB00159 2.85E−16 4.17E−15

Threonine 11.3 HMDB00167 2.20E−28 5.36E−27

Valine 7.2, 9.2 HMDB00883 5.28E−22 9.64E−21

5−Oxoproline/pyroglutamic acid 13.1 HMDB00267 3.52E−12 2.85E−11

Alpha−keto acids and derivatives Pyruvic acid 6.6 HMDB00243 6.47E−07 4.30E−06

Carb and Carb conjugates

Glucose 17.25, 17.4 HMDB00122 2.00E−35 7.31E−34

Mannose 17.15, 17.45 HMDB00169 1.63E−40 1.19E−38

1,5−anhydro−D−sorbitol 17 HMDB02712 3.54E−05 0.00017

Dicarboxylic acids and derivatives Fumaric acid 10.9 HMDB00134 1.87E−07 1.36E−06

Glycerophosphates Glycerol 1−phosphate 15.9 HMDB00126 5.00E−05 2.00E−04

Purines and purine derivatives Hypoxanthine 16.5 HMDB00157 4.76E−06 2.67E−05

FIGURE 2
PLS-DA analysis of blood samples with EDTA collected at different post-mortal time-points.

that pigs are a common human analogue in taphonomic studies
(Connor et al., 2018) Researchers already confirmed that adding
EDTA helps suppress the blood clotting mechanism, allowing
the examination to be conducted over a longer period of time
(Bergmann et al., 2021). On the other hand, this unnatural

prevention of blood coagulation is highly questionable when
estimating blood stain age since the blood’s physical and chemical
properties are altered (Sharma and Kumar, 2018). Bergmann et al.
confirmed that EDTA distorts blood spot ageing behaviour due to
the prevention of coagulation (Bergmann et al., 2021), but based
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FIGURE 3
Total Mean Average Error [h] and Mean Average Error [h] of predictive models for PMI estimation with and without EDTA component. The height of the
bar represents TMAE (left panel) and MAE (right panel). The bar’s colour (the right panel) represents the presence or absence of EDTA.

on different analyses conducted with UV/VIS spectra obtained for
oxyhemoglobin, methemoglobin and hemichrome measurement.
Until now, no study has reported using the metabolite profile
analyses using GC−MS to estimate PMI in blood samples with or
without the addition of an anticoagulant. For this reason, in this
study, we examined the influence of EDTA on blood profiles over
time to evaluate whether this effect occurs. Our results show that
differences between the profiles of blood samples with and without
EDTA addition were significant, which had already been proven
in our previous study, performed using a complementary LC−MS
technique (Szeremeta et al., 2022).

In the present study, we identified 16 metabolites with time-
dependent intensities that were also affected by the presence of
EDTA (see Figure S1). The best candidates for biomarkers for
PMI estimation would be blood metabolites whose post−mortem
intensity changes significantly, monotonously, relatively slowly, and
with minimal data scattering (Sato et al., 2015). Most metabolites
in plasma samples with EDTA (mainly AAs such as lysine,

phenylalanine, threonine, valine, and pyroglutamic acid) met these
criteria, with one exception for iminodiacetic acid, which met these
criteria for both EDTAandnon-EDTA samples.The intensity ofAAs
increases with time after death, and the most plausible explanation
for this is the lack of energy. The cells began to break down proteins
for energy and to combat bacterial spoilage, which led to the rapid
degradation of a large number of proteins. It is worth noting that
the increase in AAs was gradual rather than sudden, and the most
likely explanation for this is that at the moment of death, not all the
cells died, and within a certain time after death, some cells remained
metabolically active (Wu et al., 2018).

Based on the graphs presented in Figure S1, it can be noticed
that metabolites in blood with EDTA are more stable than in
blood without anticoagulant addition. We observed larger data
scattering in plasma samples without EDTA addition, especially at
further times after death. Multiple concurrent biological processes
induced by time may contribute to alterations in the post-mortem
metabolome of blood samples untreated with EDTA (Go et al.,
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FIGURE 4
The most important metabolites for PMI estimation. Panel (A) - plots considering the biodiversity of the tested pigs; panel (B) - plots considering the
median of all IDs for each time, metabolite, and EDTA, along with the first and third quartiles (Q1 and Q3).

2019). Another critical difference in the change of the intensity of
metabolites in the blood with the addition of EDTA is the rapid
decrease in glucose intensity during the first day after death, with

minimal data scattering (see Figure 4).The rapid decrease of glucose
after death may also depend on post-mortem anaerobic glycolysis
and the use of glucose by bacteria. After death, glycogen is used
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by skeletal muscles as a carbohydrate source for glycolytic substrate
production, which generates ATP and lactate (Chauhan et al., 2019;
Chauhan and England, 2018). In our study, we observed an increase
in the intensity of lactic acid after death in two types of plasma
samples. Lactate is not only produced during glycolysis but is also
formed due to autolysis and bacterial catabolism. Several researchers
have studied the correlation between lactic acid concentration
and PMI (Mihailovic et al., 2011; Keltanen et al., 2015). The
remaining compounds associated with EDTA include hypoxanthine
and creatinine; the intensity of both metabolites increases with
time (see Figure 4). Many previous publications have confirmed the
use of these metabolites (i.e., creatinine or hypoxanthine) for PMI
estimation (Peyron et al., 2021; Szeremeta et al., 2022; Dai et al.,
2019; Sato et al., 2015; Kaszynski et al., 2016); and our research
provides additional confirmation. Hypoxanthine concentration in
the blood rises after death because it is an ATP−breakdown product
that increases its concentration in situations of oxygen limitation
and is available as a co−factor for xanthine oxidase. Changes
observed for hypoxanthine correspond to breaking the tricarboxylic
acid cycle and purine catabolism in an oxygen−deficient biological
medium (Hira et al., 2014). Zelentsova et al. conducted a PMI study
with rabbits and suggested that hypoxanthine and creatinine may
have a strong potential as a PMI biomarker (Zelentsova et al.,
2020), which was also confirmed in this study. After death,
creatinine levels in the blood increase due to the cessation of
kidney function and the breakdown of muscle tissue. Without renal
filtration, creatinine accumulates in the bloodstream (Nishida et al.,
2015). Measurement (in the vitreous humor) of hypoxanthine with
potassium (Rognum et al., 2016; Madea and Rödig, 2006) and
also urea (Cordeiro et al., 2019), has been reported useful for time
since death estimation.

Wehave also indicated 43metaboliteswhose intensities correlate
with PMI and are not susceptible to EDTA presence. Using
coefficients of the fitted models, we used intensities of these
metabolites to estimate PMI (Figure 3). No metabolites with TMAE
that were lower than 24 h, which severely hinder their usage in
the case of estimating very short PMIs were identified. Moreover,
we observed a much higher value of MAE for samples with
EDTA than those without anticoagulant. Only citraconic acid could
be characterised by the low TMAE (29.29 h) and comparable
MAE regardless of the EDTA presence (33.32 h with EDTA and
32.34 without EDTA). Shen et al. showed that citraconic acid
could be used to predict pork quality (Shen et al., 2022). This
metabolite belongs to the dicarboxylic acid family, formed from
the breakdown of citric acid. Citrate content, mainly in the bone,
was confirmed as a metabolite associated with PMI (Wilson and
Christensen, 2017; Brown et al., 2018).

However, it should be noted that the predictive model employed
in this study suffers from the information leak, and the error estimate
shown has to be overly optimistic. The precise assessment of its
accuracy requires future research, where the sample size would allow
for model validation using at least a leave−one−out setting. It was
speculated that citraconic acid could aid in determining PMI.

Despite metabolomics being fraught with a high risk of large
error (Zhang et al., 2023), findings show that this approach can be
a powerful tool for predicting PMI (Aljeaid, 2024) The literature
review confirmed that the metabolomic profile of the vitreous
humour determined with NMR could predict PMI better than

measuring potassium concentration, which was, until now, the best
option for PMI estimation. It is crucial to bear in mind that the use
of potassium concentration in PMI estimation is fraught with error
in the range of 6.9 h for PMI <24 h, 7.4 h for PMI between 24 and
48 h, and 10.3 h for PMI >48 h (Locci et al., 2023).

5 Conclusion

Our preliminary study shows large differences between the two
types of blood-originated samples. Metabolites in blood, with the
addition of EDTA, maintain much better stability and are subject
to much less data scattering. Adding EDTA helps suppress the
blood clotting mechanism, providing a longer time to perform
the examination. However, metabolites in blood behave more
significantly without the addition of an anticoagulant. We observe
a considerable dispersion of results in blood samples, especially at
later times. Possible reasons might be multiple coexisting biological
processes induced by time that affect metabolome post-mortem in
blood samples untreated with EDTA.

Our analysis indicated only one metabolite (citraconic acid)
suitable for PMI estimation, especially for PMIs longer than 1 day.
However, it should be pointed out that this study had some
limitations. First, the experiment was performed under constant
environmental conditions, and further work should be directed to
study the influence of environmental factors. Secondly, the studywas
conducted on animal material. Humans have a more complicated
biological background and living habits than experimental animals.
The application of the results of this study to the practical forensic
investigation of human corpses needs further study.
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