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Background: Gastric cancer is a highly prevalent malignant neoplasm. Metabolic
reprogramming is intricately linked to both tumorigenesis and cancer immune
evasion. The advent of single-cell RNA sequencing technology provides a novel
perspective for evaluating cellular metabolism. This study aims to
comprehensively investigate the metabolic pathways of various cell types in
tumor and normal samples at high resolution and delve into the intricate
regulatory mechanisms governing the metabolic activity of malignant cells in
gastric cancer.

Methods: Utilizing single-cell RNA sequencing data from gastric cancer, we
constructed metabolic landscape maps for different cell types in tumor and
normal samples. Employing unsupervised clustering, we categorized malignant
cells in tumor samples into high and low metabolic subclusters and further
explored the characteristics of these subclusters.

Results: Our research findings indicate that epithelial cells in tumor samples
exhibit significantly higher activity in most KEGG metabolic pathways compared
to other cell types. Unsupervised clustering, based on the scores of metabolic
pathways, classified malignant cells into high and low metabolic subclusters. In
the high metabolic subcluster, it demonstrated the potential to induce a stronger
immune response, correlating with a relatively favorable prognosis. In the low
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metabolic subcluster, a subset of cells resembling cancer stem cells (CSCs) was
identified, and its prognosis was less favorable. Furthermore, a set of risk genes
associated with this subcluster was discovered.

Conclusion: This study reveals the intricate regulatory mechanisms governing the
metabolic activity of malignant cells in gastric cancer, offering new perspectives for
improving prognosis and treatment strategies.
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Introduction

Gastric cancer is one of the most commonmalignancies globally,
ranking fifth in incidence and fourth inmortality rates worldwide. In
2020, there were over one million new cases of gastric cancer, with
an estimated 769,000 deaths (Tang et al., 2021). Adenocarcinoma is
the predominant histological subtype of gastric cancer, accounting
for approximately 95% of cases (Hwang et al., 2010). Other
classifications include the Lauren classification (Lauren, 1965)
(intestinal type, diffuse type, mixed type) and the WHO
classification (Bosman et al., 2010) (papillary, tubular, mucinous
and poorly cohesive carcinomas). The Cancer Genome Atlas
(TCGA) project uncovered four molecular subtypes of gastric
cancer: Epstein-Barr virus (EBV), microsatellite instability (MSI),
genomically stable (GS), and chromosomal instability (CIN)
(Comprehensive molecular characterization of gastric, 2014). This
indicates that gastric cancer is a highly heterogeneous tumor.

Metabolic reprogramming is one of the hallmarks of cancer and
is intricately linked to both tumorigenesis and cancer immune
evasion (Faubert et al., 2020; Gong et al., 2021). Throughout the
progression of a tumor, cancer cells encounter diverse metabolic
challenges. For instance, Cancer cells must compete for nutrients
with various other cell types in the tumor microenvironment (TME)
(Martínez-Reyes and Chandel, 2021; Ohshima and Morii, 2021).
Research has reported that the increased levels of the transporter
protein (SLC43A2) in cancer cells result in elevated consumption of
methionine, restricting methionine metabolism in cytotoxic T cells
(CTLs), which impairs their function (Sullivan et al., 2019; Bian
et al., 2020). Additionally, malignant cells undergoing metastasis
need to survive in the circulatory or lymphatic system in order to
reach and colonize distal sites. During this process, cancer cells are
not in an anabolic state but, rather, enter a catabolic state in order to
survive the changing environment (Ubellacker andMorrison, 2019).

Numerous prior studies have provided substantial evidence
establishing the link between metabolic dysregulation and clinical
outcomes, as well as treatment responses, across various cancer
types (Liu et al., 2018; Gong et al., 2021). Comprehensively
understanding cancer metabolism necessitates insights into both
metabolite concentrations and transformation rates, although
acquiring these measurements in humans presents challenges.
While the expression levels of metabolic genes may not directly
correlate with metabolic flux or metabolite abundance, evidence
suggests that metabolic gene expression can offer valuable insights
into predicting metabolic flux and metabolite concentrations
(Mehrmohamadi et al., 2014). Compared with the bulk RNA-seq,
single-cell RNA sequencing (scRNA-seq) could provide some
insights into metabolism at the single-cell level in human tumors

(Xiao et al., 2019). This presents a unique opportunity to gain in-
depth insights into the metabolic activities of various cell subgroups
within cancer tissues.

Currently, scRNA-seq in cancer research has predominantly
concentrated on the identification and comparison of functional cell
subpopulations. Limited studies have explored tumor metabolic
heterogeneity using single-cell RNA sequencing data. In a recent
study, researchers systematically delineated the intricate single-cell
landscape of gastric cancer, addressing both inter- and intratumoral
heterogeneity (Kumar et al., 2022). Leveraging the public available high
quality scRNA-seq data, we conducted an in-depth exploration of the
metabolic characteristics of various cell subpopulations in gastric
cancers. Subsequently, we classified tumor cells into high-
metabolism and low-metabolism subclusters based on their
metabolic pathway scores. The high metabolic subcluster
demonstrated the potential to induce a robust immune response,
correlating with a relatively favorable prognosis. Conversely, within
the low metabolic subcluster, a subset of cells exhibiting cancer stem
cells (CSCs)-like characteristics correlated with a relatively poor
prognosis. Our study unveils novel insights into the metabolic
characteristics of both malignant and non-malignant cells in gastric
cancer, providing valuable clues for predicting patient prognosis.

Materials and methods

Processing of scRNA-seq data

This study single-cell transcriptomic data for gastric cancer from
the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/gds) under the accession number GSE183904. The Unique
Molecular Identifiers (UMIs) count matrix was processed using
the R package Seurat (version 4.3.0). The criteria for cell filtering are
as follows: a minimum gene count threshold of 500, a minimum
threshold of 1,000 for UMIs, and a threshold of 20% for the
percentage of mitochondrial genes out of the total gene count.
Cells that do not meet these criteria are considered low-quality
cells and are removed. Cell doublets were removed using the
DoubletFinder package (version 2.0.3). Then, we used the merge
function in R (version 4.2.1) to combine all quality-controlled
sample expression profiles. To eliminate batch effects in single-
cell RNA sequencing data, we employed the harmony package
(version 0.1.1). After that, highly variable genes (HVGs) were
selected for principal components analysis (PCA), and the top
30 significant principal components (PCs) were selected for
Uniform Manifold Approximation and Projection (UMAP) and
visualization of gene expression.
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Determination of cell type

The differentially expressed genes (DEGs) in each cell subcluster
were identified using the “FindAllMarker” function provided by Seurat
with the parameters min. pct = 0.25 and logfc. threshold = 0.25. Cell
types were annotated based on the expression of canonical marker genes
known for those cell types. Cell subclusters with similar gene expression
patterns were annotated as the same cell type.

Construction of the metabolic
landscape atlas

The construction of the metabolic landscape atlas is primarily
based on the metabolic scoring method proposed by Xiao and
colleagues (Xiao et al., 2019). First, data imputation was
conducted to address the drawbacks of “dropout” in single-cell
sequencing. To obtain the true expression of these genes in cells
as much as possible, the scImpute algorithm was used to impute the
missing gene expression values (Li and Li, 2018), with Transcripts
per million (TPM) values and gene lengths as inputs. Imputation
was only applied to genes with dropout rates exceeding 50%.

Specific parameters are as follows: count_path, the full path of the
raw count matrix; infile = “csv”: specifies the file type storing the raw
count matrix as CSV; outfile = “csv”: specifies the file type storing the
imputed count matrix as CSV; out_dir: specifies the folder path to store
the imputed count matrix; labeled = TRUE: indicates whether cell type
information is provided; labels: the result of single-cell clustering,
representing cell types; type = “TPM”: specifies the numerical type in
the expression matrix as TPM; genelen: the length information of each
gene in the single-cell dataset; drop_thre = 0.5, sets the dropout threshold
to 0.5, meaning that the scImpute algorithm will be used for imputation
only when a gene is not expressed inmore than half of the cells; ncores =
20, specifies the number of cores used for parallel computation as 20.

Metabolic gene and pathway information was obtained from the
KEGG database. Some improvements were made in data imputation in
this study. In previous research, imputation for non-malignant cells was
based on cell-type similarity, and for malignant cells, it was based on
patient heterogeneity, possibly due to limitations in the number of cells.
To comprehensively consider various factors including patient
heterogeneity, disease types, and disease progression, we believe that
sample-level data imputation is a more reasonable approach when
dealing with sufficiently rich single-cell data.

Following the completion of the imputation process, to ensure
comparability between different samples or experimental conditions
and accurately reflect biological differences, we standardized the
data. Four methods were evaluated, including the relative log
expression (RLE) method implemented in the estimate size
factors for matrix function of the DESeq2 package, the TMM
and upper quartile methods executed by the calcNormFactors
function of the edgeR package, and the deconvolution method
implemented in the computeSumFactors function of the scran
package, with the latter demonstrating the best performance.

Calculation of metabolic pathway activity involved computing
the average expression level of each gene in each cell type and
comparing it with the average across all cell types to obtain relative
expression levels. Pathway activity scores for each pathway in each
cell type were defined using weighted averages, where the weighting

factor is the reciprocal of the number of pathways containing that
gene. Outliers were excluded, and pathway activity significance in
specific cell types was assessed through random permutation tests.

Calculation of metabolic pathway
enrichment score

Metabolic pathway data were obtained from theKyoto Encyclopedia
of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000)
(https://www.genome.jp/kegg/). A total of 1,667 humanmetabolic genes
are distributed across 85 metabolic pathways (Supplementary Table S1).
These pathways were categorized into 11 major classes based on KEGG
classifications. We employed the Gene Set Enrichment Analysis (GSEA)
(version 1.24.0)method (Subramanian et al., 2005) to score the pathways
in malignant cells of tumor samples relative to normal samples,
specifically focusing on epithelial cells. The differentially expressed
genes were identified using presto (version 1.0.0), which utilizes the
wilcoxauc function to calculate the ranked AUC for GSEA input.
Additionally, we utilized Gene Set Variation Analysis (GSVA)
(version 1.46.0) (Hänzelmann et al., 2013) to calculate the
enrichment scores of each metabolic pathway in individual cells with
transcriptomic data.

Clustering cells based on metabolic scoring

First, the Euclidean distance matrix between cells is calculated using
the dist function. Then, hierarchical clustering is performed on the
distance matrix using the hclust function. Default parameters are used,
and the complete linkage method is employed. Finally, the hierarchical
clustering result is divided into two clusters using the cutree function.
The functions of dist, hclust, and cutree are built-in functions in R
(version 4.2.1).

Re-clustering of the low metabolic cluster

First, we extracted cells from the original Seurat object that belong to
the low metabolic cluster and constructed a new Seurat object. Next, we
applied the SCT method for data standardization and normalization.
Then, we used the Harmony package (version 0.1.1) to perform batch
effect correction based on patient information. Highly variable genes
(HVGs) were selected for principal component analysis (PCA), and the
top 10 significant PCs were chosen for UMAP visualization. During the
re-clustering of the lowmetabolic cluster, a resolution of 0.1 was selected.
Finally, we used the “FindAllMarker” function provided by Seurat,
setting the parameters min. pct = 0.25 and logfc. threshold = 0.25, to
identify the DEGs within each cell cluster.

Single-cell gene set enrichment analysis

Gene set enrichment analysis was conducted based on a modified
version of the competitive gene set enrichment test CAMERA developed
by Cillo et al. (Cillo et al., 2020), which has been incorporated into the
SingleSeqGset R package (version 0.1.2). The SingleSeqGset package is
designed for gene set enrichment analysis in single-cell RNA-seq data. It
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utilizes straightforward basic statistics, such as variance-inflated
Wilcoxon rank-sum test, to determine the enrichment of gene sets of
interest in different clusters. In this method, the mean gene expression
level was initially computed, and the log2 fold change (FC) between the
specific cell cluster and the other cells was employed as the test statistic
(Cillo et al., 2020). Gene set enrichment analysis (GSEA) was performed
using 50 hallmark gene sets from the MSigDB databases (https://www.
gsea-msigdb.org/gsea/msigdb).

Pseudotime analysis

In the low metabolic subcluster, 500 cells were randomly
selected from six subclusters for pseudotime analysis using the
Monocle two package (version 2.28.0) (Trapnell et al., 2014). The

trajectory is visualized in the form of a 2D t-Distributed Stochastic
Neighbor Embedding (tSNE) plot. A pivotal feature of monocle2,
the plot_genes_in_pseudotime function, facilitated the visualization
of gene expression changes along pseudotime, representing the
inferred developmental trajectory of individual cells.

Survival analysis

First, the code selects a specific gene set and computes
expression scores for each sample in the TCGA dataset using
GSVA. Then, we utilize the surv_cutpoint function from the
survminer package (version 0.4.9) to determine the optimal
grouping strategy for patients. Finally, survival analysis is
conducted using the survival package (version 3.5.3) and

FIGURE 1
Identification of gastric cancer cell populations at single-cell resolution (A) The data includes information on 40 samples, consisting of 29 tumor
samples and 11 normal samples, spanning across one to four clinical stages and various tissue types. (B) Uniform Manifold Approximation and Projection
(UMAP) of 147,495 cells representing nine unique cell clusters, color-coded by their corresponding cell lineage or subtype. Each dot in the UMAP
represents a single cell. (C) The left bubble plot illustratesmarker genes specific to each cell cluster, while the right bar plot displays cell countswithin
each cell type.
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survminer package to explore the correlation between the expression
of these genes in patients and their prognosis. Bulk RNA-seq data for
gastric cancer (FPKM), along with patient clinical data, was sourced
from the UCSC Xena database website (https://xenabrowser.net/
datapages/), comprising a total of 375 tumor samples.

Results

Cell types identified in both gastric cancer
tumor and normal samples

In a prior cohort of 40 samples, including 29 tumor and
11 normal tissue samples (Figure 1A, Supplementary Table S2),
scRNA-seq was employed to investigate single-cell landscape of
gastric cancer (Kumar et al., 2022). Utilizing the scRNA-seq data
(GEO accession: GSE183904), we investigated the metabolic
characteristics of various cell subpopulations in gastric cancers.
After quality control, we obtained 147,495 cells, including
118,009 from tumor tissues and 29,486 from normal tissues.
Using dimensionality reduction and unsupervised clustering, we
identified nine distinct cell types (Figure 1B). The predominant
group was immune cells (Figure 1C), with TNK cells expressing
CD3D, CD3E, CD2, NKG7, KLRD1, myeloid cells expressing IL1B,
C1QC, C1QB, C1QA, FCER1G, plasma cells expressing IGLL5,
JSRP1, TNFRSF17, IGKC, mast cells expressing TPSAB1, TPSB2,
KIT, GATA2, and B cells expressingMS4A1. Stromal cells, primarily
fibroblasts expressing DCN, COL1A2, COL1A1, LUM, COL3A1, and
endothelial cells expressing VWF, RAMP2, PECAM1, PLVAP, were
also identified (Figure 1C; Supplementary Figure S1A). Additionally,
epithelial cells (labeled as “EPCAM,” “KRT18,” “KRT19,” “MUC1,”
“MUC5AC,” “KRT8”) exhibited heterogeneity (Supplementary
Figure S2A), forming two subclusters, cluster one and cluster 5,
with cluster five showing higher expression of chief cell markers
LIPF and PGC (Supplementary Figure S2B, C), leading to its
annotation as chief cells. Notably, none of the cell types exhibited
significant differences in proportions between gastric cancer tumor
and normal samples (Supplementary Figure S3A, B).

The metabolic landscape of cell types
identified in gastric cancer

To assess metabolic pathway characteristics across cell types in
gastric cancer tumor and normal samples, we utilized 85 KEGG
metabolic pathways. To address the issue of “dropout” in scRNA-seq,
we applied the scImpute algorithm to impute the expression levels of
dropout genes based on the same cell types within each sample (Li and
Li, 2018). Subsequently, we scored the relative metabolic activity of each
KEGG metabolic pathway in each cell type, and the analysis pipeline is
illustrated in Figure 2A. The results revealed that, in both normal and
tumor samples, epithelial cells and chief cells exhibited significantly
higher metabolic activities compared to other cell types (Figure 2B and
Supplementary Figure S4A, B; Supplementary Tables S3–S6, padj <
0.05). Notably, the retinol metabolism pathway, ascorbate and aldarate
metabolism pathway, nitrogen metabolism, and fatty acid metabolic
pathway displayed increased activity in the epithelial cells of tumor
samples. This was accompanied by enhanced amino acid metabolism,

distinguishing them from other cell types within the tumor samples
(Supplementary Tables S3–S6, padj < 0.05).

Our study also revealed notable metabolic pathway activity in
myeloid cells in both normal and tumor samples. Particularly, the
glycosphingolipid biosynthesis pathway demonstrated significantly
higher activity in myeloid cells compared to other cell types,
suggesting their specific glycolipid synthesis capabilities for immune
regulation and inflammatory processes (Leone and Powell, 2020).
Additional pathways, including histidine metabolism, fructose and
mannose metabolism, galactose metabolism, glycosaminoglycan
degradation, glycolysis/gluconeogenesis, pentose phosphate pathway,
sphingolipid metabolism, amino sugar and nucleotide sugar
metabolism, and starch and sucrose metabolism, also exhibited
elevated activity in myeloid cells compared to other cell types. In
plasma cells, N-glycan biosynthesis and D-glutamine and
D-glutamate metabolism displayed the highest metabolic activity
compared to other cell types. Furthermore, endothelial cells
demonstrated increased activity in glycosaminoglycan biosynthesis-
chondroitin sulfate/dermatan sulfate, other types of O-glycan
biosynthesis, fatty acid elongation, and inositol phosphate metabolism
compared to other cell types.

Fibroblast cells exhibited elevated activity in arachidonic acid
metabolism, linoleic acid metabolism, glycosaminoglycan
biosynthesis-heparan sulfate/heparin, synthesis and degradation of
ketone bodies, glycosphingolipid biosynthesis-ganglio series, mannose
type O-glycan biosynthesis, ubiquinone and other terpenoid-quinone
biosynthesis, particularly arachidonic acid metabolism, compared to
other cell types. In tumor samples, fibroblast cells play a crucial role in
the tumor microenvironment, contributing to processes such as tumor-
related fibrosis, extracellular matrix remodeling, and angiogenesis
(Kalluri, 2016; Hanna and Hafez, 2018). The increased metabolism of
arachidonic acid could be linked to the specific functions of fibroblast
cells in regulating the tumor microenvironment, supporting tumor
growth and invasion, and participating in inflammatory responses
(Hanna and Hafez, 2018).

Dysregulation of diverse metabolism
pathways in malignant epithelial cells

We conducted a comprehensive analysis of the metabolic
activities in malignant epithelial cells relative to normal epithelial
cells, utilizing Gene Set Enrichment Analysis (GSEA). Our findings
revealed 34 upregulated and six downregulated metabolic pathways
within 11 distinct metabolic categories (padj < 0.05) (Figure 3A,
Supplementary Table S7). Noteworthy, upregulated pathways in
malignant epithelial cells included oxidative phosphorylation,
pyrimidine metabolism, and pyruvate metabolism (Figure 3B).
Conversely, downregulated pathways encompassed metabolism of
xenobiotics by cytochrome P450, retinol metabolism, histidine
metabolism, pentose and glucuronate interconversions, and
ascorbate and aldarate metabolism (Supplementary Figure S5A).

Of particular interest, the histidine metabolism pathway exhibited
downregulation in gastric cancer (Figure 3C). Histamine, a key regulator
of tissue proliferation, is synthesized by histidine decarboxylase (HDC).
Bioinformatics analysis revealed that the expression level of HDC was
downregulated in cancer epithelial cells compared to normal cells
(logFC = −1.25, padj < 0.05). Notably, HNMT gene expression was
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FIGURE 2
Construction of metabolic landscape at single-cell resolution (A) Schematic representation of the analysis pipeline for constructing the metabolic
landscape at single-cell resolution. (B) Metabolic pathway activities across cell types in gastric cancer. Statistically non-significant values (random
permutation test padj > 0.05) are depicted as blank. Pathways specific to plasma cells are highlighted in red boxes, those specific to epithelial cells and
fibroblasts in pink boxes, myeloid-specific pathways in green boxes, endothelial cell-specific pathways in yellow boxes, and fibroblast-specific
pathways in purple boxes.
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FIGURE 3
Metabolic dysregulation in malignant cells in gastric cancer (A) The number of significantly upregulated or downregulated metabolic pathways
(padj < 0.05) between malignant cells in tumor samples and epithelial cells in normal samples within each of the 11 metabolic categories. Red indicates
upregulation, blue indicates downregulation, and gray represents non-significant changes. (B) GSEA analysis reveals a significant upregulation of
oxidative phosphorylation, pyrimidine metabolism, and pyruvate metabolism in malignant cells of tumor samples compared to normal epithelial
cells. (C) GSEA analysis reveals a significant downregulation of the histidine metabolism pathway in malignant cells compared to normal epithelial cells.
(D) Differential genes (gastric cancer malignant cells vs. normal epithelial cells) were mapped to the KEGG histidine metabolism pathway. Red indicates
upregulation of genes inmalignant cells, while blue indicates downregulation inmalignant cells (padj < 0.05, |logFC| > 0.1). (E) According to bulk RNA-seq
data from TCGA gastric cancer, HDC gene expression levels are higher in normal samples, while HNMT gene expression levels are higher in
tumor samples.
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FIGURE 4
Highmetabolic subcluster of malignant cells associated with better prognosis (A) Unsupervised clustering of malignant cells in gastric cancer tumor
samples based on GSVAmetabolic pathway scores, dividing them into highmetabolic (in red) and lowmetabolic subclusters (in blue). Each column in the
heatmap represents malignant cells in each tumor sample, and each row represents the GSVA score of each pathway. (B) Principal component analysis
was conducted on the GSVA scores of 85 metabolic pathways in each malignant cell, revealing significant metabolic pattern differences between
high metabolic subclusters and low metabolic subclusters. (C) Characterization of differentially expressed genes between high metabolic and low
metabolic subclusters. Red dots represent genes with high expression in the highmetabolic subcluster, blue dots represent genes with high expression in
the low metabolic subcluster, and gray dots represent genes with no significant difference. The top 8 DEG genes for both high and low metabolic
subclusters are labeled. (D) The TCGA gastric cancer cohort was stratified into high and low groups based on the GSVA scores of the gene set using the
surv_cutpoint function from the survminer package. Survival plots indicate a significant improvement in prognosis associated with the high-expression

(Continued )
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significantly upregulated in malignant epithelial cells, while downstream
genes such as MAOA, MAOB, ALDH3A1, ALDH3B1, and ALDH3B2
were downregulated (Figure 3D, padj < 0.05, Supplementary Table S8).
Verification using the bulk RNA-seq data from TCGA confirmed lower
HDC and higher HNMT expression in tumor samples compared to
normal samples (Figure 3E), consistent with the scRNA-seq findings.
Collectively, these results suggest a reduced histamine level in malignant
epithelial cells compared to normal epithelial cells.

Highmetabolic subcluster of malignant cells
associated with better prognosis

Metabolic pathway scores were assigned to epithelial cells in tumor
samples, leading to the formation of two clusters through unsupervised
clustering based on 85KEGGmetabolic pathways (Supplementary Table
S9). These clusters were denoted as low metabolic subcluster and high
metabolic subcluster. Notably, oxidative phosphorylation exhibited
significantly higher scores in the high metabolic subcluster, while
taurine and hypotaurine metabolism scores were lower (Figure 4A).
By performing PCA analysis on the GSVA scores of 85 metabolic
pathways in each malignant cell, we observed significant metabolic
pattern differences between high metabolic subclusters and low
metabolic subclusters. This further confirms the reliability of our
classification of high and low metabolic subclusters (Figure 4B).

Differential gene expression analysis between the high and low
metabolic subclusters identified 1,367 upregulated and
104 downregulated genes (Figure 4C, Supplementary Table S10).
Using the top eight upregulated genes (SLPI, PLA2G2A, CXCL1,
CCL20, REG1A, CLDN7, PI3, LGALS3) as a representative gene set
for the high metabolic subcluster, we calculated the GSVA score of this
gene set for each patient in the TCGA gastric cancer cohort.
Classification based on these scores in the TCGA cohort unveiled a
significant association, indicating that patients with higher scores were
correlated with a markedly improved prognosis (Figure 4D).
Multivariate Cox proportional hazard analysis also demonstrated that
the GSVA enrichment score of the representative gene set from the high
metabolic subcluster independently predicted improved overall survival
(OS) in gastric cancer. This significance persisted after adjusting for
variables including age, family history of stomach cancer, primary lymph
node presentation assessment, and gender (p = 0.005, Figure 4E).
Additionally, non-metabolic KEGG pathways were also scored using
GSVA in both high and lowmetabolic subclusters (Supplementary Table
S11). Notably, immune pathways exhibited higher scores in the high
metabolic subcluster, including antigen processing and presentation,
NOD−like receptor signaling pathway, chemokine signaling pathway
(Figure 4F). These findings suggest that epithelial cells with higher
metabolic scores have the potential to induce a stronger immune
response, correlating with an improved prognosis.

To further explore the correlation between the proportions of high
metabolic subclusters and immune cell subpopulations, we depicted the
expression trends of high metabolic subclusters and five other immune
cell types using a line chart (Supplementary Figure S6A). However, we
did not observe a significant correlation betweenmetabolic levels and the
proportions of immune cells (Supplementary Figure S6B).

We further conducted a detailed examination of the correlation
between the prevalence of high metabolic subclusters in patients
categorized under the classical clinical Lauren or TCGA classification
(Figure 4G). We observed that the proportion of high metabolic
subclusters is lower in diffuse-type tumors and higher in intestinal-
type tumors (chi-square test, padj < 0.05, except for Intestinal Versus
Mixed) (Figure 4H, Supplementary Table S12), aligning with the better
prognosis for patients with the intestinal type (Qiu et al., 2013). Previous
studies indicated that the prognosis for patients with MSI, CIN, and GS
subtypes follows the order of MSI > CIN > GS (Sohn et al., 2017).
Similarly, our findings revealed that the proportion of high metabolic
subcluster in the GS subtype is lower than that in CIN andMSI subtypes
(Figure 4H). Statistical analysis of chi-square test indicated the
differences in the proportions of high metabolic subcluster among
TCGA subtypes are significant (padj < 0.05, Supplementary Table S13).

Identification of CSC-like cells associated
with poor prognosis within the low
metabolic subcluster

CSCs represent a distinct, self-renewing, and tumorigenic
subpopulation within tumors, playing a pivotal role in tumor
persistence, relapse, and metastasis (Pattabiraman and Weinberg,
2014). Compared to the normal cancer cell, CSCs generally display a
quiescent or slow-cycling state. A number of cell surface markers such as
CD44 and aldehyde dehydrogenase (ALDH1A1) are often used to
identify and enrich CSCs (Batlle and Clevers, 2017). We further
subjected cells within the low metabolic subcluster to a refined
analysis, resulting in the delineation of six distinct groups
(lmCluster0-5) (Figure 5A). Remarkably, the expression of CSCs
marker genes was notably elevated in lmCluster4 (Figure 5B). GSEA
analysis revealed heightened activity in stem cell-related signaling
pathways in lmCluster4, including the transforming growth factor
(TGF)-β pathway, hedgehog pathway, and Wnt-β pathway, within
lmCluster4 (Pattabiraman and Weinberg, 2014) (Figure 5C).
Additionally, the levels of pathways related to the cell cycle, such as
E2F target and G2/M checkpoint, are notably diminished in lmCluster4
(Figure 5C). This observation aligns with the characteristic quiescent or
slow-cycling state typically associated with stem cells. We also revealed
lower expression levels of KRT8, KRT18, and KRT19 in lmCluster4
(Figure 5D). Notably, studies have reported a significant correlation
between low expression of KRT19 and poor prognosis in breast cancer

FIGURE 4 (Continued)

gene group. (E) The GSVA enrichment score of the high metabolic subcluster is an independent prognostic factor for overall survival (OS) in gastric
cancer patients (p=0.05). (F) The ranking of GSVA scores of non-metabolic pathwayswithin highmetabolic and lowmetabolic subclusters. Red indicates
upregulated pathways and blue indicates downregulated pathways in the high metabolic subcluster, respectively. The x-axis represents the t-values
obtained from the analysis of differential pathways between the high metabolic and low metabolic clusters of tumor cells. The magnitude of the
t-value reflects the extent of difference in each pathway between the high metabolic and low metabolic clusters, with larger values indicating more
significant differences. (G) The Lauren classification (left) and TCGA classification (right) of patients used in the study. (H) The proportion of cells belonging
to the high and low metabolic subclusters in each Lauren subtype (left) and TCGA subtype (right).
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FIGURE 5
Identification of CSC-like cells associated with poor prognosis (A)Cells belonging to the lowmetabolic subcluster were reclustered into six subsets,
namely, lmCluster0-5. (B) The expression levels of representative stem cell markers (ALDH1A1 and CD44) in the lmClusters are shown. (C) The GSEA
scores of the representative stem cell-related signaling pathways in the lmClusters are shown in the heatmap. (D) The violin plots display the expression
levels of KRT8, KRT18, and KRT19 in the lmClusters, while the boxplots depict the median, quartiles, and range of the genes. (E) The pseudotime
trajectories for the lmClusters are shown, each dot represents 1 cell. (F) The expression levels of ALDH1A1, KRT8, KRT18, and KRT19 genes are shown in
the lmClusters at the indicated pseudotime. (G) The differentially expressed genes were identified in the lmClusters. The top nine highly expressed genes
in each subset are denoted in red dots (padj < 0.05), while other differentially expressed genes are represented by orange dots. (H) The top nine

(Continued )
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(Saha et al., 2018). Temporal analysis revealed that lmCluster4marks the
initiation of the cell differentiation trajectory (Figure 5E). Of note,
throughout the development stages, lmCluster4 exhibits the highest
expression of the CSCs marker gene ALDH1A1, while concurrently
displaying the lowest levels of KRT8, KRT18, and KRT19 genes
(Figure 5F). Using the top nine upregulated genes (CHGA, PCSK1N,
TTR, DEPP1, BTG2, ATF3, SERPINA1, MDK, FOS) as a representative
gene set for the lmCluster4 (Figure 5G), we calculated the GSVA score of
this gene set for each patient in the TCGA gastric cancer cohort.
Classification based on these scores in the TCGA cohort revealed
that patients with higher scores were associated with a worse
prognosis (Figure 5H). These results suggest lmCluster4 represents
stem cell-like cells and is associated with a worse prognosis.

Discussion

Metabolic dysregulation has been linked to clinical outcomes
and treatment responses in various cancers, recognized as a crucial
driving factor in cancer development (Daemen et al., 2018; Gentric
et al., 2019). Despite the non-direct correlation between metabolic
gene expression and metabolic flux or metabolite abundance,
evidence suggests that gene expression provides valuable
insights into predicting metabolic flux and metabolite
concentrations (Mehrmohamadi et al., 2014; Peng et al., 2018).
This study aimed to characterize the metabolic features of gastric
cancer at single-cell resolution, focusing on 85 metabolic pathways
from the KEGG database, encompassing 1,667 metabolic genes.
Utilizing high-quality scRNA-seq data (Kumar et al., 2022), we
explored the metabolic characteristics of various cell
subpopulations. The study identified distinct metabolic activities
in both normal and tumor samples, with epithelial and chief cells
exhibiting significantly higher metabolic activities (Figure 2B).
Noteworthy, metabolic pathways displayed differential activities,
potentially influenced by the microenvironment and physiological
state of each cell type. Fibroblast cells in tumor samples, crucial for
tumor microenvironment processes, exhibited higher metabolic
activity than in normal samples (Kalluri, 2016). Detailed metabolic
profiles indicated significantly higher pathway activities in tumor
epithelial cells, with the histidine metabolism pathway showing
downregulation. Histamine exhibits bidirectional effects in tumor
progression, enhancing chronic inflammation, promoting
immune evasion, and inducing stromal remodeling (Scolnick
et al., 1984; Garcia-Caballero et al., 1989; Moya-García et al.,
2021). However, some studies propose its potential to suppress
reactive oxygen species, supporting immune regulation and
enhancing tumor cell destruction (Hansson et al., 1996). The
precise role of histamine in gastric cancer remains uncertain,
emphasizing the need for further research to elucidate its
impact on tumor development.

The metabolic profile of malignant epithelial cells
significantly diverges from that of normal epithelial cells, with
these metabolic abnormalities playing pivotal roles in tumor
initiation, progression, and treatment resistance. A thorough
examination of the metabolic characteristics of gastric cancer
epithelial cells provides insights into how these cells adapt to the
tumor microenvironment, secure energy, and proliferate.
Employing GSVA to score each cell and subsequent
unsupervised clustering facilitated the categorization of
malignant cells into high-metabolic and low-metabolic
subclusters. Notably, oxidative phosphorylation emerged as
the most significantly different pathway between these
subclusters (Figures 4A,B). Utilizing diverse analytical
methods, we explored the relationship between the high-
metabolic subcluster and patient prognosis. Survival analysis
disclosed improved overall survival among patients in the
high-metabolic subcluster. Multivariate Cox proportional
hazards regression analysis confirmed that the GSVA
enrichment score of the high metabolic subcluster is an
independent prognostic factor. Moreover, this high metabolic
subcluster demonstrated the potential to induce a robust immune
response, correlating with a relatively favorable prognosis
(Figure 4C). This discovery unveils new perspectives for
further exploration of tumor treatment strategies and disease
management.

In a previous CPTAC study, it was found that the enrichment of
metabolic pathways correlates with immune-cold phenotypes. The
study classified the entire tumor samples into immune-cold, cool,
-warm, and -hot categories and then evaluated the enrichment of
metabolic pathways (Geffen et al., 2023). Additionally, in the study
“A novel metabolic subtype with S100A7 high expression represents
poor prognosis and immuno-suppressive tumor microenvironment
in bladder cancer”) (Cai Y. et al., 2023), bladder cancer patients were
divided into two heterogeneous metabolic subtypes (MRSs): MRS1,
characterized by inactive metabolic features but with an immune-
infiltrated microenvironment; MRS2, characterized by upregulated
lipid metabolism. It is evident that cellular metabolic activity has
different conclusions in tumor immune research. Besides these
studies, a series of research, such as “Bulk and single-cell
transcriptome profiling reveal the metabolic heterogeneity in
gastric cancer” (Tao et al., 2023) and “Bulk and single-cell
transcriptome profiling reveal extracellular matrix mechanical
regulation of lipid metabolism reprogramming through YAP/
TEAD4/ACADL axis in hepatocellular carcinoma” (Cai J. et al.,
2023), utilized bulk RNA data to group tumors, then subdivided
them at the single-cell level based on the average expression values of
all genes in individual cells from each patient. This approach may
result in metabolic genes still being the average of many cell types. In
contrast, in our study, clustering was directly performed using the
metabolic gene set of malignant cells. This difference in

FIGURE 5 (Continued)

differentially expressed genes (DEGs) in lmCluster4 are selected as a gene set representing this subcluster. Classification of the TCGA gastric cancer
cohort into high and low groups is based on the GSVA scores of the gene set using the surv_cutpoint function from the survminer package. The survival
plot indicates that the group with higher expression of the gene set is associated with a poorer prognosis.
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methodology may lead to different interpretations regarding the
enrichment of metabolic pathways and their association with
immune phenomena. Direct clustering using the metabolic gene
set of malignant cells may more directly reflect the metabolic
characteristics of tumor cells. This approach highlights the
importance of uncovering the association between tumor
metabolic pathway enrichment and immune phenomena and its
potential impact on developing new therapeutic strategies targeting
tumor metabolic features. However, a more in-depth investigation is
needed to unravel the subtle differences in these mechanisms and
understand the complex relationship between the high-metabolic
subcluster and the immune response.

CSCs represent a distinct, self-renewing, and tumorigenic
subpopulation within tumors, playing a pivotal role in tumor
persistence, relapse, and metastasis. The conventional assessment of
cancer treatment efficacy, focusing on the ablation fraction of the tumor
mass, may not fully address the distinct nature of CSCs due to their
limited representation within the tumor bulk. Therefore, development of
specific therapies targeted at CSCs holds hope for improvement of
survival and quality of life of cancer patients (Pattabiraman and
Weinberg, 2014). In the low metabolic subcluster, a subset of cells
displaying CSCs-like characteristics was associated with a relatively poor
prognosis. The identification of a stem cell-like population, particularly
in the low metabolic subcluster (lmCluster4), highlights its significance
in tumor biology. Elevated expression of CSCsmarker genes, heightened
activity in stem cell-related signaling pathways, and the initiation of the
cell differentiation trajectory characterize lmCluster4. Importantly, the
association of lmCluster4 with a worse prognosis emphasizes the
potential clinical relevance of these stem cell-like cells (Figure 5H).
Targeting such populations may be crucial for developing effective
therapeutic strategies aimed at improving cancer patient outcomes.

Conclusion

This study explored the metabolic landscape of gastric cancer at
the single-cell level, examining 85 KEGG metabolic pathways.
Utilizing high-quality scRNA-seq data, distinct metabolic
activities were identified in various cell types. In-depth analysis
categorized malignant cells into high- and low-metabolic
subclusters, revealing oxidative phosphorylation as a significant
differentiator. The high-metabolism subcluster demonstrated a
correlation with improved overall survival and an enhanced
immune response. Furthermore, our study identified a subset of
cells within the low metabolic subcluster exhibiting CSCs-like
characteristics, associated with a poorer prognosis. This
comprehensive analysis enriches our understanding of the
metabolic intricacies in gastric cancer, providing valuable insights
for potential treatment strategies and disease management.
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SUPPLEMENTARY FIGURE S1
Non-epithelial cells in gastric cancer displayed in UMAP graphs with lineage-
specific gene markers. (A) T cells marked by the expression of CD3D, CD3E,
and CD2 expression. (B) NK cells marked by NKG7 and KLRD1 expression.
(C) Myeloid cells identified by IL1B, C1QC, C1QB, C1QA, and FCER1G
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expression. (D) Plasma cells marked by IGLL5, JSRP1, TNFRSF17, and IGKC
expression. (E) Mast cells marked by TPSAB1, TPSB2, KIT, and GATA2
expression. (F) B cells marked by MS4A1 expression. (G) Fibroblasts marked
by DCN, COL1A2, COL1A1, LUM, and COL3A1 expression. (H) Endothelial
cells marked by VWF, RAMP2, PECAM1, and PLVAP expression.

SUPPLEMENTARY FIGURE S2
Epithelial cells in gastric cancer displayed in UMAP graphs with cluster-
specific gene markers. (A) Epithelial cells are marked by the expression of
EPCAM, KRT18, KRT19, MUC1, MUC5AC, and KRT8. (B) Epithelial cells can
be mainly divided into two clusters: cluster 1 and cluster 5. (C) Cluster 5 is
defined as chief cells based on the expression of LIPF and PGC.

SUPPLEMENTARY FIGURE S3
Comparison of cell type proportions in gastric cancer and normal samples.
(A) UMAP plot illustrating cell clusters in gastric cancer and normal samples.
(B) Proportions of each cell type in tumor and normal samples, with each
dot representing a sample.

SUPPLEMENTARY FIGURE S4
The metabolic landscape of cell types in normal samples. (A) Metabolic
pathway activities in cell types from normal samples. Statistically non-
significant values (random permutation test padj > 0.05) are left blank.
(B) Distributions of pathway activities in different cell types from both
gastric cancer and normal samples.

SUPPLEMENTARY FIGURE S5
Downregulated Pathways identified in malignant epithelial cells through
Gene Set Enrichment Analysis (padj < 0.05).

SUPPLEMENTARY FIGURE S6
Correlation analysis between high metabolic subclusters and immune
cells. (A) The line chart illustrates the expression trends of high
metabolic subclusters and five other immune cell types. (B) The
scatter plot depicts the correlation analysis between the proportion of
high metabolic subclusters and B, Mast, Myeloid, Plasma, and
TNK cells.
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