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Background:Mitochondria have always been considered too be closely related
to the occurrence and development of malignant tumors. However, the
bioinformatic analysis of mitochondria in lung adenocarcinoma (LUAD) has not
been reported yet.

Methods: In the present study, we constructed a novel and reliable
algorithm, comprising a consensus cluster analysis and risk assessment model,
to predict the survival outcomes and tumor immunity for patients with
terminal LUAD.

Results: Patients with LUAD were classified into three clusters, and patients
in cluster 1 exhibited the best survival outcomes. The patients in cluster
3 had the highest expression of PDL1 (encoding programmed cell death 1
ligand 11) and HAVCR2 (encoding Hepatitis A virus cellular receptor 2), and
the highest tumor mutation burden (TMB). In the risk assessment model,
patients in the low-risk group tended to have a significantly better survival
outcome. Furthermore, the risk score combined with stage could act as a
reliable independent prognostic indicator for patientswith LUAD. The prognostic
signature is a novel and effective biomarker to select anti-tumor drugs. Low-risk
patients tended to have a higher expression of CTLA4 (encoding cytotoxic T-
lymphocyte associated protein 4) and HAVCR2. Moreover, patients in the high-
risk group were more sensitive to Cisplatin, Docetaxel, Erlotinib, Gemcitabine,
and Paclitaxel, while low-risk patients would probably benefit more from
Gefitinib.

Abbreviations: LUAD, Lung Adenocarcinoma; PDL1, Drogrammed cell Death Ligand 1; HAVCR2,
Hepatitis A Virus Cellular Receptor 2; TMB, tumor mutation burden; CTLA4, Cytotoxic T-
Lymphocyte Associated protein 4; OS, overall survival; TIME, Tumor Immune Microenvironment;
ICIs, Immune Checkpoint Inhibitors; lncRNAs, Long Noncoding RNAs; GTF, Gene Transfer Format;
GO, Gene Ontology; mrRNA, Mitochondria-Related lncRNAs; DEmrlncRNAs, Differentially Expressed
mrlncRNAs; IPS, Immunophenoscore; IC50, half maximal Inhibitory Concentration; CDF, Cumulative
Distribution Function.
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Conclusion: We constructed a novel and reliable algorithm comprising a
consensus cluster analysis and risk assessment model to predict survival
outcomes, which functions as a reliable guideline for anti-tumor drug treatment
for patients with terminal LUAD.

KEYWORDS

mitochondria, tumor immunity, consensus cluster, risk assessment model, lung
adenocarcinoma

1 Introduction

As the most common malignant tumor worldwide, lung cancer
is famous for its high mortality and high heterogeneity among
malignant tumors (Oliver, 2022). Lung cancer has shown the
highest estimated incidence and mortality in the United States
for years (Siegel et al., 2021; Siegel et al., 2022). Similarly, lung
cancer has the highest incidence and mortality among patients
in China (Xia et al., 2022). As the most common pathological
classification of lung cancer, lung adenocarcinoma (LUAD) accounts
for approximately 60% of lung cancer, and is considered to
be closely related to heredity and gene mutations (Warth et al.,
2012). Under appropriate conditions, surgical treatment, especially
a video-assisted thoracic surgery, remains the gold standard for
the treatment for LUAD, which could dramatically prolong the
overall survival (OS) of patients (Merchant et al., 2018). Although
the emergence of other therapeutic methods (e.g., molecular
targeted therapy and immunotherapy) have improved the life quality
of patients with terminal stage lung cancer (Pilotto et al., 2015;
Dong et al., 2019), the 5-year survival rate of patients with distant
metastasis is only 7% (American Cancer Society, 2024). Therefore,
exploring the complex pathogenesis of LUAD and seeking novel and
reliable biomarkers are important.

The mitochondrion is a membrane-enclosed structure that
produces energy for fundamental cell activities (Tan et al., 2017),
which is also involves in hepatic lipid metabolism and oxidative
stress (André, 1994; Mansouri et al., 2018). Recently, increasing
evidence has demonstrated the crucial role of mitochondria
in the occurrence and development of malignant tumors, and
mitochondria might be an effective target for patients with
cancer (Zhao Y. et al., 2013; Boland et al., 2013; Ubah and
Wallace, 2014). For instance, Zhao J. et al. (2013b) proposed
that mitochondria could promote the invasion and migration
of malignancy by providing a large amount of adenosine
triphosphate for pseudopodia. Furthermore, Villa et al. (2017)
reported that mitochondria mediated the sensitivity of LUAD
cells to chemotherapy drugs by regulating the autophagy signaling
pathway. Moreover, Chang et al. revealed that dihydroergotamine
tartrate, a drug used to treat migraine, acted on mitochondria
in LUAD cells, thereby promoting apoptosis and mitochondrial
autophagy (Chang et al., 2016). Thus, mitochondria are involved
in the biological behavior of malignant tumor cells, especially
LUAD cells.

Mitochondria can not only meet the energy demand of
fundamental cellular activities, but also effectively regulate immune
activities (Banoth and Cassel, 2018). Porporato et al. proposed that
cancer cells could modify the tumor immune microenvironment

(TIME) and the immune response of the host by releasing
dangerous signals and altering the metabolism of mitochondria
(Porporato et al., 2018). Moreover, Klein et al. (2020) reported
that mitochondrial oxidative phosphorylation inhibitors targeted
cancer-related immune cells in the TIME, and played a crucial part
in immune evasion in the occurrence and progression of cancer.
Furthermore, Cloonan and Choi (2013) introduced the detailed
role of mitochondria as sensors and mediators of innate immune
receptor signaling. The precise coordination of oxidative stress
between intracellular mitochondria and other organelles is crucial
for cell survival.The dynamic balance of oxidative stress can not only
coordinate complex cellular signaling events in cancer cells, but also
affect other components of the tumor immune microenvironment
(TIME). Immune cells, such as M2 macrophages, dendritic cells,
and T cells, are the main components of immunosuppressive
TMIE induced by oxidative stress (Kuo et al., 2022). Therefore,
mitochondria are closely related to the immune activities
of cells.

In recent years, immunotherapy has gradually become an
effective tumor treatment strategy as an emerging tumor treatment
strategy (Ribas andWolchok, 2018). Unlike traditional radiotherapy
and chemotherapy, immunotherapy is a treatment strategy that
utilizes the human immune system to attack and eliminate cancer
cells. It does not directly destroy tumor cells, but rather activates,
enhances, or repairs the patient’s own immune system to recognize
and kill tumor cells. The most common immune checkpoint
molecules are Programmed Death Ligand 1 (PD-L1) and Hepatitis
A Virus Cellular Receiver 2 (HAVCR-2) (Pardoll, 2012). PD-L1
is an immune checkpoint protein that plays an important role
in the immunotherapy of malignant tumors. It mainly inhibits T
cell activity by binding to the Programmed Cell Death Protein 1
(PD-1) receptor, thereby reducing immune response and helping
tumor cells evade immune surveillance. Therefore, inhibiting the
interaction between PD-L1 or PD-1 can restore the activity of
T cells and enhance the immune killing effect on tumor cells
(Herbst et al., 2014; Sunshine and Taube, 2105). HAVCR-2, also
known as T-cell Immunoglobulin and Mucin Domain 3 (TIM-
3), is another important immune checkpoint molecule. It plays a
crucial role in regulating the immune response process, especially
in inhibiting T cell function. HAVCR-2 negatively regulates T cell
activity by binding to its ligand, such as Galectin-9, and participates
in regulating T cell depletion and immune tolerance phenomena. In
immunotherapy, inhibition of HAVCR-2 is believed to enhance the
anti-tumor effect of T cells, especially in patients who have failed
treatment with PD-1/PD-L1 inhibitors and may play an important
role. Therefore, HAVCR-2, as a potential target, is actively being
studied and developed to expand and enhance the effectiveness
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of immunotherapy (Sakuishi et al., 2010; Anderson et al., 2016;
Das et al., 2017).

The potential relationships among mitochondria, tumor
immunity, and LUAD have been reported. For example, Fei et al.
(2022) found that mitochondrial topoisomerase I was closely
related to immune cells and the expression of immune checkpoint
inhibitors (ICIs) in patients with LUAD. However, there has been
no bioinformatic study of consensus cluster analysis combined
with prognostic signature for patients with LUAD. In addition,
mitochondria also participate in the expression of PD-L1 and
HAVCR-2 in tumor cells, demonstrating an undeniable role in
tumor occurrence and development. The latest research indicates
that mitochondria are involved in the localization regulation of PD-
L1 protein on the outer membrane and mitochondria. Enhancing
mitochondrial autophagy helps to degrade mitochondrial
localization PD-L1, thereby overcoming the resistance of TNBC
to chemotherapy and immunotherapy (Jabbarzadeh et al., 2020).
The research results in this area are of great significance for
enhancing the efficacy of targeted PD-1/PD-L1 therapy. In
addition, studies have found that mitochondrial autophagy can
enhance the therapeutic effect of ICI combined with paclitaxel
by degrading mitochondrial distribution PD-L1, which can be
inhibited by ATAD3A protein (Xie et al., 2023). Besides, in human
colorectal cancer cancer cells, mitochondrial dysfunction inhibits
the expression of HAVCR-2, thereby affecting the immune escape of
tumor cells (Sakhnevych et al., 2019). Thus, fully understanding the
role of mitochondria in the development of LUAD might provide
theoretical guidance and new strategies for future mitochondrial
targeted therapy.

In the present study, we established a novel and reliable
algorithm compromising molecular subtypes and a risk assessment
model to predict prognosis and select sensitive anti-tumor drugs for
patients with LUAD.

2 Materials and methods

2.1 Data download

The gene expression at the transcriptome level and
corresponding clinical information were downloaded from LUAD
project of The Cancer Genome Atlas database (https://portal.
gdc.cancer.gov/). Subsequently, the mRNAs and long noncoding
RNAs (lncRNAs) were annotated using gene transfer format (GTF)
files obtained from Ensembl. A list of mitochondria-related genes
(mrgenes) were downloaded from The Gene Ontology Resource
(GO, http://geneontology.org/) (The Gene Ontology Consortium,
2019). The mitochondria-related lncRNAs (mrlncRNAs) were
identified by performing a Spearman correlation analysis between
genes related to mitochondria and lncRNAs (|cor| > 0.4, P < 0.001).
Differentially expressed mrlncRNAs (DEmrlncRNAs) were filtered
using differential expression analysis (|log FC| > 1, false discovery
rate <0.001), and DEmrlncRNAs closely related to survival were
screened using a univariate Cox analysis (P < 0.01), which were
visualized using a volcano map and a forest map. We obtained
mrlncRNAs that were closely related to the occurrence of LUAD
and the OS of patients with LUAD, which were the foundation for

the subsequent construction of the consensus cluster analysis and
risk assessment model.

2.2 Molecular subtypes according to
DEmrlncRNAs

The patients with LUAD were classified into different molecular
subtypes based on the expression of DEmrlncRNAs by running
the ConsensusClusterPlus package (Wilkerson and Hayes, 2010).
Then, the survival outcomes of the patients with different molecular
subtypes were explored by performing a Kaplan–Meier survival
analysis. According to the National Comprehensive Cancer Network
guidelines, the expression of common ICIs could reflect the reactivity
of patientswithLUADto immunotherapy approximately,which could
benefit a large number of patients with a terminal stage tumor
(Ettinger et al., 2021). The expression levels of common ICIs (e.g.,
PDL1 (encoding programmed cell death 1 ligand 1) and HAVCR2
[encoding Hepatitis A virus cellular receptor 2)] were compared
between patients from different clusters, and a series of boxplots
were generated for visualization, which were marked as:∗ ∗ ∗ P <
0.001;∗ ∗ P < 0.01; and∗ P < 0.05. To better comprehend the relative
abundance of stromal cells and immune cells in the TIME, the
StromalScore, ImmuneScore, and ESTIMATEScore were calculated
using the estimate package, which were subsequently compared
between different clusters. The tumor mutation burden (TMB)
represents the total number of mutations per million bases, which
is used as a rough indicator of the efficacy of immunotherapy
(Forde et al., 2018; Anagnostou et al., 2020; Marabelle et al., 2020).
Several Wilcoxon rank-sum tests were performed to investigate
whether there was a statistical difference in the TMBbetween patients
from different clusters.

2.3 Risk assessment model based on
DEmrlncRNAs

To better verify the predictive capability of the constructed
risk assessment model, the patients with LUAD were equally
divided into a training group and a test group randomly. To
prevent over-fitting of the constructed model, the Least absolute
shrinkage and selection operator regression combined with a
multivariate Cox regression analysis were conducted on the
DEmrlncRNAs of patients in the training group to construct a
novel prognostic signature related to mitochondria. Then, the risk
scores of patients in the training group were calculated using the
following formula:

Riskscore =
15

∑
i=1,

Coef (i) ×E(i),

Where E(i) and Coef (i) are the expression and the regression
coefficients of the DEmrlncRNAs, respectively. The median value
of the risk score for patients in the training group was used
as the cut-off point to classify patients into high- and low-risk
groups. Subsequently, the regression coefficients and cut-off point of
patients in the test group were determined to be in full accordance
with those of the patients in train group. Kaplan–Meier survival
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FIGURE 1
Flowchart showing the steps of this study.

analyses were conducted to exhibit the survival outcomes of patients
in the different risk groups. To evaluate the predictive ability of
the risk assessment model, the receiver operating characteristic
curves were plotted and the area under the curve was calculated,
respectively. To explore the potential relationship between the
risk score and survival status, four scatter plots were plotted for
visualization. Univariate and multivariate Cox regression analyses
were conducted to investigate whether the risk assessment model
could function as a reliable independent prognostic indicator for
patients with LUAD, which was visualized using four forest maps.
Furthermore, to filter the patients with LUAD whose prognosis
could be predicted accurately using the risk assessment model,
a series of Kaplan–Meier survival analyses were performed for
validation. A clinical heatmap was used to exhibit the expression
levels of 15 DEmrlncRNAs included in the modeling process,
which revealed the potential relationships between the risk group
and common clinicopathological characteristics [e.g., node (N),
metastasis (M), tumor (T), stage, gender, age, ImmuneScore, and
Cluster], in which the clinicopathological characteristics closely
related to the risk groups were discussed in detail. Furthermore,
to study the response of patients with LUAD to immunotherapy,
the TMB and the expression levels of CTLA4 (encoding cytotoxic
T-lymphocyte associated protein 4) and HAVCR2 in patients in
the different risk groups were compared using Wilcoxon rank-
sum tests. Moreover, we used the immunophenoscore (IPS), which
represents gene expression levels in immune cells closely related
to the tumor, including lymphocytes and macrophages, which has
been utilized to assess the response to immunotherapy targeting

PD-L1 and CTLA-4 (Charoentong et al., 2020). The IPS of each
patient was downloaded from The Cancer Immunome Atlas
(https://tcia.at/) (Prior et al., 2013), which were compared between
different risk groups. The statistical differences in StromalScore,
ImmuneScore, and ESTIMATEScore between the different risk
groups were explored using Wilcoxon rank-sum tests. Single-
sample gene-set enrichment analysis was used to quantify the
relative abundance of common immune cells and the relative
activity of common immune-related signaling pathways, whichwere
compared between different risk groups. To explore the functions
and signaling pathways closely related to the risk groups, two
bar-plots were plotted for GO and Kyoto Encyclopedia of Genes
and Genomes functional enrichment analyses for visualization.
A Sankey diagram was generated to visualize the relationship
between the molecular subtypes and the risk assessment model.
The half maximal inhibitory concentration (IC50) represents the
concentration of an anti-tumor drugs that inhibits half of the tumors
cells, which could effectively measure the reaction of patients with
LUAD to anti-tumor drugs (Sebaugh, 2011). In the present study, the
pRRophetic package was run to evaluate the IC50 of common anti-
tumor drugs including chemotherapy (e.g., Cisplatin, Docetaxel,
Gemcitabine, and Paclitaxel) and molecular targeted therapy (e.g.,
Gefitinib and Erlotinib). A nomogram was plotted to display the
calculation process of the risk scores for clinical patients, the
predictive capability of which was evaluated using one-, three-, and
five-year correction curves. Finally, a survival curve exhibited the
survival outcomes of patients from different molecular subtypes and
risk groups.
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FIGURE 2
The Consensus cluster analysis based on DEmrlncRNAs. (A) 1,724 DEmrlncRNAs were filtered by differential expression analysis, among which 276
showed low expression, and 1,448 showed high expression in patients with LUAD. (B) 76 DEmrlncRNAs were considered to be closely related to
prognosis using a univariate Cox analysis, 15 of which were included in the modeling process. (C–E) When the k value was 3, the variation of
cumulative distribution function (CDF) was the smallest, and the relative change in area under the CDF curve was the highest. (F) Therefore, the
patients with LUAD were classified into three 3 clusters, and patients in cluster 1 exhibited the best survival outcomes, which were statistically
significant. (G, H) According to the expression of ICIs, the patients in cluster 3 had the highest PD-L1 and HAVCR-2 expression, followed by the patients
in cluster 1, and the patients in cluster 2 had the lowest expression, which were all statistically significant. (I–K) The patients in cluster 2 had the lowest
StromalScore, ImmuneScore, and ESTIMATEScore, which suggested that they had the lowest abundance of stromal cells and immune cells, while there
was no statistical significance between the remaining two groups.
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FIGURE 3
Prognostic signature based on DEmrlncRNAs. (A) The patients in cluster 3 had the highest TMB. (B, C) 236 Patients were classified into the training
group, while 232 patients were arranged into the test group. (D, E) The patients in the low-risk group tended to have a significantly better survival
outcome. (F, G) The area under the curve value of the training group and the test group were 0.830 and 0.708, respectively. (H, I) Furthermore, with the
accumulation of the risk score, the number of patients who died increased significantly.
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TABLE 1 The regression coefficients of mrlnRNAs included in the lasso
regression.

Gene Coef

AC090559.1 −0.0808422085604288

AL353152.1 −0.0128420568313749

MIR223HG −0.0183021082479998

AC018647.1 −1.20900113082152

AC099850.4 0.011776662913192

AC021755.3 −0.0600844102402713

LINC01116 0.030971078922924

AC010999.2 −0.948844016068309

AL365181.2 0.0130238569092484

AL049836.1 0.0103501622344718

HIF1A-AS1 0.0823378698246388

LINC02323 0.124240788617215

TARID 0.454314559680914

LINC00578 −0.0348236259612791

AC027031.2 0.0131456798726987

3 Results

3.1 Identification of DEmrlncRNAs

As shown in Figure 1, a multi-step approach was carried out
according to the flowchart. We downloaded a total of 551 samples
(497 LUAD tissues and 54 normal tissues) from The Cancer
Genome Atlas database. Then, we downloaded 1,838 mrgenes
from the GO knowledgebase, and obtained 14,087 lncRNAs.
After annotation, 3,546 lncRNAs were identified as mrlncRNAs
by performing correlation analyses. Next, we identified 1,724
DEmrlncRNAs by differential expression analysis, of which 276
were downregulated, and 1,448 were upregulated in patients with
LUADs (Figure 2A). Then, 76 DEmrlncRNAs were identified as
DEmrlncRNAs closely related to prognosis using a univariate Cox
analysis, 15 of which were included in the modeling process
(Figure 2B).

3.2 The molecular subtype is a reliable
indicator for tumor immunity

When the k value was three, the variation of the cumulative
distribution function (CDF) was the smallest, and the relative
change in the area under CDF curve was the highest (Figures 2C–E).
Therefore, the patients with LUAD were classified into three
clusters, and the patients in cluster 1 exhibited the best survival

outcomes among the clusters, with statistical significance
(Figure 2F). According to the expression of ICIs, the patients
in cluster 3 had the highest PDL1 (Figure 2G) and HAVCR2
(Figure 2H) expression, followed by the patients in cluster 1;
the patients in cluster 2 had the lowest expression, which were
all statistically significant. Furthermore, the patients in cluster
3 had the highest TMB (Figure 3A), which indicated that they
might be most sensitive to immunotherapy targeting PD-L1 and
HAVCR-2. The patients in cluster 2 had the lowest StromalScore,
ImmuneScore, and ESTIMATEScore, which suggested that they
had the lowest abundance of stromal cells and immune cells,
while there was no statistical significance between the remaining
two groups (Figures 2I–K).

3.3 The prognostic signature acts as a
reliable biomarker for patients with LUAD

The risk score of patients with LUAD were calculated with
the formula, and the regression coefficients of the DEmrlncRNAs
were listed in Table 1. Patients (n = 236) were classified into the
training group, while 232 patients were classified into the test group
(Figures 3B, C), in which patients in the low-risk group tended to
have a significantly better survival outcome (Figures 3D, E). The
area under the curve values of the training group and the test
group were 0.830 (Figure 3F) and 0.708 (Figure 3G), respectively,
which suggested that the prognostic signature had a relatively better
predictive capability for patients with LUAD. Furthermore, with
increasing risk score, the number of patients who died increased
significantly (Figures 3H, I). Moreover, the risk score (hazard ratio
= 1.614 [confidence interval 1.383–1.884], P < 0.001) and stage
(hazard ratio = 1.803 [confidence interval 1.456–2.231], P < 0.001),
could act as reliable independent prognostic indicators for patients
with LUAD based on univariate and multivariate Cox regression
(Figures 4A–D). According to a series of survival analyses, the
prognostic signature exhibited the best predictive ability among
patients without distant metastasis (Figure 5D), regardless of age
(Figure 4E), sex (Figure 4F), stage (Figure 5A), T (Figure 5B), and
N (Figure 5C). The clinical heatmap (Figure 6A) revealed that
the prognostic signature was closely related to N (Figure 6B),
T (Figure 6C), stage (Figure 6D), ImmuneScore (Figure 6E), and
molecular subtypes (Figure 6F). This indicated that high-risk
patients tended to have a later stage of LUAD and always had
relatively poor survival outcomes.

The prognostic signature is a novel and effectively biomarker
to select anti-tumor drugs. The low-risk patients tended to
have a higher expression of CTLA4 (Figure 6G) and HAVCR2
(Figure 6H) with a lower TMB (Figure 6I), suggesting that they
might be more sensitive to immunotherapy targeting CTLA-4 and
HAVCR-2. According to the IPS value, low-risk patients would
always benefit from anti-PD-L1 therapy (Figure 7A), anti-CTLA-
4 therapy (Figure 7B), and their combination (Figure 7C), with
statistical significance. The low-risk patients possessed a higher
abundance of stromal cells and immune cells, based on the estimate
algorithm (Figures 7D–F). Furthermore, the low-risk patients had
a higher content of common immune cells (Figure 7G) and more
active immune-related signaling pathways (Figure 7H). Therefore,
compared with the high-risk patients, the patients in low-risk group
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FIGURE 4
Evaluation of the risk assessment model. (A–D) The risk score could act as a reliable independent prognostic indicator for patients with LUAD based on
univariate and multivariate Cox regression. (E, F) The prognostic signature exhibited the best predictive ability among patients regardless age and sex.

tended to have stronger tumor immunity. According to the GO
functional enrichment analysis, the mitochondria-related signature
was closely related to the process of mitosis, including mitotic
sister chromatid segregation, mitotic nuclear division, chromosome

segregation, and sister chromatid segregation (Figure 7I). Similarly,
the mitosis-related signaling pathways were enriched in the risk
assessment model, such as mitotic sister chromatid segregation,
mitotic nuclear division, chromosome segregation, nuclear division,

Frontiers in Molecular Biosciences 08 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1397281
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences


Wu et al. 10.3389/fmolb.2024.1397281

FIGURE 5
Evaluation of the risk assessment model. (A–D) The prognostic signature exhibited the best predictive ability among patients without distant metastasis
(D), regardless of stage (A), T (B), or N (C) status.

and organelle fission (Figure 8A). The majority of high-risk patients
were from cluster 2, the most of low-risk patients were from
cluster 3, while 80% of the patients from cluster 1 were low-risk
(Figure 8B).

The risk assessment model could function as a robust
guideline for clinical medication using common chemotherapies
and molecular targeted therapy. For example, patients in the
high-risk group were more sensitive to Cisplatin (Figure 8C),
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FIGURE 6
Evaluation of the risk assessment model. (A–F) The clinical heatmap (A) revealed that the prognostic signature was closely related to N (B), T (C), Stage
(D), ImmuneScore (E), and molecular subtypes (F).

Docetaxel (Figure 8D), Erlotinib (Figure 8E), Gemcitabine
(Figure 8G), and Paclitaxel (Figure 8H), while low-risk patients
would probably benefit more from Gefitinib (Figure 8F).
The nomogram simplified the calculation process of the risk
score, and provided the corresponding approximate one-,

three-, and five-year survival rates based on the calculated
risk score (Figure 9A), in which the nomogram exhibited
the best predictive capability for 1-year survival (Figure 9B).
According to the multi-survival curve, the high-risk patients
in cluster 2 and cluster 3 exhibited poor survival outcomes,
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FIGURE 7
The prognostic signature is a novel and effectively biomarker to select anti-tumor drugs (I). (A–C) Low-risk patients always benefitted from anti-PD-L1
therapy (A), anti-CTLA-4 therapy (B), and their combination (C), with statistical significance. (D–F) The low-risk patients possessed a higher abundance
of stromal cells and immune cells based on the estimate algorithm. (G, H) The low-risk patients had a higher content of common immune cells (G),
and more active immune-related signaling pathways (H). (I) Compared with the high-risk patients, the patients in the low-risk group tended to have
stronger tumor immunity.
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FIGURE 8
The prognostic signature is a novel and effective biomarker to select anti-tumor drugs (II). (A) The mitotic-related signaling pathways were enriched in
the risk assessment model, such as mitotic sister chromatid segregation, mitotic nuclear division, chromosome segregation, nuclear division, and
organelle fission, etc. (B) The majority of high-risk patients were from cluster 2, the most low-risk patients were from cluster 3, while 80% of the
patients from cluster 1 were low-risk. (C–F) The patients in high-risk group were more sensitive to Cisplatin (C), Docetaxel (D), Erlotinib (E),
Gemcitabine (G), and Paclitaxel (H); while the low-risk patients probably benefitted more from Gefitinib (F).

while the low-risk patients in cluster 1 had a relative survival
advantage (Figure 9C).

4 Discussion

Changes in mitochondrial homeostasis are closely related to
many human diseases, such as cancer, neurodegenerative diseases
[Parkinson’s disease (Macdonald et al., 2018), Alzheimer’s disease
(Swerdlow, 2018), and Huntington’s disease (Jodeiri Farshbaf
and Ghaedi, 2017)], and myopathy (Kim, 2017; Xie et al.,

2020; Andrieux et al., 2021). Recently, the bioinformatics-based
construction of prognostic signatures to predict the prognosis
and guide treatment for patients with the terminal stage of
malignant tumors has become a research hotspot (Chen et al.,
2021a; Chen et al., 2021b; Zhang et al., 2024). Zhuo et al. (2021)
established a mitophagy-related signature to explore the survival
outcomes, tumor immunity, mutation, and chemotherapy response
in pancreatic cancer. In addition, Zhang et al. (2021) constructed a
mitochondria-related signature to explore the TIME, infiltration of
immune cells, and immunotherapy of patients with hepatocellular
carcinoma.
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FIGURE 9
The prognostic signature is a novel and effective biomarker for patient survival. (A, B) The nomogram simplified the calculation process of the risk
score, and provided the corresponding approximate one-, three-, and five-year survival rate based on the calculated risk score (A), in which the
nomogram exhibited the best predictive capability for one-year survival (B). (C) According to the multi-survival curve, the high-risk patients in cluster 2
and cluster 3 exhibited poor survival outcomes, while the low-risk patients in cluster 1 showed a relative survival advantage.

In the present study, we identified DEmrlncRNAs related to
prognosis, which were utilized for subsequent consensus cluster
analysis and prognostic signature construction. The patients with

LUAD were classified into three clusters, and patients in cluster
1 exhibited the best survival outcomes. The patients in cluster
3 had the highest expression of PDL1 and HAVCR2, and the
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highest TMB, which indicated that they might be the most sensitive
to immunotherapy. The patients in cluster 2 had the lowest
StromalScore, ImmuneScore, and ESTIMATEScore. According to
the risk assessment model, patients in the low-risk group tended
to have a significantly better survival outcome than the patients in
the other groups. Furthermore, the risk score and stage could act as
reliable independent prognostic indicators for patients with LUAD.
The prognostic signature exhibited an excellent predictive ability
among patients without distant metastasis, regardless of age, sex,
stage, T, and N. The clinical heatmap revealed that the prognostic
signature was closely related to N, T, stage, ImmuneScore, and
molecular subtypes.

The prognostic signature is a novel and effective biomarker
to select anti-tumor drugs. The low-risk patients tended to have
a higher expression of CTLA4 and HAVCR2, with a lower TMB.
According to the IPS value, the low-risk patients would always
benefit from anti-PD-L1 therapy, anti-CTLA4 therapy, and their
combination, which was significantly different. Furthermore,
compared with the high-risk patients, the patients in the low-risk
group tended to have a stronger tumor immunity. Furthermore,
the risk assessment model could function as a robust guideline
to select clinical medication comprising common chemotherapy
and molecular targeted therapy. For example, patients in the
high-risk group were more sensitive to Cisplatin, Docetaxel,
Erlotinib, Gemcitabine, and Paclitaxel, while the low-risk patients
would probably benefit more from Gefitinib. The high-risk
patients in cluster 2 and cluster 3 exhibited poor survival
outcomes, while the low-risk patients in cluster 1 showed a relative
survival advantage.

The present study was the first to carry out bioinformatic
analyses closely related to mitochondria and patients with
LUAD. Furthermore, compared with traditional modeling
process, we established a novel mitochondria-related algorithm
containing a consensus cluster analyses and risk assessment
model, in which patients with LUAD were classified into six
groups that received different treatment strategies based on the
corresponding groups. Moreover, least absolute shrinkage and
selection operator regression analysis was carried out together
with a multivariate Cox regression analysis to avoid overfitting of
the model.

Although the algorithmmight function as a guideline for clinical
medication, there are also several limitations. Firstly, we conducted
the internal verification using The Cancer Genome Atlas database,
rather than other databases (e.g., GEO datasets). Secondly, all
analyses were confined to bioinformatic analyses, and the study
lacks validation of clinical specimens and molecular biological
experiments, which are necessary for the clinical application of this
algorithm.

Finally, based on the results of thismanuscript, we have provided
prospects for future potential research directions in this field. In
recent years, the additional molecular pathways and incorporating
multi-omics data integrations may play an increasingly important
role in exploring the potential mechanisms of LUAD progression
and treatment response. Nowadays, more and more research
focuses on transcriptome sequencing. For example, studies based
on transcriptome sequencing have demonstrated through in
vitro and in vivo functional and mechanistic experiments that
B4GALT1 promotes immune escape at both transcriptional and

post transcriptional levels, thereby promoting the progression of
LUAD (Cui et al., 2023). In addition, there are also studies based
on single-cell RNA sequencing analysis data, which calculate the
immunogenic cell death value of cells to construct a set of prognostic
models that can predict the prognosis of LUAD patients and
immunotherapy, and to some extent guide the clinical treatment
of LUAD patients (Zhang et al., 2023a). More interestingly,
researchers explored the role of Treg cells in Esophageal squamous
cell carcinoma by combining single-cell RNA sequencing and
bulk RNA-seq analysis, in order to predict patient prognosis
and immune therapy responsiveness as a prognostic model
(Zhang et al., 2023b).

In the present study, we constructed a novel and reliable
algorithm comprising a consensus cluster analysis and risk
assessment model to predict the survival outcomes, which function
as a reliable guideline to select anti-tumor drugs to treat patients
with terminal LUAD, which might provide a theoretical foundation
for customized individualized treatment.
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