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Molecules are essential building blocks of life and their different conformations
(i.e., shapes) crucially determine the functional role that they play in living
organisms. Cryogenic Electron Microscopy (cryo-EM) allows for acquisition of
large image datasets of individual molecules. Recent advances in computational
cryo-EM have made it possible to learn latent variable models of conformation
landscapes. However, interpreting these latent spaces remains a challenge as
their individual dimensions are often arbitrary. The key message of our work is
that this interpretation challenge can be viewed as an Independent Component
Analysis (ICA) problem where we seek models that have the property of
identifiability. That means, they have an essentially unique solution,
representing a conformational latent space that separates the different
degrees of freedom a molecule is equipped with in nature. Thus, we aim to
advance the computational field of cryo-EM beyond visualizations as we connect
it with the theoretical framework of (nonlinear) ICA and discuss the need for
identifiable models, improved metrics, and benchmarks. Moving forward, we
propose future directions for enhancing the disentanglement of latent spaces in
cryo-EM, refining evaluation metrics and exploring techniques that leverage
physics-based decoders of biomolecular systems. Moreover, we discuss how
future technological developments in time-resolved single particle imaging may
enable the application of nonlinear ICA models that can discover the true
conformation changes of molecules in nature. The pursuit of interpretable
conformational latent spaces will empower researchers to unravel complex
biological processes and facilitate targeted interventions. This has significant
implications for drug discovery and structural biology more broadly. More
generally, latent variable models are deployed widely across many scientific
disciplines. Thus, the argument we present in this work has much broader
applications in AI for science if we want to move from impressive nonlinear
neural network models to mathematically grounded methods that can help us
learn something new about nature.
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1 Introduction

Molecules such as proteins or nucleic acids make up the building
blocks of life. Living organisms contain a plethora of molecules that
often comprise thousands of atoms. Biomolecules change their
conformation (i.e., shape) to fulfill important biological functions
such as enzymatic reactions or cellular communication.
Understanding the conformational heterogeneity of biomolecules is
crucial for deciphering their functional mechanisms and designing
targeted interventions. Cryo-Electron Microscopy (cryo-EM) has
emerged as a powerful technique for visualizing molecular structures
at high resolution. Recent advancements in computational cryo-EM
have demonstrated the potential of latent variable models to capture the
diverse conformations adopted by biomolecules (reviewed in Donnat
et al., 2022). However, interpreting these learned latent spaces and
extracting biologically meaningful information from them remains a
significant challenge.

In this paper, we propose a fruitful approach to unravel the
complexities of conformational latent spaces in cryo-EM by framing
this as an Independent Component Analysis (ICA) problem. In its
original linear formulation, the high level goal of ICA is to discover

linear projections of the data that are as statistically independent as
possible (Hyvärinen and Oja, 2000). A common observation in ICA
applications is that these linear projections discover underlying factors
of variation in the data that give insight into the underlying processes. A
few prior works have tested the application of linear ICA to molecular
imaging (Borek et al., 2018; Gao et al., 2020) finding more meaningful
separation of molecular conformation changes. However, the
transformation between meaningful factors and the data is
inherently nonlinear in cryo-EM. Therefore, we need theory and
models that work for the nonlinear models used in modern cryo-
EM (e.g., Zhong et al., 2021a). Building on recent theoretical work in
identifiable nonlinear ICA Hyvärinen et al. (2024), in disentanglement
models and their benchmarks in machine learning Locatello et al.
(2019), we suggest a path to bridging the gap between theoretical
advancements and practical applications in cryo-EM research. We
argue that nonlinear ICA methods have the potential to provide a
powerful framework to disentangling the latent representations of
biomolecular conformations from cryo-EM datasets, overcoming the
limitations of traditional volume visualization approaches and
ultimately allowing to delve deeper into the structural dynamics of
biomolecules. Moreover, we argue that the establishment of

FIGURE 1
Overview. What does it mean to have a disentangled representation of molecular conformations? (A) The example (left) shows a simple molecule
with two degrees of freedom 1. and 2. for changing its conformation. An entangled model (right, top) represents mixtures of both movements on each of
its latent dimensions z1 ~ 1. + 2. and z2 ~ 1. − 2. A disentangled model (right, bottom) represents pure movements on each of its latent dimensions z1 ~ 1.
and z2 ~ 2.; actually, z2 = −2. but the sign flip, incorporated in ~, does not compromise interpretability. Note that disentangling conformations from
cryo-EM measurements requires additional information (e.g., time, temperature or physics), as discussed in section 4. (B) Training a VAE with separate
pose ϕ and conformation z latent spaces on cryo-EM particle images, without any intervention. (C) Interpreting the learned latent space of a model. An
axis traversal (blue) results in a complex motion of both arms, i.e., fails at disentangling the two degrees of freedom. A simple transformation, moving only
the left arm, corresponds to a curved trajectory.
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FIGURE 2
Application of ICA to cryo-EM data (reproduced with permission from (Gao et al., 2020). Original caption: (A) Principal component analysis of the
18 multi-body parameters refined for each particle image yields 18 principal components (PC) displayed here in decreasing order of explained variance.
The first three components explain more than 30% of the variability in the particle images. (B) (left) definition of the multi-body segmentation: the central
PDE6 stalk in blue corresponds to Body 1, while the 2 GαT· GTP subunits correspond to Bodies two and 3. (right) The motion of each body is
parameterizedwith three translational parameters and three rotational parameters. Each of the 18 principal and three independent components is a linear
combination of the resulting 18 rigid-body parameters, and their weights are shown here for the first three principal components (fromnegligible to larger
weight as the shade of grey becomes darker). (C) Negentropy (i.e., reverse entropy) of the first three principal and independent components. (D)
(resp. (E))–(top) histogram of the projection of all image particle parameters on the first three principal (resp. independent) components PC1, PC2 and
PC3 (resp. IC1, IC2 and IC3). (bottom) 2D histograms of the projections of all image particle parameters on all pairs of the first three principal
(resp. independent) components. (F) (resp. (G)–Maps illustrating the motions carried by IC1 (resp. IC2). (top) map reconstructed from the particles whose
projections belong to the last bin along IC1 (resp. IC2). (bottom) map reconstructed from the particles whose projections belong to the first bin along IC1
(resp. IC2). All maps are shown overlaid on the consensus map, with threshold set at a lower density value, colored according to the scheme in (B).
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benchmarks andmetrics specific to cryo-EMdisentanglementmodels is
of paramount importance. Adapting and extending existing
benchmarks from the machine learning field should allow to
objectively evaluate the performance of different disentanglement
approaches and track progress in the development of interpretable
cryo-EM methods. Ultimately, this interdisciplinary approach will
enhance our understanding of complex biological processes and
open up new avenues for therapeutic interventions and drug discovery.

The paper is structured as follows. We first provide a general
background on the cryo-EM computational problem (Section 2) and
how it can be framed as an ICA problem (Section 2.1). We then discuss
the two fundamental challenges associated with cryo-EM: firstly,
separating the conformation and the pose representations (Section
2.2) and, secondly, finding the right (disentangled) representation of
conformations (Section 2.3). We then go into more detail on both
challenges by providing quantitative metrics to measure progress and
modeling suggestions to improve current frameworks. To disentangle
poses and shapes, we propose intervention based metrics (Section 3.1)
and training schemes (Section 3.2) that can be added to existingmodels.
For the larger problem of disentangling conformation representations
(Section 4.1), we discuss existing disentanglement benchmarks and
metrics (Locatello et al., 2019). We then discuss three potential
approaches for solving this problem (Section 4.2), based on
temporal information (Section 4.2.1), temperature control (Section
4.2.2) and atomic models (Section 4.2.3). Finally, we discuss the
path forward and the broader implications for this framework to
take computational approaches from neural network based curve
fitting to actual understanding of the mechanisms in nature.

2 Interpretable heterogeneous
reconstruction–a
disentanglement problem

Heterogeneous cryo-EM reconstruction methods aim to model
the different conformations that a molecule may assume (Donnat
et al., 2022). For instance, we can think of a molecule with a fixed

central structure and two adjustable “arms” (see Figure 1). Clearly,
any conformation that this molecule may assume can be described
by providing the position of both arms. Thus, these independently
moving parts may be thought of as the fundamental degrees of
freedom of this molecule’s conformations.

We can parameterize them by a two dimensional latent variable
z ∈ Z where Z ≔ R2 is some degree of movement. The volume that
the molecule occupies in three dimensional space can be thought of
as a function v ∈ V, v: R3 × Z → {0, 1} that is parameterized by z
and indicates for any position in space (R3) whether it is part of the
molecular volume or not, known as an implicit representation of the
volume (Sitzmann et al., 2020; Donnat et al., 2022). That means, for
different values of z, vz = v(., z) would describe a different volume.
Crucially, this function is not known and it is a central goal in
heterogeneous cryo-EM reconstruction to learn and study it. For
instance, one approach would be to train a neural network (vθ) to
approximate the true volume function vθ ≈ v* (Zhong et al., 2021a).

Furthermore, in cryo-EM we typically see a projection
π: V × Φ → RN to a gray-scale pixel image (represented, to keep
notation uncluttered, as a vector with N entries). This projection
depends on the pose parameters ϕ ∈ Φ = SO(3), so we will also refer
to π as the pose function (Table 1). The pose parameters may also
need to be inferred (typically, the cryo-EM image formation model
would also include camera parameters such as the microscope
defocus—we are skipping those for simplicity). That means, for
different values of ϕ, πϕ = π(., ϕ) would describe a different
projection. Importantly, the function π does not have to be
learned because we know the physics, i.e., optics behind this
projection, thus, we know that the projection in our model πϕ
must be the same one as the ground truth projection πϕ* � πϕ.

Putting this together we can write the combined cryo-EM
generative model (i.e., the abstract process that yields the data we
observe). That is, the observed data x is modeled as being generated
by the ground truth model as x = g*(z*, ϕ*), which is, crucially, a
function of the ground truth latent quantities (z*, ϕ*)

g*: Z × Φ → X , g* z*,ϕ*( ) ≔ π vz** , ϕ*( ) � πϕ*◦v*( ) z*( ) ∈ RN.

(1)
Usually, we would be measuring very noisy signals x = g*(z*, ϕ*) + ϵ
where the noise can be modeled as additive Gaussian ϵ ~ N (0, σ2) in
image space. The essential problem of heterogeneous reconstruction in
computational cryo-EM can now be stated as follows.

Given only noisy observations of x = g*(z*, ϕ*) + ϵ, can we
recover v*?

This would be the true volume function v* that shows us how the
independent degrees of freedom change the molecule’s conformation.
Many cryo-EM models actually learn a probabilistic p(x|z, ϕ)
representation of the observed data x conditioned on the latent
variables. Thus, it becomes necessary to perform inference such as
maximum a posteriori estimation of the latents, conditioned on some
observed data p(z, ϕ|x). Alternatively, it is common to approximate the
posterior distribution itself with an amortized variational method such
as a variational autoencoder (VAE) (Kingma andWelling, 2013). In this
work we will be agnostic about the inference procedure (maximum a
posteriori probability (MAP), or mean of the amortized variational
posterior) and just assume that there exists a mapping f: X → Z from
data to latent variables.

TABLE 1 Glossary. Whenever a distinction is necessary in a given context,
we use a p (e.g., g*) to highlight that we are referring to the ground truth
model (g*) or ground truth latent variables (z*, ϕ*). For instance, we have
the ground truth generator g* of the data, in contrast to the learned
generator g (i.e., decoder) from our model of the data.

Notation Description

z ∈ Z � RK Conformation latent variables (vector)

ϕ ∈ Φ = SO(3) Pose latent variables

g: Z × Φ → X Mixing function/generator/decoder

v ∈ V: R3 × Z → {0, 1} Volume function (implicit representation)

π: V × Φ → RN Projection/pose function

x ∈ X � RN Observations (e.g., images)

f: X → Z × Φ Learned representation/encoder

ICA Independent Component Analysis

identifiable A model with a unique (set) of solutions

disentangle Separate different factors (e.g., pose and shape)
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2.1 Heterogeneous reconstruction in Cryo-
EM is an ICA problem

Let us compare this to a standard independent component
analysis (ICA) setting (Comon, 1994). In ICA we assume that
there are K > 1 independent variables collected in the random
vector z = (z1, . . ., zK). As an example to illustrate this, we may think
of a public space where K different speakers proclaim their
prophecies zi, completely independently of one another p(zi, zj) =
p(zi)p(zj), ∀i ≠ j. However, we do not observe those z directly.
Instead, we observe K linear combinations of those variables

x � Az + ϵ,

with A ∈ RK×K some unknown full rank matrix and, again, with
additive Gaussian ϵ ~ N (0, σ2). In our example, this may

correspond to K microphones placed in the space and each

recording some linear combination AT
i z of the speech signals.

This scenario is also called blind source separation, the term

“blind” referring to the idea that we know almost nothing about

the “sources” zi, apart from some general statistical properties. In
linear ICA, the function g: Z → X , g(z) � Az that maps from
sources z to observations x is called the mixing function. This basic

FIGURE 3
Physics-based Pose and ConformationDisentanglement. (A)Weperform an intervention, i.e., changing only the pose (conformation) of a latent pair;
these changed latents are decoded and encoded again to measure the consistency and invariance of our model. (B) Compared to a vanilla VAE, a model
PoseVAE trained with interventions (i.e., Alg. 1) achieves lower reconstruction error, lower KL divergence to the prior and a lower pose disentanglement
loss (Eq. 2). (C)Disentanglement, measured asmean correlation coefficient (MCC (Hyvarinen andMorioka, 2017),), increases not only between pose
and conformation variables (left), but also among the conformation variables (right). (D) Visualizations of the learned latents for the vanilla VAE model,
showing that the learned angle is not perfectly representing the true angle (plots one and two from the left); the three plots on the right show the learned
conformation latents, representing mixtures of true conformation and pose. (E) Same as (D) but for PoseVAE, showing a perfect monotonic relationship
between learned and true angle; also the conformation latents contain little information about the true angle (third plot) and disentangle the true
conformation variables up to a 45° rotation.
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case of linear ICA has been well-studied in the machine learning and
signal processing literature (Hyvärinen and Oja, 2000). Briefly,
under the simple assumption that at most one of the sources zi
follows a Gaussian distribution, we can find an unmixing function
f: X → Z that approximately inverts the mixing function, in
practice up to (f◦g)(z) ~ Cz, i.e., some simple equivalence class
~C such as permutations and scalings.1

If g*(z*, ϕ) in Eq. 1 was linear in z and ϕ, then the cryo-EM
reconstruction problem would amount to a simple linear ICA problem
with the (extended) sources (z‖ϕ) where ‖ denotes concatenation.
Unfortunately, the cryo-EM mixing function g(z, ϕ) in Eq. 1 is

nonlinear. This can be easily appreciated, e.g., by noting that a
multiple of some latent αz will not produce the same output as an
equally scaled image g(αz, ϕ) ≠ αg(z, ϕ) which would be just the same
image but changed in brightness. In the case of a nonlinear mixing
function g, (Hyvärinen and Pajunen, 1999) showed that it is possible to
construct many functions f: X → Z that turn the data into
independent variables. However, most of these independent variables
have no intelligible relationship with the true sources z. This problem is
called the lack of identifiability of the model, which in general
mathematical terms means lack of uniqueness of the solution.

For cryo-EM models this would mean that we can learn latent
spaces whose individual dimensions have no principled relationship
with the true degrees of freedom in molecular conformations. As an
example, we may end up with a representation of the simple two
dimensional molecule from above where traversing any single
dimension in the latent space of our model corresponds to complex

FIGURE 4
Temporal Conformation Disentanglement. (A) Schematic of temporal data pairs (xt, xt+1) andminimal changes to VAE training. To obtain SlowVAE, all
we need to do is change the conformation prior for the second time step to be a Laplace distribution centered around the posterior mean of the previous
time step (Klindt et al., 2020). (B) Example temporal transitions in the two conformation (z0, z1) and one pose ϕ latents, drawn from a Laplace distribution
(default parameters from Klindt et al. (2020): data rate λ =1, VAE (β = 1, γ = 10), VAE prior rate λ′ = 10. (C)Most common disentanglement metrics, for
details see (Locatello et al., 2019). In seven out of eight metrics we see that SlowVAE learns a more disentangled representation of the conformation
latents than a regular VAE without any adaptations.

1 Precisely, writing f(x) =Wx, ∀z ∈ Z: (f◦g)(z*)~Cz*5WA � DP where D is a

diagonal matrix and P is a permutation.
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combinations of the two armmovements (Figure 1). This would, likely,
bias our interpretation of how they are articulated together to carry out
their function. Thus, without further restrictions on our model, we
would fail to discover the simple and elegant structure where the
molecule just changes conformation along two independent degrees
of freedom, i.e., left and right arm. In the modern machine learning
context, finding a latent space that separates the underlying factors of
variation is often called disentanglement (Bengio et al., 2013), but it has
to be noted that the meaning of that term is quite vague.

Fortunately, recent advances propose ways to solve this problemwith
nonlinear ICA (Hyvärinen et al., 2024). For example, Khemakhem et al.
(2020) adds conditioning (“auxiliary”) variables u that change the source
distributions p(zi|u). Such a u could represent extra measurements by
anothermodality, or it could be defined by interventions. Themodel then
becomes identifiable if the u modulates the distribution of z strongly
enough. This is possible because then the zi are conditionally independent
for any u, which provides much stronger constraints than the mere
(unconditional) independence of the zi as in the basic ICA framework.
Khemakhem et al. (2020) further propose to estimate this model using
variational methods, leading to an algorithm which is a variant of VAEs.
An alternative approach is possible by assuming temporal dependencies
of the source time series (Hyvarinen and Morioka, 2017; Klindt et al.,
2020; Hälvä et al., 2021); spatial dependencies can also be used (Hälvä
et al., 2024). In this case, independence of the components over time lags
leads, again, to more constraints, and thus to identifiability under some
conditions. A very different approach can be developed by constraining
the nonlinear function g, parameterizing it with such a small number of
parameters that identifiability is obtained (Hyvärinen et al., 2024; Section
5.4); for example, if we know the physics underlying g (i.e., pose
transformations and projections) we may also be able to obtain
identifiability. Finally, we point out that the independence assumption
can be relaxed (Träuble et al., 2021); even causal relationships between
the independent components have been modeled, but this requires
further constraints and assumptions (Träuble et al., 2021; Morioka
and Hyvärinen, 2023; Yao et al., 2023). Any such learning is easier if

interventions on the system are possible (Ahuja et al., 2023) or if it is
assumed that the system undergoes sparse, discrete state changes like in
robotics experiments (Locatello et al., 2020b), but the theory mentioned
above is specifically unsupervised, thus not necessarily requiring
interventions.

In this work, we will argue that the heterogeneous reconstruction
problem in cryo-EM should be framed as a non-linear ICA problem to
help us build better and more interpretable models that separate the
independent degrees of freedom with which molecules change
conformation in nature. Few prior works have applied linear ICA to
molecular imaging (Borek et al., 2018; Gao et al., 2020), finding more
meaningful separation of molecular conformation changes (Figure 2).
However, to the best of our knowledge, none of the nonlinear ICA
approaches mentioned above have so far been applied to the field of
computational cryo-EM. Below we will propose three promising
candidate approaches for solving the nonlinear ICAproblem in cryo-EM.

2.2 Disentangling pose and conformation

The first challenge in computational cryo-EM is that of
separating the pose ϕ of a molecule from its conformation z.
Again, looking at the cryo-EM mixing function (Eq. 1) x = g*(z*,
ϕ*) + ϵ, this means we want to find a representation

f: X → Z × Φ, f x( ) � fz x( )‖fϕ x( )( ) � z‖ϕ( )
that separates the estimated conformation z and the pose ϕ.2 In other
words, as a first step, we could find just two latent subspaces without
specifying the individual components, or the bases, inside those

FIGURE 5
Alternative Conformation Disentanglement. (A) Proof-of-concept illustration of Boltzmann ICA for the use of temperature as a conditioning variable
(Khemakhem et al., 2020). At low temperature τ1 (left) only the left arm of the molecule shows significant movement. At high temperature τ2 both arms
show significant movement. Conditioning the prior of the conformation latent with this information may allow identifying the distinct sources. (B) Proof-
of-concept illustration of Physics-based ICA using physics-based decoder with atomic models that assign mechanistic meaning to latent variables,
e.g., in terms of atomic coordinates, (potentially, sparse) movement of volume (Punjani and Fleet, 2021), or local normal mode analysis (NMA)
deformations (Nashed et al., 2022; Koo et al., 2023).

2 In the common framework of VAEs, fz(x) = μz(x) could be defined as the

mean of the variational posterior; in an auto-decoding framework this

could be the MAP outcome of inference, i.e., fz(x) = argmaxz p(x|z)p(z).
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subspaces. Again, if g* were linear, we might use the well-developed
methods of independent subspace analysis, or subspace ICA, to
approach this problem (Hyvärinen and Hoyer, 2000; Theis, 2006).
This might also help with the pose variables’ topology that is,
typically, not Euclidean. For instance, a circular pose variable ϕi
∈ S1 that lives on a circle and encodes rotations around one axis
could not be represented, by a single dimension, in a typical latent
variable model that maps to real valued scalars f: X → RK.
However, some subspace variants of ICA provide exactly such a
transformation into spherical coordinates (Hyvärinen et al.,
2009, Ch. 10).

Many cryo-EM models use separate latent spaces to represent
conformation and pose (Donnat et al., 2022). However, that does not
mean that models learn, during nonlinear optimization, to actually
use those separate spaces in the intended way. Recent work by
Edelberg and Lederman (2023) demonstrated that this is a problem
in popular cryo-EM models such as CryoDRGN (Zhong et al.,
2021a). In particular, they showed that a 90° rotation of an image
causes a different prediction in the space of conformation latent
variables, even though those should be invariant to pose
transformations (see below, 3.1).

2.3 Disentangling independent factors of
conformations

A more fundamental challenge is that of separating the
independent degrees of freedom of a molecule. Specifically, we
want to find a representation fz of the molecular conformation
that inverts, up to some equivalence class ~C like permutations and
scaling (see above), the ground truth generative model
(fz◦g*)(z) = z ~Cz*.

A popular approach (see CryoDRGN tutorial) consists in fitting
a nonlinear model to cryo-EM data (Figure 1B) followed by manual
investigation of the learned latent space that represents
conformational heterogeneity (Zhong et al., 2021a) (Figure 1C),
thus limiting our ability to quantitatively compare models. Here, we
propose a possible remedy in the shape of benchmarks where we
simulate data using the generative model (Eq. 1) to assess how close
different methods get to the correct (i.e., up to ~C) representation of
conformational latent spaces. This taps into a rich, recent literature
in nonlinear ICA methods (Hyvärinen et al., 2024) including
benchmarks and metrics for model comparisons (Locatello
et al., 2020a).

Once we have benchmarks and metrics, we can measure
quantitative progress. However, none of the existing
heterogeneous reconstruction approaches in computational cryo-
EM are identifiable—mirroring the state of the disentangled
representation machine learning field in 2019 (Locatello et al.,
2019). To actually make progress, in this perspective, we propose
three potential approaches to apply nonlinear ICA method for the
unsupervised discovery of molecular conformational changes:

1. Time-resolved single particle imaging. Observing
conformational changes over time, such as a sparse change
in a single conformational degree of freedom, provides valuable
information; this relies on nonlinear ICA methods that use
temporal autocorrelations of the sources (Section 4.2.1).

2. Boltzmann ICA. It may be possible to disentangle
conformational degrees of freedom by sampling at different
temperatures; this relies on nonlinear ICA methods that use
additional conditioning variables u, like temperature
(Section 4.2.2).

3. Atomic models. Building constraint models, with knowledge of
the physical mechanism, may exclude faulty solutions; this
relies on reducing the hypothesis class provided by the
(typically over-parameterized) neural network models
(Section 4.2.3).

3 Disentangling pose and conformation

In this section we will first discuss the problem of separating
pose and conformation in cryo-EM latent variable models. Recent
experiments by Edelberg and Lederman (2023) demonstrated that
this desired disentanglement is, unfortunately, violated in the case of
CryoDRGN (Zhong et al., 2021a). We start by proposing more
systematic evaluations and metrics to measure progress on this task
(Section 3.1). Note that those are not metrics in a strict mathematical
sense, but rather indices that allow us to measure progress. These
metrics inspire simple supervised intervention experiments that can
be executed in simulation and added to existing training pipelines to
disentangle pose and conformation in cryo-EM latent
spaces (Section 3.2).

3.1 Evaluating disentanglement of pose and
conformation

We are interested in the cryo-EM ground truth generative
function g*(z*, ϕ*) � πϕ*(vz** ) (Eq. 1), which consists of a known
pose function πϕ* � π(., ϕ*), an unknown volume function
vz** � v*(., z*), an unknown pose ϕ* and an unknown
conformation z*. Now, for any specific image, we have full
control over the pose function πϕ* but do not know the pose ϕ*;
however, for the conformation we have neither control over the
volume function vz** nor knowledge of the true conformation z*
(Shannon et al., 1959). Consequently, in this section and in Section
3.2 we leverage the fact that we have complete knowledge about the
pose function, to measure and constrain the flexibility of the
conformation z and volume function vz that we learn in our model.

Put simply, what we want is that, for a molecule with fixed
conformation, our model predicts the same conformation even if we
change the pose of the molecule. That is, we want the conformation
representation fz to be invariant to pose changes. Additionally, we
want the pose representation fϕ to be invariant to conformation
changes. Mathematically, the requirements of invariance can be
written as

fz◦g( ) z, ϕ( ) � z and fϕ◦g( ) z, ϕ( ) � ϕ,

for all possible poses ϕ ∈Φ and conformations z ∈ Z. When we train
a model, this can go wrong both in our encoder f(x) (if it fails to
separate pose and conformation), or in our decoder g(z, ϕ) = π(vz, ϕ)
(if the volume function vz learns to represent pose changes).
Moreover, it may be necessary to add observation noise to the
generated images g(z, ϕ) + ϵ to mitigate for domain shift between the
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training data and these simulations. To measure progress in this
challenge, we can turn this into six different evaluation metrics. We
introduce those six in Appendix A. In practice, a single metric (Alg.
1, Eq. 2) seems to suffice as we will discuss in the next section.

3.2 Correcting disentanglement of pose and
conformation

1. Encode a batch (xi)i�1,...,N of images into conformations

and poses (zi ‖ ϕi) = f(xi)

2. Detach all zi and ϕi from the computation graph.a

3. Random shuffle the poses ϕi′ � ϕσ(i)
b

4. Decode and encode the new conformation and pose pairs

into (ẑi‖ϕ̂i) � (fθ1◦gθ2)(zi, ϕi′)
5. Measure the distances d(., .) to the original latentsc

L fθ1, gθ2( ) � 1
N

∑N
i

d zi, ẑi( ) + d ϕi′, ϕ̂i( ) (2)
6. Optimize the encoder and decoder (fθ1 ,gθ2) along the

derivatives ( ∂L
∂θ1

, ∂L∂θ2)
7. Repeat 1. to 6. until convergence; or add L(fθ1 ,gθ2) to
total loss function in regular training

a We treat these as given latents and do not differentiate

with respect to their initial computation
b Using a random permutation σ instead of a perturbation δϕ

ensures that we stay within the posterior distribution

p(ϕ|x) of poses
c In the conformation space, this could just be

Euclidean; in pose space we would have to compute,

e.g., the geodesic distance in SO(3).

Algorithm 1 Interventions for Pose and Conformation Disentanglement.

Based on the ideas proposed in the previous section and themetrics
in App. 5.1, we are now going to propose a simple penalty term that can
be added to existing cryo-EM models to disentangle pose and
conformation. The logic behind these intervention experiments is
illustrated in Figure 3. This procedure relies on the physics-based

decoder g with an explicit pose representation πϕ. Typically, the

representation fθ1 and the generator gθ2 are parameterized as

neural networks with learnable parameters θ1 and θ2 (Kingma and

Welling, 2013; Zhong et al., 2021a). Clearly, we can compute the

gradients of all metrics with respect to those parameters. In practice,

we observed that good results can be achieved simply by following

Algorithm 1. Note that this is a straightforward, supervised learning

objective that is a relatively standard problem in modern machine

learning and should present little difficulty. Thus, we can just add

L(fθ1, gθ2) (Algorithm 1) as an additional penalty term to the loss

function of any of the existing models with separate pose and

conformation representation to encourage disentanglement.
Importantly, we are only able to write this approach in such a

concise and easy form because of the physics-based decoder g. By
this wemean the fact that we know the physics, i.e., optics behind the
projection πϕ in the image formation model (Eq. 1). We could
imagine a different cryo-EM generative model where both the
conformation and the pose change are modeled by the implicit

volume representation v: R3 × Z′ with some extended latent space
Z′. Or, in even more general terms, we could just train a standard
VAE (Kingma and Welling, 2013) on cryo-EM images to learn a
neural network encoder f: X → Z″ and decoder g: Z″ → X back
to image space with some, potentially, even more abstract latent
space Z″ Miolane et al. (2020). However, such abstract models
would not have the built-in physics of objects in space, their poses ϕ
and their projections πϕ onto a two dimensional image, which we
assume a priori in our standard cryo-EM decoder (Eq. 1). In other
words, such more abstract models would lack the architectural
distinction between z and ϕ which we need in our intervention
experiment to disentangle pose and conformation. Thus, we would
not be able to manipulate distinct parts of the extended latent spaces
(Z′ or Z″), knowing that those represent distinct physical
manipulations of the image.

For models using an implicit representation of the volume, the
reason we have to use this interventional approach to disentangle pose
and conformation in the first place is that the implicit representation
v(z) is a highly flexible neural network that can easily model pose
changes (Sitzmann et al., 2020). Only by combining this with the
constraints physics (i.e., the image formation optics) are we able to
disentangle pose and conformation representation. This is akin to
disentanglement approaches that use the assumption of sparse
manipulations, i.e., pairs of data points where only subsets of the
latents are modified (Locatello et al., 2020b). Those models have been
demonstrated to solve the nonlinear ICA problem theoretically
and practically. Thus, whenever we know something about the
physics of the world it makes our representation learning task
much simpler if we can run intervention experiments that test the
causal dependencies between our latent variables (Ahuja et al.,
2023; Squires et al., 2023).

We performed a small proof-of-concept experiment to test these
predictions and report the results in Figure 3. We train a standard
VAE (with separate pose and, implicit, volume representation) on
pseudo cryo-EM data and compare it to the same model but with the
additional training step in Algorithm 1. We refer to that model as
PoseVAE. In Figure 3B, we see that the additional penalty term in
PoseVAE does, indeed, succeed at lowering the pose disentanglement
metric (Eq. 2). Inspecting the latent representations (Figure 3E,
middle), we observe that the pose is now fully confined to the
pose variable. Moreover, we observe that the conformation space z
is, itself, becoming more disentangled (Figure 3E, right). Intuitively,
this makes sense because less can go wrong now in encoding two
instead of three variables into it. Quantitatively, this observation is
confirmed by standard disentanglement metrics showing that
PoseVAE achieves higher mean correlation coefficient (MCC)
both across all latents (Figure 3C, left) but also within the
conformation latents z alone (Figure 3, right). This is encouraging
for the next task of disentangling the conformations.

4 Disentangling conformations

Analogously to the previous section, in a second step, we
propose a theoretical framework with metrics and benchmarks
concerning the further disentanglement of the individual
components inside the conformation vector z (Figure 1). This
addresses the essential challenge of interpretable cryo-EM
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conformational representations for heterogeneous reconstruction
(Section 4.1). These benchmarks will help us measure true progress
in the budding field of computational cryo-EM (June 2023: Cryo-
EM Heterogeneity Challenge). Lastly, we discuss different
methods to leverage recent development in nonlinear ICA that
have the potential to build the next-generation of cryo-EM
models that get closer to the true answer (Section. 4.2). These
models may require future technological advancements such as
temperature dependent cryo-EM (Bock and Grubmuller, 2022)
or time-resolved single particle (X-ray) imaging (Shenoy et al.,
2023a; b).

4.1 Evaluating disentanglement of
independent factors of conformations

We consider the disentanglement of the individual
components or dimensions inside the conformation space z.
We propose a metric, in the form of a computational
procedure, to evaluate whether the independent components
of conformational variations are disentangled in the latent
space. Essentially, this proposal relies on simulated data that
exactly fulfills the generative model (Eq. 1) which we assume for
cryo-EM data. Having full control over the generative model is
important, not only to measure progress, but also to simulate
extended datasets (e.g., time-resolved imaging), because we know
that only those future datasets with additional assumptions will,
provably, allow progress in disentangling conformations.
Otherwise, this challenge is hopeless (Locatello et al., 2019).
Thus, in the ideal case, we have access to a good cryo-EM
simulator g*, so we can just use this.

However, if we do not have a good cryo-EM simulator, we can
just use the existing state-of-the-art model and see if we can
recover its latents. More precisely, we can do the following: Train
a regular cryo-EM model with the additional training loss
(Algorithm 1) that ensures that pose and conformation are
disentangled. Then, check that the model is approximately,
invertible. This is a common assumption in ICA theory
(Hyvärinen et al., 2024) to make sure that the task of
recovering the sources is well-defined. For this, we basically
want to make sure that no two distinct points in conformation
latent space z1 ≠ z2 would lead to the same volume representation
v(z1) = v(z2). Once this is, approximately, validated we can use
the model as a cryo-EM simulator. Intuitively, we now treat this
first model as ground truth generator g*≔g and see if we can
recover its latents z*≔z.

The procedure to evaluate and benchmark heterogeneous cryo-
EM latent variable models would then be to assess how well they learn
the same (up to equivalences) conformation latent space as the
original model. Thus, we would effectively sample a ground truth
pose z* and some randompose ϕ* and feed them into the ground truth
model to obtain an image x = g*(z*, ϕ*) + ϵ. We then process this
image with a candidate model fz(x) = z to obtain the learned
conformation representation z. Consequently, we have to compare
the two vector representations z* and z. Depending on the equivalence
class (~C) that we are interested, there are many different metrics to
assess how well z* is disentangled in z. Intuitively, we want some kind
of one-to-one correspondence between the two representations where

changing a single entry in z* corresponds to changing a single entry in
z, and vice versa. Fortunately, this problem has been studied
extensively in the machine learning subfield of disentangled
representation learning (Bengio et al., 2013), with many proposed
metrics and standardized benchmarks (Locatello et al., 2020a). We
can build on those advances to get better quantitative measures on
progress in heterogeneous cryo-EM reconstruction than volume
based comparisons.

As an example metric measuring disentanglement, we will
discuss the Mean Correlation Coefficient (MCC) (Hyvarinen and
Morioka, 2017). Intuitively, we want each learned latent variable
to be perfectly correlated (or anti-correlated, since sign flips do
not compromise interpretability) with a single source variable.
To measure this we can just compute the (absolute) correlation
coefficient between all ground truth latents z* and all learned
latents z. To account for permutations, we have to solve a linear
sum assignment with a permutation σ: {1, . . ., K} → {1, . . ., K},
which basically finds the best matching zσ(i)* for each zi. The MCC
is then, simply, the mean over those matches

MCC z, z*( ) � max
σ

1
K

∑K
i

|corr zi, zσ i( )*( )|
with corr() denoting correlation. Other metrics focus on
decodability, or informational independence (Locatello et al.,
2019) and there is no agreed-upon consensus on the optimal
disentanglement metric. Thus, we simply report scores across all
metrics–these can be further grouped by rank ordering to get overall
model comparison scores (see Klindt et al., 2020).

4.2 Correcting disentanglement of
independent factors of conformations

Let us now discuss the hardest task, i.e., finding the
independent degrees of freedom that determine the
conformation of a molecule (Figure 1). This is a hard problem
in the sense that, for a nonlinear function g (Eq. 1), without any
additional assumption it has been known for the last 2 decades that
this is, practically, impossible (Hyvärinen and Pajunen, 1999).
Moreover, the field of disentangled representation learning
(Bengio et al., 2013) has spent multiple years proposing
methods that were, ultimately, unidentifiable (Locatello et al.,
2020a). Going forward, computational cryo-EM should learn
from those lessons and avoid the same pitfalls. As a very basic
example, if our conformation latent space has an isometric
Gaussian prior, as in standard VAEs (Kingma and Welling,
2013), we can always perform a random rotation on the learned
latents without changing the likelihood of the model (Hauberg,
2018). Thus, any direction in latent space may be representing the
actual isolated change in conformation of the molecule.
Fortunately, recent years have seen the development of different
methods that solve the problem of nonlinear ICA (Hyvärinen et al.,
2024). Below, we propose different approaches that are in
technological reach (Section 4.2.1), or that make additional
statistical assumptions that fit cryo-EM data (Sectioin 4.2.2) or
that integrate additional physical knowledge to constrain the
problem (Section 4.2.3).
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4.2.1 Time-resolved single particle imaging
If we had temporal data of conformation changes for the same

molecule over time, we could start applying nonlinear ICA methods
that depend on temporal autocorrelations of the sources (Hyvarinen
and Morioka, 2017; Hälvä et al., 2021). Specifically, these methods
operate under the assumption that we are able to record a time
series like

xt, xt+1( ) � g zt, ϕt( ), g zt+1, ϕt+1( )( )
with temporal dependencies in the sense that

p zt, zt+1( ) � p zt+1|zt( )p zt( ) ≠ p zt( )p zt+1( ).
For instance, SlowVAE (Klindt et al., 2020) assumes that the
transitions

Δ i( )
t ≔ z i( )

t+1 − z i( )
t

follow some sparse distribution, like a Laplace
Δ(i)
t ~ Lap(μ � 0, λ> 0), and the transitions are independent

between components, i.e.,

p Δ i( )
t ,Δ j( )

t( ) � p Δ i( )
t( )p Δ j( )

t( ) ∀i ≠ j.

Klindt et al. (2020) showed that those assumptions are often
verified on natural video data, which is important since making
additional statistical assumptions to obtain identifiable models is
only useful if those assumptions are, actually, aligned with the
statistics of real world data.

Practically, such a model leads to a minimal modification to
standard VAE training, where now the temporal difference of
latents is also penalized to follow the specified transition
distribution. However, the crucial difference in this learning
paradigm is having access to temporal data (xt, xt+1). While this
is not routinely feasible experimentally, efforts to develop time-
resolved cryo-EM (Mäeots and Enchev, 2022; Lorenz, 2024) will
eventually enable the direct observation of protein dynamics in
the microseconds to seconds range, yielding datasets where each
particle image will be associated to a timestamp that can be
readily deployed in the modified modeling approach above.

We performed these disentanglement experiments in Figure 4. In
thefirst row, we have a demonstration of sparse transitions (drawn from
a Laplace distribution) that show changes in some of the latent variables
(z0, z1, ϕ). Below, we trainedN = 50 models with and without temporal
prior (Klindt et al., 2020) and measure seven typical disentanglement
metrics (Locatello et al., 2019). We observe that in six out of seven of
those metrics, the model with temporal prior, SlowVAE, does, indeed,
achieve higher disentanglement scores. Further improvements could be
achieved by including the pose loss from the previous section. However,
this is already a promising proof-of-concept for future disentanglement
of conformation latents based on temporal data.

4.2.2 Controlling the Boltzmann distribution
The idea above applies to time-resolved experiments studying

transient dynamics, triggered by some process such as mixing with a
ligand or light excitation. Another class of experiments is concerned
with steady-state dynamics where timestamps labels are not helpful.
For those experiments, a potentially useful knob that could help
solve the non-linear ICA problem is knowledge of the temperature

associated with each particle in the dataset. The effect of cooling has
been reviewed (Bock and Grubmuller, 2022) and different studies
have used temperature to change the conformation distribution to
obtain insights (Chen et al., 2019; Mehra et al., 2020).
Experimentally, this could either be achieved by freezing grids
with different cryogens, although a preferable approach would
follow the development of thermochromic molecular probes able
to report on the local temperature on the cryo-EM grid (Kortekaas
and Browne, 2019). This way, precise temperature labeling of each
particle in the dataset could be achieved.

Formally, manipulating the temperature τ would provide us
with control over the Boltzmann distribution of molecular
conformations

p z|τ( ) � 1
Q τ( ) exp −ε z( )

k τ( )( ),
with Q(τ) the canonical partition function and ε(z) the energy of
being in conformation z. This conditional distribution, where we
assume knowledge or experimental control over the temperature,
maps onto the theoretical framework of iVAE (Khemakhem et al.,
2020) with u = τ. Future theoretical investigations are needed to
verify if the additional assumptions for their identifiability results are
fulfilled in this setting.

However, to build intuition, we can walk through a thought
experiment to see how control of the temperature can suffice to
discover the independent degrees of freedom in molecular
conformation changes (Figure 5A). Assume, again a molecule
with two degrees of freedom z1, z2 ∈ R that both follow
temperature-dependent normal distributions

p z1|τa( ) ~ N μ1, σ
2
1 τa( )( ) and p z2|τa( ) ~ N μ2, σ

2
2 τa( )( ).

Now, suppose that at low temperature τa, we only see variation in the
first component z1 while the second component is nearly constant,
i.e., σ22(τa)≪ σ21(τa). By contrast, at high temperature τb > τa, we see
that the second component also starts moving, i.e., σ22(τa)≫ 0. Thus,
using temperature alone, we can successfully isolate the different
degrees of freedom. Intuitively, this should make it possible to solve
the disentanglement task. We could simply fit a model to the data at
temperature τb with the additional constraint that the same model
also has to be able to encode the data at temperature τa, albeit, with
only the first latent dimension z1. Whether those assumptions bare
out in real molecules is not clear, yet, recording at different
temperatures is within closer technological reach than time-
resolved SPI.

4.2.3 Atomic models
While the previous two proposals require different data, we may

also hope to make progress with different models. We saw how the
implicit volume representation needs additional care to disentangle
pose and conformation information (Section 3.1). Imbuing the
generative model with physics inspired structure, allowed us to
separate pose from conformation (section 3.2). Maybe, even more
physics can help us solve the harder problem of finding the
conformational degrees of freedom. In particular, if we replace
the highly expressive implicit volume representation v with an
atomic model (Zhong et al., 2021b; Rosenbaum et al., 2021;
Nashed et al., 2022; Koo et al., 2023), then the pose latent
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variable z will have to encode how an atomic reference structure
(maybe the mode of the conformation space) is deformed into an
observed conformation (Figure 5B).

One existing work by Punjani and Fleet (2021) proposes to learn a
convection field that deforms a reference volume. This comes with the
elegant property of volume preservation which is not always the case in
implicit conformation representations, but obeys our knowledge of the
underlying physics. However, the learned convection fields as well as the
reference volume model are still over-parameterized compared to an
ideal atomistic model with movement vectors for each atom. The
problem in building smaller andmore constraintmodels is that modern
machine learning methods have, to some extent, proven so powerful
because they allow heavily overparameterized hypothesis classes that
still generalize well beyond the training data. The question then
becomes whether we can combine the best of both worlds, i.e., the
non-convex optimization and generalization properties of deep neural
networks (e.g., for implicit volume or convection representations) with
the physical detail of constraint atomistic models (Zhong et al., 2021b;
Rosenbaum et al., 2021; Nashed et al., 2022; Koo et al., 2023).

5 Discussion

In recent years, the integration of computational models,
particularly VAEs (Kingma and Welling, 2013), has
revolutionized research across various natural sciences, including
cryo-EM (Zhong et al., 2021a). This perspective piece underscores
the critical importance of understanding conformational latent
spaces in cryo-EM by drawing on cutting-edge theoretical
advancements in identifiable nonlinear ICA (Hyvärinen et al.,
2024). By bridging the gap between theoretical frameworks and
practical applications in cryo-EM, we are suggesting a significant
advance in the interpretability and utility of latent variable models.
Furthermore, our study advocates for the adoption of better
quantitative measures to assess progress in heterogeneous cryo-
EM reconstruction, transcending traditional volume-based
comparisons. This aligns with recent initiatives such as the Cryo-
EM Heterogeneity Challenge emphasizing the need for refined
evaluation metrics to accurately gauge advancements in this field.
Nevertheless, this work is merely an opinion piece and proof-of-
concept demonstration. Significant technical (e.g., time resolved
SPI) and engineering challenges (e.g., identifiable nonlinear ICA
models that work in low SNR regimes) lie ahead on this path
towards interpretable cryo-EM conformations spaces.

One of the key limitations to the approach that we are proposing in
this paper is the assumption that there exist a limited number of factors
of variation that determine the possible conformations and
conformation changes out of all the possible rearrangements of
constituent atoms. Moreover, we assume that those factors are
independent which means that the molecule has parts that move
independently of each other. Prior work in nonlinear ICA has
considered the effect of dependencies (Träuble et al., 2021) and how
to mitigate them, but that might not even be necessary. It is conceivable
that, for instance in the little cartoon Figure 1, both arms of themolecule
always move up and down together so that they are not independent.
However, if both arms alwaysmove together, then this is, likely, to fulfill
some biological function. In this scenario, ourmodel would presumably
learn to describe the combined motion by a single latent variable which

would, thus, represent the motion required to perform this biological
function. Consequently, such dependencies might unveil (more
complex) molecular motions and biological function that we can,
thus, extract.

The history of ICA’s emergence in the 1990s, and in particular
its early adoption in neuroimaging (McKeown et al., 1998), shows
its capacity to evolve into a cornerstone of data-based modeling.
This trend, moving even further away from hypothesis-driven
research (Friston, 1998) toward data-centric approaches
(Beckmann et al., 2005), also underscores the importance of
incorporating principles like nonlinear ICA to ensure
meaningful model outputs. While modern machine learning
techniques, including VAEs or nonlinear dimensionality
reduction methods such as t-SNE (Van der Maaten and
Hinton, 2008) or UMAP (McInnes et al., 2018), have become
ubiquitous in data-based modeling, they often overlook source
recovery, i.e., identifiability considerations. To fully harness the
potential of latent spaces, it is paramount to ensure their
alignment with meaningful representations of the
underlying data.

In conclusion, our approach integrates nonlinear ICA
principles into the development and analysis of cryo-EM
latent variable models, ensuring more interpretable
representations that encapsulate the intrinsic structure of the
data. Unlocking latent spaces aligned with the underlying
fundamental factors governing complex phenomena is pivotal
for gaining deep insights into biological processes, expediting
drug discovery, and facilitating targeted interventions. This
progress extends beyond cryo-EM, resonating with diverse
scientific disciplines such as computer vision, natural language
processing, and generative modeling, where (VAE) latent spaces
play a pivotal role in data representation and the generation of
new scientific hypothesis as part of initiatives such as AI4Science.
Our interdisciplinary approach, embracing nonlinear ICA and
disentanglement models, holds promise in generating
meaningful representations that carve nature at the joints,
thereby propelling transformative discoveries.
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Appendix A: Pose and Conformation
Disentanglement metrics

We consider disentanglement evaluation metrics for all three
learned functions, i.e., the volume v(z), the conformation encoder
fz(x) and the pose encoder fϕ. For each function, we will consider two
metrics that measure their consistency (i.e., does it model the latent
it is supposed to model?) and their invariance (i.e., is it invariant to
changes in other latents?). Starting with the volume metrics,
we measure.

1. Volume consistency, i.e., how accurately the learned volume
v(z) changes the conformation:

LVC v( ) � E
z,ϕ

‖z − fz*◦g( ) z, ϕ( )‖2[ ] � E
z,ϕ

‖z − fz*◦πϕ◦v( ) z( )‖2[ ]

2. Volume pose invariance, i.e., how accurately the learned
volume v(z) changes only the conformation:

LVI v( ) � E
z,ϕ

‖ϕ − fϕ*◦g( ) z, ϕ( )‖2[ ] � E
z,ϕ

‖ϕ − fϕ*◦π( ) v z( ), ϕ( )‖2[ ]

where, ideally, one would use the oracle encoder f*(x) = argmaxz,ϕ
p(x|z, ϕ) p(z, ϕ). In practice, we can just use the current encoder
f(x) = (fz(x)‖fϕ(x)) and optimize it as well. Again this can be split into
two metrics (consistency and invariance), both for the conformation
encoder fz

1. Conformation-encoder consistency, i.e., how accurately the
conformation encoder fz recovers any conformation,
independent of pose:

LCC fz( ) � E
z,ϕ

‖z − fz◦g*( ) z, ϕ( )‖2[ ]

2. Conformation-encoder pose invariance, i.e., how invariant the
conformation encoder fz is to pose perturbations:

LCI fz( ) � E
z,ϕ,δϕ

‖ fz◦g*( ) z, ϕ( ) − fz◦g*( ) z, ϕ + δϕ( )‖2[ ]
as well as for the pose encoder fϕ

1. Pose-encoder consistency, i.e., how accurately the pose encoder
fϕ recovers any pose, independent of conformation:

LPC fϕ( ) � E
z,ϕ

‖ϕ − fϕ◦g*( ) z,ϕ( )‖2[ ]

2. Pose-encoder conformation invariance, i.e., how invariant the
pose encoder fϕ is to conformation perturbations:

LPI fϕ( ) � E
z,ϕ,δz

‖ fϕ◦g*( ) z, ϕ( ) − fϕ◦g*( ) z + δz, ϕ( )‖2[ ]
where, again, ideally we would like to use the ground truth generator g*,
but we can also just use the current learned decoder. All of these six
metrics can be evaluated, in a supervisedway, over a sufficient number of
randomly sampled conformations z, poses ϕ and perturbations (δz, δϕ).
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