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Genetically predicted 486 blood
metabolites in relation to risk of
esophageal cancer: a Mendelian
randomization study

Caiyan Jia1,2†‡, Dan Yi1,2†‡, Mingze Ma1,2†, Qian Xu1,2†, Yan Ou1,2†,
Fanming Kong1,2*† and Yingjie Jia1,2*†

1Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese
Medicine, Tianjin, China, 2National Clinical Research Center for Chinese Medicine Acupuncture and
Moxibustion, Tianjin, China

Background and Objective: Enhancing therapy choices for varying stages of
esophageal cancer and improving patient survival depend on timely and precise
diagnosis. Blood metabolites may play a role in either causing or preventing
esophageal cancer, but further research is needed to determine whether blood
metabolites constitute a genetic risk factor for the disease. In order to tackle
these problems, we evaluated the causal association between esophageal
cancer and 486 blood metabolites that functioned as genetic proxies using a
two-sample Mendelian randomization (MR) study.

Methods: We utilized two-sample MR analyses to evaluate the causal links
between bloodmetabolites and esophageal cancer. For the exposure, we used a
genome-wide association study (GWAS) of 486 metabolites, and a GWAS study
on esophageal cancer from Sakaue et al. was used for preliminary analyses.
Causal analyses employed randomized inverse variance weighted (IVW) as
the main method, supplemented by MR-Egger and weighted median (WM)
analyses. Sensitivity analyses included the MR-Egger intercept test, Cochran
Q test, MR-PRESSO, and leave-one-out analysis. Additionally, independent
esophageal cancer GWAS data were utilized for replication and meta-analysis.
FDR correction was applied to discern features with causal relationships.
For conclusive metabolite identification, we conducted Steiger tests, linkage
disequilibrium score regression, and colocalization analyses. Moreover, we
utilized the program MetaboAnalyst 5.0 to analyze metabolic pathways.

Results: This study found an important association between esophageal
cancer and three metabolites: 1-linoleoylglycerophosphoethanolamine* [odds
ratio (OR) = 3.21, 95% confidence interval (CI): 1.42–7.26, p < 0.01],
pyroglutamine* (OR = 1.92, 95% CI: 1.17–3.17, p < 0.01), and laurate (12:0) (OR
= 3.06, 95% CI: 1.38–6.78, p < 0.01).

Conclusion: This study establishes a causal link between three defined blood
metabolites and esophageal cancer, offering fresh insights into its pathogenesis.
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Mendelian randomization, bloodmetabolites, colocalization analysis, SNPs, esophageal
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1 Introduction

Esophageal cancer seventh in global cancer incidence
and is the sixth leading cause of cancer-related deaths
(Global Burden of Disease, 2019 Cancer Collaboration et al., 2022).
Esophageal cancer develops insidiously, with early symptoms often
unnoticed by patients. Diagnosis commonly occurs at an advanced
stage, resulting in a poor prognosis (Global Burden of Disease,
2019 Cancer Collaboration et al., 2022). Globally, the incidence of
esophageal cancer exhibits distinct geopolitical patterns. Typically,
esophageal adenocarcinoma is more prevalent inWestern countries,
whereas esophageal squamous cell carcinoma (ESCC) is notably
more common in Asia’s esophageal cancer belt, as well as in certain
areas of East Africa and South America (Shaheen and Ransohoff,
2002). In 2020, an estimated 6,041,000 new cases and 5,440,762
deaths due to esophageal cancer were reported globally (Sung et al.,
2021). The heterogeneity and complexity of esophageal cancer lead
to most patients being diagnosed at an advanced stage, precluding
the possibility of surgery and optimal treatment. Consequently,
patients with esophageal cancer have a worse prognosis, increased
mortality, and a worse quality of life, evidenced by 5-year survival
rates under 20% (Zhang et al., 2023), thereby intensifying the global
disease burden.

The incorporation of metabolomics with systems biology has
recently offered a new approach in researching disease processes.
It remains unclear whether metabolic dysregulation is a cause or
a result of esophageal cancer progression. However, substantial
evidence indicates that it plays a critical role in both the development
and progression of the disease (Wang et al., 2013), beyond changes
in glucose metabolism, dysregulation in amino acid, lipid, and
protein metabolism has been observed in vitro and in vivo, as
exemplified by the well-known Warburg effect (Gu et al., 2016;
Kim et al., 2010; Matsunaga et al., 2018). Although Huang et al.
(2020) described 45 blood metabolites associated with esophageal
cancer, no thorough investigation has systematically examined
the causal connection between esophageal cancer and blood
metabolites. The possible causal relationship between alterations
in blood metabolite levels and the risk of esophageal cancer
requires more investigation. This will aid in understanding the
causes of esophageal cancer and enhance its precise prevention
and control.

The Mendelian randomization (MR) study is a well-established
genetic epidemiological methodology that employs genetic variants
as proxies for target exposures to assess the causal relationship
between exposures and disease outcomes (Zuccolo and Holmes,
2017). This approach has distinct advantages over traditional
observational studies. First, by utilizing random independent
classification of DNA during meiosis of alleles, MR analysis
avoids traditional confounding. Second, reverse causal effects
bias does not occur due to the immutability of the genomes
of the propagating germline (Burgess et al., 2015). Third, in
most cases, genetic variation is usually accurately measured and
reported and is less susceptible to bias and measurement error.
Thus, it is particularly useful in assessing risk factors for long-
term effects (Hu et al., 2019). In this context, we performed MR
analysis with genome-wide association study (GWAS) pooled
data to comprehensively explore the causal effects of 486 blood
metabolites on esophageal cancer. Additionally, colocalization

and metabolic pathway analyses were conducted to explore the
gene and protein-level biological processes underlying esophageal
cancer. The objective of this study is to uncover the metabolic
etiology of esophageal cancer and offer insights into its biological
mechanisms.

2 Methods

2.1 Study design

Three presumptions must be met by a valid MR study:
(1) IVs are highly correlated with the relevant exposures; (2)
IVs are unaffected by confounding variables; (3) IVs have no
correlation to outcomes and only have an impact on outcomes
through exposures (Boef et al., 2015). All of the MR analyses in
this work were performed using R software (version 4.3.2) Two
Sample MR and MRPRESSO packages. An overview of the study
is shown in Figure 1.

2.2 GWAS summary statistics

All analyses of MR in this study were based on summary
statistics from theGWAS study of bloodmetabolites and Esophageal
cancer. The summary data for Esophageal cancer is obtained
from Sakaue et al. (2021)’s trans-ethnic GWASmeta-analysis, which
includes 2,386 cases (998 cases of European origin and 1,388 cases
of East Asian origin) and 476,696 controls (475,308 controls of
European origin and 159,201 controls of East Asian origin). From
the Metabolomics GWAS Server (https://metabolomics.helmholtz-
muenchen.de/gwas/), genetic information on blood metabolites
was collected. This is the largest analysis on blood metabolite
genetic loci to date, with approximately 2.1 million single nucleotide
polymorphisms (SNPs) for 486 metabolites associated with genetic
variations in humans. Shin et al. (2014)’s high-throughputmetabolic
profiling and genome-wide association searches were used to
accomplish this. Supplementary Table S1 lists the 486 metabolites,
with those labeled ‘X-’ indicating unknown chemical properties.
The study encompassed 7,824 European participants, comprising
1,768 from Germany’s KORA F4 study and 6,056 from the UK Twin
Study. 107 of the 486 metabolites had their chemical characteristics
so poorly characterized that they were categorized as unknown.The
Kyoto Encyclopedia of Genes and Genomes (KEGG) database also
shows that 309metabolites were chemically confirmed and classified
into eight metabolic groups: lipid, nucleotide, energy, peptide,
xenobiotic metabolism, carbohydrate, cofactors and vitamins, and
amino acid (Kanehisa et al., 2012). As this study was based on
publicly available data, no additional ethical approval or consent
was required.

2.3 IVs selection

MR Research has three core instrumental variable assumptions.
(1) Selection of genetic variants as instrumental variables (IVs)
associated with exposure factors blood metabolites. To find SNPs
associated with exposure factors and to ensure the veracity and
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FIGURE 1
Overview of the study design. Assumption 1, genetic instruments are strongly associated with the exposures of interest; Assumption 2, genetic
instruments are independent of confounding factors; Assumption 3, genetic instruments are not associated with outcome and affect outcome only via
exposures. LD, linkage disequilibrium; SNPs, single nucleotide polymorphisms; IVW, inverse variance weighted; WM, weighted median; LOO analysis,
leave-one-out analysis; MR-PRESSO, MR-Pleiotropy RESidual sum and outlier.

accuracy of conclusions about the causal link between blood
metabolites and Esophageal cancer risk, the following steps were
used to select the best SNPs. After consulting the pertinent
literature, the threshold was first modified (p < 1 × 10−5) due to
the small number of SNPs related with metabolites in order to
achieve comprehensive and trustworthy results.Then, we eliminated
linkage disequilibrium (LD, R2 < 0.001, kb = 10,000) to clumped
SNPs (Yang et al., 2020; Choi et al., 2019). The F-statistic was used
to assess the correlation between SNPs and exposure statistical
strength, the F-statistic is given by: F = R2

1−R2 ·
N−K−1

K
, where K is

the amount of SNPs (instrumental variants); N is the exposure
sample size; R2 is the instrumental variable (determinant coefficient
of regression equation) that describes the extent of exposure,
which was calculated as R2 = 2·(1-EAF)·EAF·β2, where the genetic
variant of interest’s standard error is denoted by β, while its
effect allele frequency is represented by EAF (Palmer et al., 2012).
SNPs with F < 10 were eliminated because they were deemed to
have weak genetic variations (Burgess et al., 2013). Subsequently,
we isolated SNPs linked to metabolites from the result and
eliminated SNPs that were connected to the result (p < 1 ×
10−5). We eliminated allelic inconsistent SNPs (such as A/G vs.
A/C) and palindromic effects after further harmonizing SNPs for
exposure and outcome. The final data were then submitted to
MR analysis (Supplementary Table S2).

2.4 Statistical analysis and sensitivity
analysis

The primary analysis utilized the random-effects inverse
variance weighted (IVW) method to establish a significant causal
link between serum metabolites and esophageal cancer (p < 0.05).
When IVs meet all three main hypotheses, the IVW method yields
the most accurate and unbiased estimates, making it the most
effective method for MR (Pierce and Burgess, 2013). However,
horizontal pleiotropy arises when IVs impact traits beyond the
exposure pathway, directly affecting the outcomes and potentially
leading to imprecise causal estimates (Thomas and Conti, 2004).
MR-Egger regression provides consistent estimates in the presence
of genetically pleiotropic IVs (Bowden et al., 2015). The WM
method’s strength lies in its ability to yield consistent causal
estimates even with over 50% null IVs (Bowden et al., 2016). In
repeated comparisons, we used the Benjamini–Hochberg technique
to control the false discovery rate (FDR) (Benjamini and Hochberg,
1995). The Benjamini-Hochberg-corrected p values (FDR p-values)
were used as the threshold of significance. Associations that passed
the FDR controlled significance levels (FDR p-values < 0.05) were
considered to be strong evidence of associations, whereas results
with p less than 0.05 but that failed to pass FDR correction were
regarded as suggestive associations.
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Sensitivity analysis is essential for detecting horizontal
pleiotropy and heterogeneity in the data. Cochran’s Q statistic was
employed to assess heterogeneity (Cohen et al., 2015). The MR-
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method was
used to identify outliers, which were then excluded for re-analysis if
detected (Verbanck et al., 2018). Horizontal pleiotropy was assessed
using MR-Egger, a statistically significant difference in intercept
terms indicated notable horizontal pleiotropy in the study (Burgess
andThompson, 2017). Robustness of theMR findings was evaluated
using used leave-one-out (LOO) analysis. By eliminating each SNP
individually, after which MR analysis is conducted to see whether a
single SNP significantly affected the outcome.

In conclusion, multiple criteria were used in our thorough
screening for blood metabolites that may be causally linked to
esophageal cancer: (1) Significant p-values (IVW-derived p < 0.05,
FDR p < 0.05); (2) uniformity inmagnitude and direction among the
3 MRmethods; (3) No horizontal pleiotropy or heterogeneity in the
MR results; (4) Lack of significant confounding in MR estimates by
individual SNPs.

2.5 Replication and meta-analysis

To thoroughly evaluate the robustness of the identified candidate
metabolites, we utilized data from the FinnGen consortium (https://
www.finngen.fi/fi) for additional validation of the exposure results
and their relation to esophageal cancer. FinnGen’s release R10
includes data on 169 esophageal cancer cases and 314,193 other
cases. The causal association of blood metabolites with esophageal
cancer was confirmed throughmeta-analysis of 2 MR studies. Using
R software (4.3.2), the random effects IVW model was used to
implement meta-analysis.

2.6 Confounding analysis

While we evaluated the horizontal pleiotropy of MR results
through sensitivity analyses to identify SNPs violating MR
assumptions, a small residual amount of confounding SNPs may
remain. IVs were examined using the Phenoscanner V2 website
(http://www.phenoscanner.medschl.cam.ac.uk/) (Staley et al.,
2016). Each SNP was evaluated for its association with known
esophageal cancer risk factors, including smoking (Doll et al., 1994;
Freedman et al., 2007), alcohol consumption (Yokoyama et al., 2002;
Prabhu et al., 2014), and obesity (Veugelers et al., 2006; Lagergren,
2011). If any SNPs were associated with these confounders (p < 1 ×
10−5), we reran the MR analysis after their removal to confirm the
results’ reliability.

2.7 Evaluation of directionality

The Steiger test was used to confirm if the observed causality
was influenced by reverse causality. This test examined whether the
SNPs included in the study explained more of the esophageal cancer
than the metabolites identified (Hemani et al., 2017). When SNP
combinations were shown to have no genetic risk for esophageal
cancer when compared tometabolites, the results showed that causal
inference was not biased (Steiger p > 0.05).

2.8 Colocalization analysis

After MR analyses identified causality of blood metabolites
on esophageal cancer risk, we used co-localization analyses as a
sensitivity analysis to s to evaluate whether blood metabolites and
esophageal cancer risk share the same causal genetic variant at the
GHRL locus (Giambartolomei et al., 2014). Such an analysis can
indicate whether the phenotypes are influenced by different causal
genetic variants that are in LD, indicative of horizontal pleiotropy
and violation of the exclusion restriction assumption (Wallace,
2013). PP.H4 > 75% was considered supportive of colocalization of
the two phenotypes.

2.9 Metabolic pathway analysis

Using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/), we
performed a metabolic pathway analysis (Jewison et al., 2014)
to elucidate the biological mechanisms through which blood
metabolites causally affect esophageal cancer, thereby exploring its
potential pathogenesis.

3 Results

3.1 Preliminary analysis

Following rigorous quality control of the IVs, our MR study
identified 486 blood metabolites. Preliminary research depicted
in Figure 2 points to a relationship between blood metabolites
and the risk of esophageal cancer. The refined IVs comprised 276
SNPs. IVW analysis identified 14 metabolites potentially causally
related to esophageal cancer, consisting of 9metabolites with known
chemical properties and 5 with unknown properties, as shown in
Figure 3. Figure 3 illustrates that the nine identified metabolites are
chemically classified into amino acids, lipids, and xenobiotics. After
FDR, no metabolites were found that still had a significant effect.
Palmitate (16:0) (odds ratio [OR] = = 0.19, 95% confidence interval
[CI]: 0.07–0.57, p = 0.003, adjust p = 0.013), X-06226 (OR = 0.29,
95%CI: 0.11–0.79, p = 0.015, adjust p = 0.03); phenol sulfate (OR =
0.52, 95%CI: 0.29–0.95, p = 0.033, adjust p = 0.038); N-acetylglycine
(OR = 0.52, 95%CI: 0.34–0.81, p = 0.004, adjust p = 0.014);
homostachydrine∗ (OR = 0.38, 95%CI: 0.17–0.86, p = 0.020, adjust
p = 0.035); X-12740 (OR = 0.73, 95%C: 0.55–0.9, p = 0.028, adjust
p = 0.039) was negatively associated with the risk of esophageal
cancer, whereas laurate (12:0) (OR = 4.03, 95%CI: 1.65–9.81, p =
0.002, adjust p = 0.03); X-05426 (OR = 2.11, 95%CI: 1.07–4.16, p =
0.031, adjust p = 0.039); X-11261 (OR = 1.99, 95%CI: 1.00–3.96 p =
0.049, adjust p = 0.049); 1-linoleoylglycerophosphoethanolamine∗ 9
(OR = 4.36, 95%CI: 1.68–11.29, p = 0.002, adjust p = 0.017);
pyroglutamine∗ (OR = 2.05, 95%CI: 1.18–3.56, p = 0.011, adjust
p = 0.031); isobutyrylcarnitine (OR = 2.68, 95%CI: 1.13–6.36, p =
0.026, adjust p = 0.04); X-1349(OR = 5.01, 95%CI: 1.39–18.09, p
= 0.014, adjust p = 0.033); 1-arachidonoylglycerophosphoinositol∗

(OR = 4.36, 95%CI: 1.68–11.29, p = 0.043, adjust p = 0.046)
were positively correlated with the risk of esophageal cancer.
For 1-arachidonoylglycerophosphoinositol∗ (OR = 4.36, 95%CI:
1.68–11.29, p = 0.043, β = 0.919), the MR-Egger method showed
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different results (OR = 0.743, 95%CI: 0.108–5.129, p = 0.767, β =
−0.297). Despite no horizontal pleiotropy in MR-Egger regression
(p_intercept = 0.184), potential outliers may cause inconsistencies
between MR-Egger and IVW results. Thus, further investigations
are needed to validate its association with esophageal cancer. In
summary, IVW-derived estimates showed significance (p < 0.05),
and the direction and magnitude of the IVW, MR-Egger, and
WM estimates aligned consistently, as depicted in Figure 4. The
Cochran Q test indicated no heterogeneity among the selected
SNPs, as evidenced by Q_pval values for IVW and MR-Egger
all exceeding 0.05. Homostachydrine∗ was excluded by the MR-
PRESSO method and the rest were not detected with outliers (p
> 0.05). MR-PRESSO results did not indicate heterogeneous SNPs
post-outlier removal (Supplementary Table S3). Cochran Q test and
MR-Egger cutoff test results (both p > 0.05) strongly suggest the
lack of pleiotropy and heterogeneity (Table 1). The results of the
LOO analysis indicated that no single SNP introduced bias into the
MR estimates (Supplementary Figure S1). Twelve blood metabolites
were identified as subjects for more investigation.

3.2 Replication and meta-analysis

To bolster the credibility of our findings, we replicated the MR
analysis using a separate GWAS dataset for esophageal cancer. The
other GWAS dataset revealed a consistent trend for the candidate
metabolites, albeit the results were not statistically significant, most
likely due to major sample size differences. The meta-analysis
identified 6 blood metabolites (3 known and 3 unknown) with
potential effects on esophageal cancer, as shown in Figure 5.
Higher levels of X-06226 (OR = 0.35, 95%CI: 0.14–0.89, p = 0.03)
were associated with reduced esophageal cancer risk. Conversely,
elevated levels of 1-linoleoylglycerophosphoethanolamine∗ (OR =
3.21, 95%CI: 1.42–7.26, p < 0.01), pyroglutamine∗ (OR = 1.92,
95%CI: 1.17–3.17, p < 0.01), laurate (12:0) (OR = 3.06, 95%CI:
1.38–6.78, p < 0.01), X-13496 (OR = 4.36, 95%CI: 1.43–13.25,
p < 0.01), and X-11261 (OR = 1.84, 95%CI: 1.03–3.26, p =
0.04) appeared to increase the risk. Although palmitate (16:0),
isobutyrylcarnitine, N-acetylglycine, phenol sulfate, X-05426, and
X-12740 consistently aligned in both MR analyses, they were
excluded due to non-significant estimates in the meta-analysis.
Although the six metabolites mentioned above were not significant
in the replication analysis, their consistent directionality suggests
more than mere coincidence. This pattern in MR estimation might
be due to differences in sample size. Therefore, by expanding the
sample size and statistical robustness through meta-analysis, we
identified metabolites causally linked to esophageal cancer.

3.3 Confounding analysis

While sensitivity analysis excluded SNPs violating our estimates,
to meet assumption 2 (IVs are independent of confounders),
we checked in Phenoscanner if all SNPs linked to the six
metabolites were unaffected by risk factors for esophageal cancer,
including alcohol consumption, smoking, and obesity. Our analysis
revealed no confounders for X-06226, pyroglutamine∗ , and X-
1349. However, among other IVs related to three metabolites, five

SNPs were associated with confounders (Supplementary Table S4).
After excluding these SNPs and reapplying MR analysis, we
determined that laurate (12:0) (OR = 4.02, 95%CI: 1.62–9.96, p =
0.003) and 1-linoleoylglycerophosphoethanolamine∗ (OR = 4.22,
95%CI: 1.73–10.34, p = 0.002) maintained a stable association
with esophageal cancer. In contrast, X-11261 (OR = 1.67, 95%CI:
0.55–2.48, p = 0.690) showed an unstable association.

3.4 Evaluation of directionality

Furthermore, the Steger test was conducted to investigate
the possibility of an inverse causal relationship between the
three chemically identified metabolites and esophageal cancer.
The Steger test results did not indicate a reverse causal
effect between these metabolites and esophageal cancer (p
< 0.05) (Supplementary Table S5).

3.5 Colocalization analysis

Colocalization analysis results revealed a low probability
of shared genetic variation between the metabolites and
esophageal cancer (laurate (12:0): PPH4 = 22%; pyroglutamine∗ :
PPH4 = 3%; 1-linoleoylglycerophosphoethanolamine∗ :
PPH4 = 21%) (Supplementary Table S6). This implies that the MR
analysis is not bias by horizontal pleiotropy.

3.6 Metabolic pathway analysis

Utilizing three identified metabolites, we pinpointed three
metabolic pathways potentially implicated in esophageal
cancer pathogenesis (Supplementary Table S7). The pathways of
Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty
Acids, Beta Oxidation of Very Long Chain Fatty Acids, and
Fatty Acid Biosynthesis are suggested as underlying biological
mechanisms in the development of esophageal cancer. Significantly,
laurate (12:0) is a component in all these metabolic pathways. This
suggests a crucial role for laurate (12:0) and its associated metabolic
pathways in the pathogenesis of esophageal cancer.

4 Discussion

In the current research, we merged two large-scale GWAS
data to examine the causal effects of 486 blood metabolites
on esophageal cancer by genetic proxy through a rigorous MR
design. We confirmed causal associations between 3 known blood
metabolites and esophageal cancer risk. Specifically high levels
of 1-linoleoylglycerophosphoethanolamine∗, pyroglutamine∗, and
laurate (12:0) were genetically predisposed to increase susceptibility
to esophageal cancer. Three metabolic pathways that might have a
role in the biological mechanisms behind esophageal cancer have
been discovered. To the best of what we know, this is the first
MR research to use colocalization analysis and metabolic pathways
in conjunction with the largest available blood metabolite GWAS
data to investigate the causal relationship with esophageal cancer.
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FIGURE 2
Preliminary MR estimates of the association between blood metabolites and esophageal cancer risk. The shades of color depict the magnitude of the
p-value.

These results underline the critical role that blood metabolites play
in the pathophysiology of esophageal cancer and offer insightful
information for potential studies on the detection and avoidance of
the disease.

The high morbidity and mortality rates of esophageal cancer
have placed a tremendous burden on people globally in recent
years, making early detection and earlier treatment of the illness an
urgent goal. Esophageal cancer is associated with a variety of dietary

habits. A meta-analysis showed that meat, red meat, saturated
fat, salt intake, and the temperature of the food were positively
associated with the incidence of esophageal cancer (Castro et al.,
2018). An important part of preventing esophageal cancer is
understanding the dietary exposure factors linked to the disease.
In addition, animal, or saturated fats, including butter, have been
positively associated with a high incidence of esophageal cancer
(Tullio et al., 2020). However, the evidence to date is not sufficient
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FIGURE 3
Forest plot based on inverse variance weighted (IVW) analysis was created to show the relationship between blood metabolites and esophageal cancer.
The graph shows the correlation between a number of blood metabolites and the risk of esophageal cancer. Each horizontal line represents the OR
and 95% CI for how each blood metabolite affects the risk of esophageal cancer. IVW, inverse variance weighted; CI, confidence interval; SNPs, single
nucleotide polymorphisms; OR, odds ratio.

to demonstrate exactly how they promote cancer development,
and many studies are still needed to prove it. The perceived
value of metabolites in esophageal tissue is being investigated with
more attention due to the advent of metabolomics technology.
Notably, because bloodmetabolites concurrently record endogenous
and external activities, they visually offer a picture of biological
operations (Rappaport et al., 2014). The contribution of metabolites
to early screening and prevention of esophageal cancer is restricted
because of the uncertain causal link between the two, despite
prior research showing that they are advantageous to therapy and
have a part in the molecular processes of esophageal cancer. In
order to clarify the causative association between blood metabolites
and esophageal cancer and to investigate the metabolic pathways
involved, we thus carried out a critical MR study. This study served
as a guide for future research aimed at fully understanding the
pathophysiology of esophageal cancer.

The identification of biomarkers is a significant therapeutic
contribution of this work. Our study supports the positive
association between laurate (12:0), pyroglutamine∗, 1-
linoleoylglycerophosphoethanolamine∗ and the risk of esophageal
cancer by combining genetics and metabolomics from a causality
perspective. And laurate (12:0) is implicated in three significantly
enhanced metabolic pathways: Mitochondrial Beta-Oxidation of
Medium Chain Saturated Fatty Acids, Beta Oxidation of Very Long
Chain Fatty Acids, and Fatty Acid Biosynthesis. Laurate (12:0), also
known as dodecanoic acid, is one of the saturated fatty acids and
a medium chain fatty acid (MCFA), which is the body’s energy
supply fuel (Schönfeld and Wojtczak, 2016). Saturated fatty acids
are a class of fatty acids (FA) that do not contain unsaturated
double bonds and are one of the basic components that make
up lipids (Schönfeld and Wojtczak, 2016). Saturated fatty acids
are risk factors for several cancers. Laurate (12:0), one of the
saturated fatty acids, can be ingested through the diet or produced

through the digestion of medium and long chain fatty acids at
the small intestine. These medium-chain fatty acids are absorbed
through the intestinal wall and enter the blood circulatory system
to reach all parts of the body to perform their physiological roles.
Related studies have shown that lauric acid can stimulate mammary
cell proliferation in mice by activating the GPR84 and PI3K/Akt
signaling pathways (Meng et al., 2017). In in vitro studies, lauric
acid can activate macrophages by promoting signaling at Toll-like
receptors (TLR2 heterodimer and TLR4 homodimer) (Huang et al.,
2012; Lee et al., 2004), and it can also play a pro-inflammatory
role by activating macrophages via the MCFA receptor GPR84
(Suzuki et al., 2013).

Increased FA biosynthesis is one of the hallmarks of abnormal
metabolism in tumor cells. Currie et al. (2013) and Cao (2019)
have shown the significance of FAs production for cancer cell
proliferation and survival. The increase in fatty acid biosynthesis
may be a response to the high metabolic demands of cancer cells
or an adaptation to the reduced availability of serum-derived lipids
in the tumor microenvironment. Systemic mobilisation of lipids
from adipose tissue during cancer cachexia promotes tumor growth
(Argilés et al., 2014). Thus, the significant increase in laurate (12:0)
in esophageal cancer patients may be an adaptation to the high
energy expenditure of cancer patients. FA biosynthesis is considered
a potential therapeutic target for cancer. A study showed that
saturated free fatty acid palmitate induced EMT in hepatocellular
carcinoma (HCC) cells through activation of the Wnt/catenin and
TGF-AKT pathways (Nath et al., 2015). Furthermore, in studies
related to breast cancer, free fatty acids (FFA) are circulating
plasma factors that are associated with increased proliferation
and invasiveness of estrogen receptor alpha (ERα)-positive (ER
+) breast cancer cells. FFA activates ERα and mTOR pathways in
breast cancer cells and alters metabolism (Madak-Erdogan et al.,
2019). Therefore, we speculate that the development of esophageal
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FIGURE 4
Scatterplot shows estimates that are strongly linked (IVW determined p < 0.05) and directionally consistent. SNP, single nucleotide polymorphisms.

cancer affects fatty acid synthesis in the body, which may
contribute to cancer progression through increased uptake of
various fatty acids such as lauric acid.

Though its function in esophageal cancer is yet unknown, 1-
linoleoyglycerophosphoethanolamine∗ is substantially expressed
in colorectal cancer tissues (Mika et al., 2020) and has
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TABLE 1 Supplementary and sensitivity analysis examine the relationship between blood metabolites and esophageal cancer.

Metabolites N MR analysis Heterogeneity Pleiotropy

Methods p OR (90%CI) Q Q_p Intercept p

Lipid

1-
arachidonoylglycerophosphoinosito1∗

20 MR Egger 0.77 0.74 (0.11–5.13)
22.19 0.22 0.028 0.18

20 Weighted median 0.95 1.04 (0.32–3.39)

palmitate (16:0)
28 MR Egger 0.50 0.48 (0.06–4.05)

19.49 0.81 −0.013 0.35
28 Weighted median 0.05 0.17 (0.03–1.00)

laurate (12:0)
38 MR Egger 0.04 5.56 (1.14–27.09)

42.15 0.22 −0.005 0.63
38 Weighted median 0.04 4.76 (1.07–21.09)

1-
linoleoylglycerophosphoethanolamine∗

13 MR Egger 0.19 6.50 (0.47–89.15)
16.70 0.12 −0.010 0.75

13 Weighted median 0.01 4.39 (1.39–13.93)

Amino acid

N-acetylglycine
14 MR Egger 0.03 0.34 (0.14–0.81)

11.85 0.46 0.021 0.28
14 Weighted median 0.00 0.40 (0.23–0.72)

phenol sulfate
13 MR Egger 0.05 0.15 (0.03–0.80)

13.23 0.28 0.059 0.15
13 Weighted median 0.17 0.60 (0.29–1.25)

pyroglutamine∗
18 MR Egger 0.55 1.59 (0.37–6.84)

8.32 0.94 0.008 0.72
18 Weighted median 0.24 1.62 (0.73–3.62)

isobutyrylcamitine
10 MR Egger 0.04 9.60 (1–50–61.50)

7.61 0.47 −0.040 0.17
10 Weighted median 0.00 5.18 (1.74–15.41)

Xenobiotic

homostachydrine∗
16 MR Egger 0.57 0.43 (0.03–7.08)

25.82 0.03 −0.004 0.93
16 Weighted median 0.01 0.30 (0.13–0.74)

Unknown

X-05426
10 MR Egger 0.42 3.26 (0.22–48.75)

8.67 0.37 −0.014 0.75
10 Weighted median 0.02 3.14 (1.20–8.21)

X-06226
23 MR Egger 0.21 0.32 (0.06–1.79)

21.14 0.45 −0.002 0.90
23 Weighted median 0.06 0.24 (0.05–1.07)

X-11261
16 MR Egger 0.06 6.24 (1.09–35.85)

17.43 0.23 −0.037 0.19
16 Weighted median 0.93 1.04 (0.42–2.56)

been demonstrated in a MR experiment to be protective
against colorectal cancer (Yun et al., 2023). Furthermore, 1-
linoleoylglycerophosphoethanolamine is a significant component
of the phosphatidy-lethanolamine (PE) (van der Veen et al.,

2017). PE, a significant constituent of phospholipids in cell
membranes, is linked to anxiety and plays a crucial role in
preserving the stability of cell structure. According to Reichel’s study
(Reichel et al., 2015), people with alcohol dependence frequently
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FIGURE 5
Meta-analysis of significantly associated (IVW derived p < 0.05) between blood metabolites and esophageal cancer. OR, odds ratio; 95% CI,
95%confidence interval. (A) X-06226, (B) 1-linoleoylglycerophosphoethanolamine∗ , (C) pyroglutamine∗ , (D) laurate (12:0), (E) X-13496, (F) X-11261.

felt anxious when they abstained from drinking and had higher
plasma PE concentrations when they did not. Furthermore,
Yang et al. (2020)’s investigation into the connection between
metabolites and certain mental conditions discovered that 1-
linoleoylglycerophosphatidylethanolamine was linked to a higher
risk of major depressive disorder; this finding was subsequently
corroborated by another research (Xiao et al., 2022). This seems
to suggest that 1-linoleoylglycerophosphatidylethanolamine may
well be able to affect depression, which might therefore act as a
mediator in the development of esophageal cancer. So far, there are
no reports on Pyroglutamine and esophageal cancer, and there is
only one study suggesting that Pyroglutamine may be associated
with prostate carcinogenesis, but the mechanism is not clear, and
more research is necessary to determine the connection between
pyroglutamine and cancer.

Our study has several strengths. This is the first and most
important point. This is the most thorough and organized
investigation of the causative association between bloodmetabolites
and esophageal cancer, and the first MR research to evaluate the
relationship between bloodmetabolites and esophageal cancer.With
this kind of design, the limits of confounders that are frequently
present in conventional observational studies are mitigated, and
there may be more proof of a causal association between exposure
and result. Secondly, our results are compelling. In terms of
direction and sensitivity analysis, all 3 MR estimations exhibit good
consistency. Third, we conducted replication studies and meta-
analyses using extra GWAS data and incorporated GWAS datasets
from several populations in our study. As a result, our conclusions

are nowmore trustworthy and thorough. Finally, our study provides
new insights into the molecular pathways involved in esophageal
carcinogenesis by combining genomics and metabolomics.

The present investigation is not without limits. First, our MR
analysis set a little relaxed threshold due to the modest number
of SNPs related with metabolites. Nonetheless, F-statistics more
than 10 were found for every metabolite-associated SNP, indicating
strong IVs efficacy; consistent causal direction support from the
Steiger test results provides confidence to our relaxed threshold
choice. Secondly, even if the database utilized for this research
contained two sizable populations with East Asian and European
ancestry, it is still not representative of the entire world’s population.
Furthermore, although MR analyses provide valuable insights into
etiology, it is important to note that our findings should be validated
by rigorous randomized controlled trials and basic research before
clinical application.

5 Conclusion

In conclusion, this MR study showed that 3 known blood
metabolites are causally associated with esophageal cancer. Three
metabolic pathways that may be associated with the development
of esophageal cancer were also identified.The identification of these
serum metabolites offers important new information on the early
detection, avoidance, and therapy of esophageal cancer in addition
to the planning of upcoming clinical trials, even if more validation
of the experimental data is still required. The pathophysiology and
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etiology of esophageal cancermay also be explored in reference form
using the combined genomic and metabolomic MR study.
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