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Dendritic cells (DCs) are involved in the initiation and maintenance of immune
responses against malignant cells by recognizing conserved pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) through pattern recognition receptors (PRRs). According to
recent studies, tumor cell-derived DNA molecules act as DAMPs and are
recognized by DNA sensors in DCs. Once identified by sensors in DCs, these
DNA molecules trigger multiple signaling cascades to promote various cytokines
secretion, including type I IFN, and then to induce DCs mediated antitumor
immunity. As one of the potential attractive strategies for cancer therapy, various
agonists targeting DNA sensors are extensively explored including the
combination with other cancer immunotherapies or the direct usage as major
components of cancer vaccines. Moreover, this review highlights different
mechanisms through which tumor-derived DNA initiates DCs activation and
the mechanisms through which the tumor microenvironment regulates DNA
sensing of DCs to promote tumor immune escape. The contributions of
chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to
the DNA sensing of DCs are also discussed. Finally, recent clinical progress in
tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed,
understanding more about DNA sensing in DCs will help to understand more
about tumor immunotherapy and improve the efficacy of DC-targeted treatment
in cancer.
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Introduction

Dendritic cells (DCs) are a type of antigen-presenting cells (APCs) serving as a “bridge”
between innate and adaptive immunity. They thus have a distinctive potential to trigger
robust antitumor immunity in cancer. Based on its characteristics, human and mouse DCs
are generally categorized as conventional DC1s (cDC1s), conventional DC2s (cDC2s),
plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) (Wculek et al., 2020).
cDC1s development rely on IRF8, ID2, and BATF3, which are transcription factors that
selectively express the chemokine receptor XCR1 and the lectin receptor CLEC9A. cDC1s
capture and transport tumor-associated antigens (TAAs) to tumor-draining lymph nodes
and then efficiently cross-present TAAs through MHC-I to initiate tumor-specific CD8+

T cell responses (Böttcher and Reis E Sousa, 2018). Tumor-infiltrating cDC1s secrete
CXCL10 to recruit CD8+ T cells and regulate cell functions by secreting T cell-associated
cytokines (Spranger et al., 2017; Hubert et al., 2020). cDC2s require the transcription factors
RELB, IRF4, and ZEB2 and are mainly involved inMHC-II-dependent antigen presentation
in tumor-draining lymph nodes to initiate CD4+ T cells (Wculek et al., 2020). pDCs
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development depend on IRF8 and E2-2 expression and play a crucial
role in antitumor immunity because of their robust capacity to
produce IFN-I. Paradoxically, other studies showed that pDCs
infiltration in the tumor microenvironment (TME) was
associated with impaired IFN-I secretion, T cell response
suppression, and Treg expansion, which ultimately leads to
tumor immune escape (Reizis, 2019). Although MoDCs are
mostly differentiated from monocytes in peripheral tissues during
inflammation, they also have the similar ability to present antigens
to CD8+ T cells (Wculek et al., 2020).

Chromosome instability is one of cancer hallmarks. It is
characterized by chromosome segregation errors during mitosis,
which results in micronuclei formation. Indeed, when genomic
DNA (gDNA)-containing micronuclei ruptures, tumor DNA is
exposed (Crasta et al., 2012). Along with the nuclear
compartment, mitochondria is an additional source of genomic
material, and mitochondrial dysfunction results in mitochondrial
DNA (mtDNA) release. Furthermore, spontaneous tumor cell death
and cancer therapy-induced immunogenic death increase the ability

of immune cells to access these tumor-associated DNA (Ahmed and
Tait, 2020). Innate immune cells use limited repertoires of germline-
encoded pattern recognition receptors (PRRs) to identify conserved
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). Recently, DNA
immunostimulatory properties have garnered substantial
attention after the first sensor with DNA recognition was
identified. The immunosensing of DNA has evolved to induce
host immune responses in response to the invasion and exposure
of exogenous nucleic acids (Hornung and Latz, 2010). Thus, DNA
sensing is a pivotal player in antitumor immunity. Defects in the
DNA sensing pathway are associated with tumor progression, and
treatment using DNA sensor-targeting agonists can be a promising
cancer therapeutic strategy (Woo et al., 2014; McWhirter and
Jefferies, 2020).

In this review, we focus on the specific mechanisms in which
DCs employ DNA sensors to recognize tumor-derived DNA and
initiate an antitumor immune response. We also discuss how the
tumor microenvironment (TME) inhibits DNA sensing of DCs to

FIGURE 1
Overview of the DNA-Sensing Pathways in DCs. Endosomal TLR9 recognizes DNA containing CpG sequences and recruits IRAK4 and
TRAF6 through MyD88, which contributes to the activation of TAK1. TAK1 further activates NF-κB and IRF7, which induces the expression of type I
interferon and pro-inflammatory cytokines. DHX9 andDHX36 detect CpG-B andCpG-A in the cytoplasm, respectively, and trigger downstream signaling
through MyD88. cGAS binds dsDNA in the cytoplasm in a sequence-independent manner and catalyzes the generation of cGAMP from ATP and
GTP. Subsequently, cGAMP activates the endoplasmic reticulum-resident adaptor protein STING, triggering its dimerization and translocation to the
Golgi, where it interacts with TBK1 to drive IRF3 activation and the type I IFN expression. DDX41, IFI16, MRE11, and DNA-PK bind cytoplasmic DNA and
trigger downstream signaling through STING, albeit the detailed mechanisms remain unclear. AIM2 is responsible for detecting dsDNA in the cytoplasm
and forming inflammasome by recruiting ASC and caspase-1. AIM2 inflammasome is involved in inducing pyroptosis and results in the release of mature
IL-18 and IL-1β out of the cells (Created with BioRender.com).
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promote immune evasion, and the strategies to enhance DNA
sensing in cancer immunotherapy. Finally, recent advances in
DNA sensor agonists which suitable for cancer immunotherapy
are also summarized.

DNA sensors in DCs

In this section, we describe the DNA sensors identified in DCs.
These sensors are localized in endosomes or the cytoplasm and have
different mechanisms for sensing DNA (Figure 1).

Toll-like receptor 9

Toll-like receptor 9 (TLR9) is the first PRR identified with a
DNA-recognition function. It detects unmethylated CpG-
containing single-stranded DNA in endosomes. The multi-
transmembrane protein Unc93B1 transports TLR9 from the
endoplasmic reticulum (ER) to the endolysosome and
proteolytically cleaves its ectodomain to activation (Fukui et al.,
2018). The TLR9 conformation changes following ligand binding,
thereby leading to myeloid differentiation primary response protein
88 (MyD88) and IL-1R-associated kinase (IRAK)- 4 being recruited
by the Toll/IL-1 receptor (TIR) domain, which results in the
assembly of MyD88–IRAK4 complex. This complex then
interacts with IRAK-2 or IRAK-1 (Lin et al., 2010). Next, the
activated TNF receptor-associated factor 6 (TRAF6) recruits
TGF-β-activated kinase 1 (TAK1), which subsequently triggers
IκB kinase (IKK) complex activation and NF-κB nuclear
translocation. Additionally, TAK1 activates mitogen-activated
protein kinases, thus stimulating nuclear translocation of
activator protein 1 (AP1). NF-κB and AP1 transcription induces
the expression of pro-inflammatory cytokines, including IL-12 and
TNF-α. Moreover, MyD88 initiates IFN-I expression through
transcriptional regulation of the IFN regulatory factor 7 (IRF7)
(Blasius and Beutler, 2010).

TLR9 is mainly located in the endolysosomal compartment.
Therefore, tumor cell-derived CpG DNA, which is ingested through
endocytosis, mediates TLR9 activation in tumor-infiltrating DCs.
So, tumor-released DNA induces intratumoral DCs accumulation,
augments antigen uptake, and promotes DCs maturation in a TLR9-
dependent manner. Subsequently, DCs migrate into lymph nodes,
thereby activating tumor-specific cytotoxic T lymphocytes (CTLs)
(Kang et al., 2019). Notably, when TLR9 is absent in bone marrow-
derived dendritic cells (BMDCs), the IFN-I response is eliminated
after CpG-ODN stimulation.

cGAS and STING

The cyclic GMP–AMP synthase (cGAS), a
nucleotidyltransferase family member, binds to cytoplasmic
dsDNA in a sequence-independent manner (Sun et al., 2013).
The conformation of activated cGAS changes in which it
catalyzes cGAMP generation from ATP and GTP, and activates
the stimulator of interferon genes (STING). Activated STING, an ER
membrane protein, is oligomerized to form higher-order oligomers.

It is then translocated from the ER to the Golgi apparatus through
the ER–Golgi intermediate compartment. Subsequently, STING
recruits TBK1 via the carboxyl terminus and induces
IRF3 recruitment. Later, when phosphorylated IRF3 is dimerized,
it translocates to the nucleus, thereby inducing IFN-I expression
(Decout et al., 2021). Additionally, STING-mediated IKK activation
leads to NF-κB release into the nucleus, which triggers the
expression of inflammatory cytokines such as TNF, IL-1β, and
IL-6 (Chen et al., 2016).

An analysis of immunogenic tumors in mice revealed that
tumor-infiltrating DCs recognize tumor-derived dsDNA via
cGAS, and the activation of STING-IFN-I signaling pathway
leads to DC-initiated antitumor T-cell responses (Deng et al.,
2014; Woo et al., 2014; Spranger et al., 2017). However, the
precise mechanism through which tumor DNA escapes from
endolysosomes to the cytoplasm following DC-mediated
phagocytosis to activate cGAS remains elusive. On co-culturing
tumor cells with BMDCs in vitro, Schadt et al. observed that cGAS
silencing in DCs did not affect IFN-I secretion (Schadt et al., 2019).
Furthermore, in lymphoma and melanoma tumor models, cGAS-
deficient mice exhibited tumor growth similar to that of WT mice
(Marcus et al., 2018). This suggests that the DNA sensor cGAS plays
a redundant role in tumor recognition by DCs. Of note, tumor cells
also express cGAS and spontaneously produce a low IFN-I level.
Abnormal cytoplasmic dsDNA in tumor cells leads to cGAS
activation and cGAMP production. The produced cGAMP is
then translocated to DCs where it activates STING (Schadt et al.,
2019). In one study, IFN-I was absent in co-cultures of cGAS-
deficient CT26 tumor cells with wild-type BMDCs, compared with
WT tumor cells (Schadt et al., 2019). These results revealed another
mechanism of DNA sensing of DCs, in which tumor cell-derived
cGAMP is recognized via STING. However, cGAMP exported by
tumor cells into the TME is cleared by extracellular ENPP1, a
cGAMP protein hydrolase (Carozza et al., 2020). It also showed
that cGAMP translocation mainly relied on the vector SLC19A1 as
well as gap junctions, a cell–cell communication mechanism
(Luteijn et al., 2019; Ritchie et al., 2019; Schadt et al., 2019).

PYHIN family proteins: AIM2 and IFI16

The cytosolic DNA sensor AIM2 has an N-terminal pyrin
domain and a C-terminal HIN-200 domain. The HIN-200
domain interacts with dsDNA in a sequence-independent
manner, subsequently recruiting apoptosis-associated speck-like
protein containing CARD (ASC) and pro-caspase-1 through the
pyrin domain to form a macromolecular complex called the
AIM2 inflammasome. This inflammasome formation process
activates caspase-1, which in turn cleaves pro-IL-1β and pro-IL-
18, and activates the pore-forming protein gasdermin D (GSDMD).
Next, GSDMD activation induces pyrotosis, an inflammatory form
of cell death, and causes massive release of mature forms of IL-1β
and IL-18 outside the cells (Man et al., 2016).

AIM2 expression in tumor-associated DCs correlates with
human melanoma tumor progression. AIM2 silencing promotes
tumor DNA sensing by BMDCs, as evidenced by augmented STING
signaling (Fukuda et al., 2021). The AIM2 inflammasome
manipulates DNA sensing of DCs through several mechanisms.
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The activated ASC protein interacts with STING and disrupts the
STING–downstream TBK1 interaction, thereby reducing IFN-I
production (Yan et al., 2018). Activated caspase-1 can bind and
cleave cGAS through its p20 structural domain (Wang Y. et al.,
2017). The membrane pores induced by gasdermin D, a pore-
forming protein, lead to intracellular K+ efflux, thereby inhibiting
cGAS-dependent IFN-β responses while inducing pyroptosis
(Banerjee et al., 2018). Furthermore, in pDCs,
AIM2 inflammasome activation inhibits MyD88-IRF7-mediated
IFN-I signaling by upregulating SOCS1 expression, which is a
crucial pathway through TLR9 sensing DNA (Yu et al., 2018).
Preventing AIM2 activation in DCs positively affects DC-
mediated DNA sensing. Further studies unveiled that the AIM2-
deficient DC vaccine, as an adjuvant, recruits more antigen-specific
CD8+ T cells by generating CXCL10, and improves the efficacy of the
combination of adoptive T-cell therapy and anti-PD-1 antibodies
against melanoma. Furthermore, AIM2 deficiency decreases IL-1β
and IL-18 production, which prevents regulatory T-cell infiltration
(Fukuda et al., 2021). Notably, Jiang et al. reported that tumor-
associated APCs highly express GSDMD, a key pore-forming
protein that induces pyroptosis following AIM2 activation.
Single-cell RNA-seq analysis demonstrated that GSDMD deletion
in APCs augmented the expression of cGAS-dependent interferon-
stimulated genes, thereby enhancing antigen presentation and
facilitating CD8+ T-cell-mediated antitumor immunity (Jiang
et al., 2022). Collectively, these findings underscore the possible
therapeutic significance of blocking the AIM2 inflammasome to
potentiate DNA sensing of DCs to promote antitumor
immune responses.

As PYHIN protein family members, human IFI16 and its mouse
immediate homolog, IFI204, serve as cytoplasmic DNA sensors that
induce IFN-β production by recruiting STING (Unterholzner et al.,
2010). In cGAS-deficient DCs, IFI204 knockdown abrogated
inducible STING phosphorylation following cytosolic DNA
stimulation, thereby underlining that IFI204 plays a crucial role
in STING activation (Hu et al., 2021). Additionally, the
deSUMOization of IFI204, a protein post-translational
modification, facilitated the IFI204–STING interaction and
augmented STING-dependent DNA sensing by DCs (Hu
et al., 2021).

DExD/H-box helicases

Another protein family involved in DNA sensing is RNA
helicases, which have two subsets: DEAH-box helicases (DHX)
and DEAD-box helicases (DDX). In a study on pDCs,
DHX9 recognized CpG-B and induced IFN-I through the
MyD88-IRF7 pathway, whereas DHX36 recognized CpG-A and
induced TNF-α and IL-6 through the MyD88-NF-κB pathway
(Kim et al., 2010). However, Zhang et al. reported that mDCs
with DHX9 or DHX36 knockdown exhibited normal cytokine
responses to B-form DNA (Zhang et al., 2011). Furthermore,
another study reported that DHX9 acts as a transcriptional co-
activator in APCs, which augments NF-κB activation in a DNA
sensing-independent manner (Ng et al., 2018). Collectively, these
results highlight the redundant role of DHX9 and DHX36 in DNA
sensing, which remains unexplored.

DDX41 binds DNA and STING through the DEADc structural
domain and triggers IFN-I production through the TBK1-IRF3
signaling pathway (Zhang et al., 2011). According to the research
of Singh et al., 2022, DDX41 exhibits DNA unwinding and single-
stranded annealing activity. DDX41 regulates cGAS activation by
modulating cytoplasmic dsDNA and ssDNA homeostasis. Thus,
whether DDX41 serves as a sensor for direct DNA sensing or as a
molecule with DNA-binding functions involved in regulating DNA
sensing remains unclear.

DNA-PK

The DNA-dependent protein kinase (DNA-PK) is another
major component involved in cellular response to DNA damage
and cytoplasmic DNA sensing. It comprises three subunits, namely,
ku70, ku80, and the catalytic subunit DNA-PKcs. According to the
study of Ferguson et al., DNA-PK binds to cytoplasmic DNA and
induces IRF3-dependent innate immune responses (Ferguson et al.,
2012). Ma et al. reported that DNA-PKcs is involved in regulating
TLR9-mediated DNA sensing. DNA-PK loss severely abrogated the
IFN response to CpG-ODN in BMDCs, but the detailed
mechanisms remain unclear (Ma C. et al., 2013; 2015). Thus, this
study demonstrated the role of DNA-PK in DNA sensing of DCs. In
THP-1 cells, however, DNA-PK phosphorylated cGAS, which
suppressed cGAMP generation (Sun et al., 2020). Another study
also reported the STING-independent DNA sensing function of
DNA-PK in human cells, with the heat shock proteins (HSPs)
HSPA8/HSC70 acting as downstream targets (Burleigh et al.,
2020). These aforementioned findings further indicate the
complexity of the DNA-PK function in DC-mediated DNA
sensing. Therefore, DNA-PK signaling and the signal crosstalk
between DNA-PK and other DNA sensors must be clarified.
Additionally, preclinical studies have reported that human
moDCs treated with the DNA-PK inhibitor NU7441 exhibited
increased MHC-I molecule expression, whereas PD-L1 and PD-
L2 expression was downregulated (Guo et al., 2019). This suggests a
strong potential strategy by using DNA-PK inhibitors as drug
candidates in DC vaccine preparation for cancer treatment.

MRE11

The MRE11-RAD50-NBS1 (MRN) complex, an ATP-
dependent nuclease, cleaves both unbound and obstructed DNA
termini to repair DNA through end joining or homologous
recombination (Hopfner, 2023). MRE11 degrades nascent
mtDNA replication forks to induce mtDNA instability, which
then triggers cGAS-activated accumulation of cytoplasmic DNA
substrates (Luzwick et al., 2021). MRE11 thus functions as a nuclease
involved inmitochondria-dependent cGAS activation. Furthermore,
Kondo et al. revealed that MRE11 is a pivotal player in the
recognition of cytoplasmic dsDNA and initiation of STING-
dependent signaling, which is not related to its nuclease activity.
shRNA-mediated MRE11 knockdown in BMDCs abrogated IFN-I
induction in response to DNA (Kondo et al., 2013). In a recent study,
when MRN complexes bind to nucleosome fragments, cGAS is
released from histones, which enables cGAS mobilization and
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activation by dsDNA (Cho et al., 2024). So, these results suggest that
MRE11 is involved in regulating STING-mediated DNA sensing
through binding to broken DNA.

TME and DNA sensing in DCs

Because of their heightened metabolic activity, tumor cells
usually generate substantial amounts of metabolic byproducts. If
these waste products accumulated in the TME, the function of
tumor-infiltrating immune cells would be negatively regulated.
Here, we discuss how severe TME alters DNA sensing in DCs.

Hypoxic responses

Hypoxia is observed in the TME of most solid tumors, as oxygen
diffusion limitations exceed the distance between tumor cells and
the vascular system (He et al., 2022). Hypoxia in the TME increases
HIF-1α levels in DCs. Indeed, it activates glycolytic HIF target genes
encoding enzymes, such as hexokinase 2 (HK2) and pyruvate kinase
M2 (PKM2), ultimately leading to a metabolic switch from
mitochondrial metabolism to glycolysis, which represents a
metabolic strategy for meeting the energy requirements of
DCs(Jantsch et al., 2008). Glycolytic reprogramming stimulates
DC maturation, migration, and T-cell priming (Guak et al., 2018;
Liu et al., 2019). In a recent study, enhanced glycolysis augmented
glycolytic ATP production in tumor-infiltrating DCs, which drove
STING signaling to facilitate DC-mediated antitumor immune
responses (Hu Z. et al., 2023). Additionally, TLR9-induced IFN-I
secretion by human pDCs was impaired following the
administration of 2-deoxy-D-glucose (2-DG), a glycolysis
inhibitor (Fekete et al., 2018). According to these results, elevated
intrinsic glycolysis augments DNA sensing of DCs. However, the
mechanism in which glycolytic ATP activates DNA sensors remains
unclear. Interestingly, the flow of glycolytic and pentose phosphate
pathways in DCs increased rapidly following stimulation with CpG,
cGAMP, and tumor DNA. By increasing the intracellular succinate
concentration and driving the production of mitochondrial reactive
oxygen species, DCs stabilize HIF-1α to induce glycolysis (Gomes
et al., 2021). This indicates that glycolytic metabolic reprogramming
occurs in DCs after DNA sensing. Taken together, DNA sensing by
DCs accelerates HIF-1α-mediated glycolysis, and glycolysis further
improves this DNA sensing, which thus establishes a positive
feedback loop. However, STING was recently reported to restrict
aerobic glycolysis by targeting hexokinase II (HK2) and blocking its
hexokinase activity, which is independent of its innate immune
recognition function (Zhang et al., 2023). After all, the TME induces
hypoxic stress in DCs. Under such hypoxic stress, DCs exhibit
altered metabolic activities and can recognize tumor DNA more
efficiently.

Lactate

Lactate is primarily produced through the “Warburg effect” of
tumor cells in the TME. Tumor cells restore metabolism, increase
glucose uptake, and ferment glucose to lactate through glycolysis,

even under well-oxygenated conditions (Liberti and Locasale, 2016).
Extracellular lactate interacts with cells via G protein-coupled
receptor 81 (GPR81) on the cell surface or is directly transported
into cells through the monocarboxylate transporter (MCT) on the
cell surface. MCT-1 is the primary lactate importer, whereas MCT-4
is one key lactate exporter (Caslin et al., 2021). Tumor cells actively
secrete substantial amounts of lactate into the TME throughMCT-4,
and the secreted lactate activates GPR81 on tumor cells. This
autocrine mechanism is associated with tumor growth,
metastasis, and immune evasion (Roland et al., 2014; Feng
et al., 2017).

Notably, lactate in the TME also activates the GPR81 receptor on
DCs. In a study on pDCs, Ca2+ signaling following TLR9 activation
induced a downstream CAMKII signaling cascade at physiological
calcium concentrations, which resulted in IFN-I release
(Raychaudhuri et al., 2020). Following lactate-mediated activation
of GPR81 on pDCs, Gβγ subunit-dependent intracellular Ca2+

mobilization is induced. When the cytoplasmic Ca2+ level
exceeds its physiological concentrations, Ca2+ activates CALN
signaling rather than CAMKII signaling, which inhibits
TLR9 activation (Raychaudhuri et al., 2019). Moreover, CHBA, a
GPR81-specific agonist, eliminates the immunostimulatory
response of DCs to exogenous DNA and weakens their antigen-
presenting function (Brown et al., 2020). This suggests that lactate
activates the GPR81-Ca2+-CALN signaling pathway and inhibits
DNA sensing of DCs. Of note, DCs express MCT-1 that mediate the
cytoplasmic import of lactate into the TME. After lactate enters the
cell, lactate and its associated H+ ions accumulate and serve as
negative feedback regulators controlling glycolytic ATP production,
which is essential for DNA sensing in DCs (Raychaudhuri et al.,
2019). This indicates that lactate inhibits DNA sensing of DCs by
influencing the cellular metabolism required for DCs activation.
Additionally, lactate accumulation in pDCs enhances tryptophan
metabolism and kynurenine production, which then leads to the
expansion of FoxP3+CD4+ regulatory T cells and promotes TME
immunosuppression (Raychaudhuri et al., 2019). In summary,
effective lactate metabolism is critical for DCs to perform their
physiological function in the TME. Lactate accumulation disrupts
acid–base homeostasis and inhibits DNA sensing of DCs, thus
resulting in tumor immune escape.

Reactive oxygen species

As a byproduct of aerobic respiration, DC-generated reactive
oxygen species (ROS) in the TME are chiefly derived from increased
NADPH oxidase (NOX) activity, fatty acid β-oxidation, and
inefficient electron conduction in the mitochondrial electron
transport chain (Giovanelli et al., 2019). In addition, DCs
phagocytose ROS-containing microvesicles (MVs) secreted by
tumor cells and thus uptake exogenous ROS (Battisti et al.,
2017). Numerous studies have linked ROS to DNA sensing of
DCs. On evaluating the ROS level in BMDCs, a study found that
ROSlo DCs were highly responsive to TLR stimulation, whereas
ROShi DCs exhibited a low response (Sheng et al., 2010). This
indicates that different ROS levels exert varying influences on
DNA sensing functions. First, NOX mediates TLR9 translocation
from the ER to endosomes, which is essential for TLR9 to play its
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DNA-sensing function (Müller-Calleja et al., 2023). Upon TLR
activation, NOX2 is recruited to the phagosomes of DCs to
mediate sustained production of low ROS levels. ROS inhibits
acid hydrolase activity by inducing endolysosomal alkalinization,
which then prevents nucleic acid degradation in endosomes and
promotes DNA sensing by TLR9 (Savina et al., 2006). Interestingly,
DC-derived ROS also trigger SENP3 accumulation and the
SENP3–IFI204 interaction, thus catalyzing
IFI204 deSUMOylation and boosting STING signaling activation
(Hu et al., 2021). These aforementioned results suggest that low ROS
levels can promote DNA sensing in DCs.

Tumor-infiltrating DCs usually have higher ROS levels because
of TME’s complexity (Hu et al., 2021). High ROS levels induce DNA
damage, lipid peroxidation, and protein denaturation, which have
more complex effects on DNA sensing of DCs. Guanine oxidation to
8-hydroxyguanine (8-OHG) is a characteristic of oxidative damage
to DNA. 8-OHG potentiates STING-dependent DNA sensing via
resisting cytoplasmic 3′ repair exonuclease 1 (TREX1)-mediated
degradation (Gehrke et al., 2013; Pazmandi et al., 2014; Fang et al.,
2021). Furthermore, ROS-induced lipid peroxidation alters the
permeability of endolysosomal and mitochondrial membranes,
thereby resulting in DNA leakage and triggering cytoplasmic
DNA sensing (Dingjan et al., 2016; Cheng A. N. et al., 2020).
Recent studies have also unveiled the inhibitory effect of ROS on
STING. In macrophages, ROS directly oxidize cysteine 147 on
STING, thus inhibiting STING polymerization and activation of
downstream signaling events (Tao et al., 2020). Additionally,
inactivation of glutathione peroxidase 4 augmented lipid
peroxidation and subsequent STING carbonylation at C88, which
impeded the transport of STING from the ER to the Golgi complex
(Jia et al., 2020). In contrast to the DCs phagocytic pathway adapted
to antigen presentation, macrophages terminate invading pathogens
through oxidative bursts of ROS. Abundant ROS production
simultaneously hinders STING-mediated DNA sensing.
Furthermore, ROS is involved in the induction of various cell
death forms, such as reticulocyte death, ferroptosis, and
oxepitosis (Galluzzi et al., 2018; Holze et al., 2018).

ER stress

Protein folding, modification, and secretion must be executed
efficiently for DCs to respond and adapt to the activation of innate
immune sensors. Despite these processes being tightly regulated,
various extrinsic and intrinsic factors can disrupt ER’s protein
folding capacity, thus leading to ER stress, which is characterized
by abnormal accumulated misfolded proteins. Subsequently,
multiple events occur to facilitate the restoration of ER
homeostasis, including the unfolded protein response (UPR), ER-
associated degradation (ERAD), and autophagy (Chen and Cubillos-
Ruiz, 2021).

Three ER transmembrane stress sensors, namely, IRE1α, PERK,
and ATF6, cooperatively activate the UPR. The IRE1α-XBP1 arm of
the UPR plays an essential role in DC homeostasis. When XBP1 in
DCs is specifically deleted, lung cDC1s are lost due to apoptosis
(Tavernier et al., 2017). XBP1 loss also impairs the cDC1s phenotype
and antigen presentation function, which results from the IRE1α-
dependent degradation of mRNAs encoding MHC-I molecules

(Osorio et al., 2014). Additionally, the IRE1α-XBP1 arm
primarily mediates prostaglandin synthesis in DCs by promoting
Cox-2 and PGES-1 expression (Chopra et al., 2019). However, ROS
is accumulated within dysfunctional tumor-associated DCs, which
triggers sustained activation of ER stress and UPR by producing
lipid peroxidation byproducts that modify ER-resident proteins
(Cubillos-Ruiz et al., 2015). The IRE1α-XBP1 arm modulates
lipid metabolism, promotes triglyceride biosynthesis, and induces
abnormal lipid accumulation, thus inhibiting the antigen-presenting
function of DCs and antitumor T-cell responses (Cubillos-Ruiz
et al., 2015). IRE1a-XBP1 signaling is also involved in regulating
DNA sensing of DCs. Chaudhary et al. reported that IRE1α-XBP1
signaling activation suppresses IFN-I production by TLR9-activated
pDCs. XBP1 activation induces the expression of phosphoglycerate
dehydrogenase and relinks glycolysis to serine biosynthesis. With
this process, pyruvate’s access to the tricarboxylic acid cycle is
reduced and mitochondrial ATP (mATP) generation is impaired.
mATP is essential for TLR9 recognition in pDCs (Chaudhary et al.,
2022). In addition, IRE1α-XBP1 signaling is involved in the
lysosomal degradation of STING at the resting state (Pokatayev
et al., 2020). Thus, blocking of IRE1α-XBP1 signaling facilitates
DNA sensing of DCs. However, In macrophages, XBP1 increases
cytoplasmic mtDNA release by inhibiting BNIP3-mediated
activation of mitophagy, which then promotes cytoplasmic
cGAS-STING signaling (Wang Q. et al., 2022). A study from our
collaborators unveiled that IRE1α-XBP1 pathway inhibition or
activation through pharmacological and genetic methods caused
no alteration in STING protein expression levels (Ji et al., 2023).
Therefore, additional studies are warranted to clarify the
relationship between IRE1α-XBP1 signaling and cGAS-
STING signaling.

At the steady state, DCsmaintain protein folding homeostasis by
activating PERK-mediated eIF2α phosphorylation. PERK
inactivation increases overall protein synthesis and regulates IFN-
β expression, while impairing LPS-stimulated DCs migration
(Mendes et al., 2021). Additionally, PERK activation-induced
transcription factor CHOP participates in IL-23 expression in
DCs by binding to the IL-23 promoter (Goodall et al., 2010). A
recent study revealed a non-classical cGAS-STING-PERK pathway.
Following cGAMP binding, STING interacts with and induces
PERK activation in the ER, independent of the UPR. When this
pathway is activated, mRNA translation is significantly inhibited at
the overall cellular level, but the synthesis of inflammatory- and
survival-preferred proteins is specifically promoted (Zhang et al.,
2022). Furthermore, PERK is involved in stress-mediated ER
autophagy, which coordinates the interferon response by
translocating the ER-resident STING to autophagosomes (Moretti
et al., 2017). According to the aforementioned results, PERK may be
specifically involved in maintaining DC homeostasis and function
after DNA sensing.

The relationship between ATF6 and DCs remains poorly
understood. ER stress-induced ATF6 activation has been
suggested to enhance the pro-inflammatory properties of liver
kupffer cells (KCs) in response to TLR stimulation.
ATF6 siRNA-treated KCs produce lower levels of TNF-α and IL-
6 but higher levels of IL-10 (Rao et al., 2014). Additionally, chronic
ER stress causes the release of ATF6-dependent mtDNA, which then
triggers cGAS-STING-dependent IFN-I responses (Rösing et al.,
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2024). This indicates that ATF6 activation positively affects DNA
sensing of DCs.

Being a conserved quality control mechanism, ERAD is
responsible for the removal of misfolded proteins from the ER.
Our current findings indicate that ERAD is essential for DCs
homeostasis. ERAD dysfunction induces cDC1s loss in different

mouse organs, and the related mechanisms are being investigated.
The relationship between ERAD and STING-mediated innate
immunity has been elaborated in recent studies. ERAD negatively
regulates STING-mediated DNA sensing in macrophages under
basal conditions. For this purpose, it ubiquitinates and targets
nascent STING proteins for proteasomal degradation (Ji et al.,

FIGURE 2
DNA-sensing models of DCs in the context of antitumor immunity. In TME, DNA and cGAMP derived from tumor cells can be recognized by DNA
sensors in DCs, resulting in the activation of tumor-infiltrating DCs and the subsequent induction of type-I IFN. These activated DCs migrate to tumor-
draining lymph nodes, where they present tumor antigens to CD8+ T-cells. Subsequently, CD8+ T-cells are recruited to the tumor site for mediating
cytotoxicity against tumor cells. In addition, the secretion of type-I IFN facilitates the recruitment and activation of NK cells for direct tumor killing.
However, high levels of lactate and ROS in TME can inhibit DNA sensing of DCs andmediate tumor immune escape. DNA sensing of DCs can be targeted
to enhance anti-tumor immune response in tumor immunotherapy. Currently, different tumor immunotherapy strategies have been designed to target
the DNA sensing of DCs to enhance the host anti-tumor immune response. Herein, radiotherapy and chemotherapy induce immunogenic death of
tumor cells to release more tumor-associated DNA. Immune checkpoint therapies such as anti-CD47 and anti-TIM-3 antibodies were employed to
enhance the phagocytosis of DCs to increase the uptake of tumor DNA. Furthermore, intratumoral injection of agonists targeting TLR9 or STING could
directly activate DNA sensors in tumor-associated DCs, leading to DC activation and the initiation of an anti-tumor immune response (Created with
BioRender.com).
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2023). In addition, the E3 ubiquitin ligases RNF5 and TRIM30α
serve as negative feedback regulators involved in ubiquitination
degradation following STING activation (Wang et al., 2015; Yang
et al., 2022). This suggests that ERAD regulates STING abundance in
the basal state and STING activity in the activated state.

Tumor immunotherapy and DNA sensing
in DCs

Currently, tumor immunotherapies used in clinics can affect or
even depend onDNA sensing of DCs. In this section, we discuss how
these therapeutic interventions enhance DNA sensing in
DCs (Figure 2).

Genotoxic cancer therapy

Genotoxic cancer therapies kill tumor cells by inducing DNA
damage. Chemotherapy and radiotherapy (RT) are the most
commonly applied genotoxic therapies via triggering cell cycle
arrest or cell death by forming double-stranded breaks, single-
stranded breaks, and interstrand cross-links (Larsen et al., 2022).
Chemotherapy and radiotherapy have been linked to the activation
of DNA sensing, interferon secretion, and initiation of CD8+ T cell
responses (Deng et al., 2014; Barlow et al., 2016). Genotoxic cancer
therapies are known to manipulate DNA sensing of DCs through
two key mechanisms, namely, induction of immunogenic cell death
(ICD) and activation of intrinsic DNA sensing in tumor cells.

It is well known that radiotherapies and chemotherapies can
induce ICD in tumor cells. Dying tumor cells generate new antigenic
epitopes and release DAMPs, which include tumor DNA. These
DAMPs can be recognized by DNA sensors expressed in DCs
(Ahmed and Tait, 2020). ATP is another crucial DAMP that
recruits CD11c+CD11b+Ly6Chigh DCs to tumors in a CCL2/
CCR2-dependent manner and stimulates local differentiation of
this functional APC population (Ma Y. et al., 2013; 2014).
Additionally, tumor cells express calreticulin and HSPs after
chemotherapy, and the exposure of these “eat-me” signals
promotes cellular uptake of DCs(Obeid et al., 2007). Similarly,
cancer cell-released HMGB1 mediates extracellular DNA uptake
by CD103+ DCs via forming HMGB1–DNA complexes (de Mingo
Pulido et al., 2021). Altogether, immunogenic death of tumor cells
promotes DNA sensing of DCs by increasing the opportunities for
contact between DCs and DNA in the TME and by stimulating
phagocytosis of DNA by DCs.

The progression of the cell cycle during mitosis after exogenous
DNA damage leads to micronuclei formation. These micronuclei
consist of chromosomal DNA surrounded by their nuclear
membrane. When the micronuclear envelope is disrupted, gDNA
leaks into the cytoplasm (Harding et al., 2017; Mackenzie et al.,
2017). Moreover, DNA damage activates the pro-apoptotic protein
BAK/BAX and leads to permeabilization of the mitochondrial outer
membrane. When mitochondrial permeability changes, mtDNA is
exposed to the cytoplasm (McArthur et al., 2018). Thus, genotoxic
cancer therapy-induced extensive DNA damage results in massive
DNA accumulation in the cytoplasm. Then, these ectopic DNAs
trigger intrinsic cGAS-STING activation in tumor cells, thus leading

to IFN-I release (Yang et al., 2021). According to recent studies,
activation of intrinsic DNA sensing in tumor cells is essential for
DC-mediated DNA sensing. First, RT-stimulated IFN-I secretion by
tumor cells is required for recruiting and activating Batf3-dependent
DCs, which is essential for initiating tumor-specific CD8+ T cell
response. Furthermore, tumor cells with a deficient cGAS-STING-
IFN pathway cannot initiate RT-induced antitumor immunity
(Vanpouille-Box et al., 2017). This indicates that RT-induced
IFN-I production enhances tumor immunogenicity. Remarkably,
RT induces increased cGAMP export from tumor cells to the
extracellular compartment, thereby directly activating STING in
DCs, and extracellular cGAMP levels correlate with the RT efficacy
(Carozza et al., 2020). Thus, intrinsic DNA sensing in tumors is
important for RT-induced antitumor immune response.

However, some studies showed that tumor cells fail to effectively
produce IFN-I in genotoxic cancer therapies. Restricted intrinsic
DNA sensing in tumors suggests the presence of
immunosuppressive mechanisms. During RT, tumor cells activate
caspase-activated DNAase, which limits premature mitotic
progression by reversibly increasing the number of genome-wide
DNA breaks and ultimately avoids gDNA leakage (Larsen et al.,
2022). Radiation doses of greater than 12–18 Gy induce DNA
exonuclease Trex1, which can degrade DNA accumulating in the
cytosol following radiation exposure (Vanpouille-Box et al., 2017).
Furthermore, irradiated tumor cells hijack apoptotic caspase so as to
inhibit mtDNA-induced STING-dependent IFN-I production
(White et al., 2014; Han et al., 2020). Thus, cancer cell-induced
apoptotic caspase cascades mediate silencing of immunorecognition
of mitochondrial apoptosis. Unfortunately, activation of intrinsic
DNA sensing in tumors sometimes does not mean increased
antitumor immunity. A more recent study demonstrated that
intracellular cGAS-STING-activated cancer cells can resist
chemotherapy drug-induced stress by hijacking evolutionarily
conserved NF-κB inflammatory signaling (Lv et al., 2023).
Moreover, IRF3, a downstream transcription factor of the cGAS-
STING pathway, directly augmented PD-L1 transcription in
hepatocellular carcinoma cells following radiation exposure. PD-
L1 binds and stabilizes mRNA levels of NBS1, BRCA1, and other
genes associated with the DNA damage response, thereby increasing
cellular resistance against DNA damage (Tu et al., 2019; Du S.-S.
et al., 2022).

Immune checkpoint blockade

The discovery of immune checkpoints and the development of
immune checkpoint inhibitors (ICIs) have revolutionized the tumor
immunology field, thus increasing the treatment opportunities for some
cancer patients. Most immune checkpoint therapies function primarily
by stimulating adaptive immunity, particularly through promoting
T-cell response, such as the usage of CTLA-4 and PD-1/PD-
L1 monoclonal antibodies. As innate immune cells, DCs also express
innate immune checkpoints. DCs use these checkpoints to detect and
eliminate tumor cells through phagocytosis. Phagocytic checkpoints in
cancer immunotherapy have been previously reviewed (Liu et al., 2023).
Indeed, targeting phagocytic checkpoints for increasing the phagocytic
function of DCs may mean increased DNA sensing and recent studies
have predominantly focused on CD47 and TIM-3.
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CD47 is a protein with the function of transmitting the “don’t eat
me” signal. It is usually overexpressed on the tumor cell surface and
mediates tumor cell immune evasion by inhibiting DC-mediated
phagocytosis through signal regulatory protein α (SIRPα) (Cheng-
En et al., 2022). When CD47 binds to the inhibitory receptor SIRPα,
phosphorylation of the immunoreceptor tyrosine-based inhibitory
motifs (ITIMs) of SIRPα is promoted, which recruits SHP-1 and
SHP-2 to dephosphorylate the motor protein myosin IIA and thus
inhibit phagocytosis (Logtenberg et al., 2020). Furthermore, high
CD47 expression in tumor cells is correlated with low intratumoral
infiltration of DCs and the induction of immune tolerance (Liu et al.,
2016; Wang S. et al., 2022). CD47 blockade enhanced DC-mediated
phagocytosis in murine colorectal cancer and reduced tumor DNA
degradation in phagosomes by inhibiting phagosomal acidification
(Xu et al., 2017). Tumor DNA accumulation in the cytoplasm
promotes STING-dependent DNA sensing in DCs. Additionally,
the CD47 blockade increased CXCL9 and IL-12 secretion by DCs to
promote its intratumoral infiltration and NK cell activation (Wang
S. et al., 2022). In conclusion, antagonistic monoclonal antibodies
targeting CD47-SIRPα signaling are a novel immunotherapeutic
strategy that functions by manipulating DNA sensing of DCs.

T-cell immunoglobulin and mucin domain containing-3 (TIM-3) is
another immune checkpoint molecule exerting negative regulatory
effects. TIM-3 expression on CD8+ T cells is a marker of T-cell
dysfunction (Sakuishi et al., 2010). Indeed, DCs in tumor tissues
exhibit higher TIM-3 expression than those in normal tissues,
particularly cDC1s (Chiba et al., 2012; de Mingo Pulido et al., 2018).
Using TIM-3 conditional knockout mice, Dixon et al. demonstrated that
deletion of TIM-3 on DCs, but not on CD4+ or CD8+ T cells, promotes
robust antitumor immunity (Dixon et al., 2021). TIM-3 inhibits cDC-
mediated endocytosis of extracellular dsDNA, thereby preventing
cytoplasmic cGAS-STING activation and IFN-I release (de Mingo
Pulido et al., 2021). Additionally, DC-derived TIM-3 interacts with
HMGB1 to inhibit exogenous nucleic acids from being translocated into
endosomal vesicles, which limits TLR9-mediated DNA sensing (Chiba
et al., 2012). Similarly, TIM-3 recruits IRF7 and p85 into lysosomes for
degradation, such that it interferes with TLR9 signaling (Schwartz et al.,
2017). The aforementioned studies suggest that TIM-3 onDCs is pivotal
for evading nucleic acid-induced activation of the innate immune
system. Thus, when TIM-3 on DCs is blocked, innate immune
recognition is activated and an antitumor immune response is
initiated. In a mouse breast cancer model, TIM-3 blockade effectively
limits tumor growth by enhancing cGAS-STING pathway activation in
CD103+ DCs (deMingo Pulido et al., 2018). Following TIM-3 blockade,
CXCL9 and CXCL10 expression by intratumoral DCs is high, which
promotes the spatial localization of cDC1s and CD8+ T cells and drives
the T-cell antitumor immune response in a CXCR3 receptor-dependent
manner (de Mingo Pulido et al., 2018; Gardner et al., 2022). In addition,
TIM-3 deletion prevents cDC1s from acquiring a regulatory program
and promotes the maintenance of the CD8+ effector T cell pool (Dixon
et al., 2021).

Nucleic acid receptor agonist

Nucleic acid receptor agonists have unique roles in stimulating
antitumor immunity. Numerous studies have used nucleic acid
receptor agonists as adjuvants to increase the efficacy of cancer

therapies such as chemotherapy, radiotherapy, and immune
blockade therapy (Carbone et al., 2021; Lee et al., 2022).
TLR9 and STING agonists targeting DNA sensors are the most
advanced programs in the clinic (Table 1). By activating DNA
sensors in tumor and immune cells, these agonists massively
activate immune cells and increase tumor immunogenicity, which
creates an altered immune landscape in the TME (Wang H. et al.,
2017;Wang-Bishop et al., 2020; Cascini et al., 2023). Other strategies
include using unique combinations of agonists or using the agonists
as vaccine adjuvants widely available for personalized cancer
immunotherapy (Kinkead et al., 2018; Ni et al., 2020; Hajiabadi
et al., 2023).

TLR9 agonist

Currently developed TLR9 agonists are primarily synthetic
oligodeoxynucleotides containing unmethylated CG dinucleotides
(CpG-ODNs). They exert antitumor effects by activating pDCs
and triggering interferon release. TLR9 agonists have been
investigated in preclinical models as monotherapy and in
combination with other cancer therapies (Carbone et al., 2021;
Younes et al., 2021). Unfortunately, delivering CpG efficiently into
cells has been an intractable problem. To overcome this hindrance,
several preclinical studies have used liposomes as delivery vehicles
or coupled TLR9 agonists to nanoparticles. These techniques
increase the cycling stability of CpG while allowing for
targeting cytoplasm of DCs (Kocabas et al., 2020; Du Y. et al.,
2022; Sui et al., 2022). This offers a manageable delivery strategy
for TLR9 agonist-based tumor immunotherapy. TLR9 agonists
administered intratumorally in combination with ICIs or other
immunomodulators are the latest clinical treatments. These
treatments significantly improve the efficacy of tumor
immunotherapy (Table 1). Intratumoral injection of SD-101, a
synthetic class C CpG oligonucleotide, in combination with
radiotherapy or anti-PD-1 therapy has exhibited preliminary
clinical activity (Frank et al., 2018; Ribas et al., 2018; Cohen
et al., 2022). Based on the compelling proof-of-concept data in
mice displaying immune-mediated tumor regression,
intratumoral administration of the combination of SD101 and
checkpoint inhibitors is currently undergoing clinical trials for
pancreatic cancer and lymphoma (Hong et al., 2022; Capacio et al.,
2023). The combination of CMP-001, a virus-like particle
containing the CpG-A TLR9 agonist, and anti-PD-1 has
produced positive effects on PD-1-resistant advanced
melanoma patients (Ribas et al., 2021). Additionally, preclinical
models have suggested that intratumoral administration of CMP-
001 combined with anti-PD1 therapy positively affected head and
neck squamous cell carcinoma, and related clinical trials are
ongoing (Cheng Y. et al., 2020). IMO-2125, an intratumoral
agent, was combined with anti-CTLA4 and used against anti-
PD1 refractory melanoma (Haymaker et al., 2021).
Disappointingly, the results of the recent clinical phase III
study on IMO-2125 unveiled that IMO-2125 combined with
CTLA4 monotherapy could not achieve its objective response
rate compared with CTLA4 alone. Moreover, a phase I trial of
MGN-1703 combined with anti-PD-1 for advanced solid tumors
is ongoing.
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TABLE 1 Clinical trials use agonists targeting DNA sensor for cancer immunotherapy.

Target Drug name Disease Phase ROA Combination agent Trial ID

TLR9 SD-101 HCC、ICC I/II IT anti-PD1, anti-CTLA4 NCT05220722

prostate cancer II IT anti-PD1 and RT NCT03007732

pancreatic cancer I IT anti-PD1 NCT05607953

lymphoma I IT anti-OX40 and RT NCT03410901

melanoma I IT anti-PD1, anti-CTLA4, anti-LAG3 NCT04935229

TLR9 CMP-001 HNSCC II IT anti-PD1 NCT04633278

prostate cancer II IT anti-PD1 NCT05445609

breast cancer II IT RT NCT04807192

solid tumors II IT anti-PD1 NCT04916002

lymphoma I/II IT anti-PD1 NCT03983668

melanoma II IT anti-PD1 NCT04698187

melanoma II IT anti-PD1 NCT04401995

melanoma II/III IT anti-PD1 NCT04695977

melanoma II IT anti-PD1 NCT03618641

melanoma II IT anti-PD1 NCT04708418

TLR9 IMO-2125 solid tumors II IT anti-PD1 NCT03865082

solid tumors II IT anti-PD1, anti-CTLA4 NCT04270864

pancreatic cancer I IT anti-PD1 and IRE NCT04612530

melanoma II IT none NCT04126876

TLR9 MGN-1703 melanoma I IT anti-CTLA4 NCT02668770

STING IMSA-101 solid tumors II IT anti-PD1 and RT NCT05846659

solid tumors I IT CPI NCT06026254

NSCLC、RCC II IT CPI NCT05846646

STING TAK-676 solid tumors I/II i.v. anti-PD1 and chemotherapy NCT04420884

NSCLC、TNBC、SCCHN I i.v. anti-PD1 and RT NCT04879849

STING BI 1387446 solid tumors I IT anti-PD1 NCT04147234

STING BMS-986301 solid tumors I IT anti-PD1, anti-CTLA4 NCT03956680

STING SB 11285 solid tumors I i.v. anti-PDL1 NCT04096638

STING GSK3745417 solid tumors I i.v. anti-PD1 NCT03843359

myeloid malignancies I i.v. none NCT05424380

STING KL340399 solid tumors I i.v. none NCT05387928

solid tumors I IT none NCT05549804

STING SNX281 solid tumors I i.v. anti-PD1 NCT04609579

STING CRD3874-SI sarcoma、merkel cell cancer I i.v. none NCT06021626

STING TAK-500 solid tumors I/II i.v. anti-PD1 NCT05070247

STING ONM-501 solid tumors I IT anti-PD1 NCT06022029

Source: ClinicalTrials.gov.

HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma;

TNBC, triple-negative breast cancer; SCCHN, squamous-cell carcinoma of the head and neck; IT, intratumoral; i.v., intravenous; ROA, route of administration; RT, radiation therapy; IRE,

irreversible electroporation.
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STING agonist

STING agonists are used as immunotherapeutic adjuvants in
numerous preclinical studies to improve the antitumor effects of
tumor immunotherapy (Wang H. et al., 2017; Sun et al., 2021). The
prevailing view links STING activation with increased tumor
immunogenicity, immune cell activation, and initiation of
antitumor-specific immunity (Woo et al., 2014; Falahat et al.,
2019; Hayman et al., 2021). According to recent studies, STING
plays a critical role as an inhibitor of tumor metastatic outbreaks in
preventing cancer cells from progressing from a dormant state to
aggressive metastasis (Hu J. et al., 2023). Notably, several human
cancer types, such as colorectal cancer and melanoma, evade
immune surveillance by losing STING proteins (Xia et al., 2016b;
2016a). When STING signaling is restored by epigenetic
reprogramming, tumor antigenicity is improved (Falahat et al.,
2023). However, STING activation also promotes tumor cell
survival and drives cancer progression, metastasis, and
immunosuppression (Kwon and Bakhoum, 2020). Li et al., 2022
found that STING agonists resulted in the expansion of regulatory
B cells with immunosuppressive properties and inhibited NK cell-
mediated antitumor immunity by secreting IL-35. STING activation
not only induces immunosuppressive cell subpopulations but also
upregulates the expression of immunosuppressive molecules, such
as PD-L1 and IDO. This contributes to immune tolerance in cancer
(Lemos et al., 2016; Luo et al., 2023). Furthermore, STING activation
can induce apoptosis of DCs and T cells (Gulen et al., 2017; Pang
et al., 2022). Counterintuitively, chromosomal instability (CIN)-
induced chronic activation of the STING pathway in tumor cells
does not trigger the interferon pathway associated with tumor
immune clearance, but instead facilitates tumor immune escape
through ER stress responses. In several tumor models, STING
inhibitors reduce CIN-driven cancer metastasis (Li et al., 2023).
In summary, STING activation plays a “double-edged sword” role in
tumor immunity, and comprehending the different outcomes of
STING activation can offer new ideas for STING agonist-based
tumor immunotherapy.

First-generation STING agonists are derivatives of cyclic
dinucleotides (CDNs). CDNs, including c-diGMP, c-diAMP,
3′,3′-cGAMP, and 2′,3′-cGAMP, are natural ligands for STING.
However, CDNs application is currently limited to intratumoral
administration because of its poor stability, bad cytoplasmic
delivery, and insufficient activation of all human STING
subtypes. Current studies on STING agonists predominantly
focus on small-molecule agonists derived from non-CDNs.
Through large-scale drug screening targeting the cGAS-STING
pathway, researchers identified a non-nucleotide, small-molecule
STING agonist, SR-717. In mouse melanoma models,
intraperitoneally injected SR-717 induced adaptive immune-
mediated tumor regression (Chin et al., 2020). Oral
administration of MSA-2, a non-nucleotide STING agonist,
augments PD-1 blockade-mediated antitumor effects in a mouse
tumor model (Pan et al., 2020). Non-CDNs small-molecule STING
agonists currently investigated in combination with checkpoint
inhibitors are GSK3745417, KL340399, SNX281, and CRD3874-
SI (Table 1). In some preclinical studies, targeted delivery of STING
agonists to DCs through nanoparticles or virus-like vectors has been
investigated to optimize antigen-specific antitumor immune

responses (Gou et al., 2021; Jneid et al., 2023). TAK-500 is a
CCR2-targeted antibody-drug coupling developed based on
STING agonists and currently in clinical trials. ONM-501 is a
cGAMP-loaded dual-activating polyvalent STING agonist, with
the polymer used to construct micelles also binding and
activating STING. Related clinical phase I trials are ongoing (Li
et al., 2021).

Concluding remarks

As innate immune cells, DCs express natural sensors to detect
tumor cell-derived DNA, which initiates adaptive anti-tumor
immune responses. The identification of DNA sensors, such as
TLR9 and cGAS, enriched the understanding of natural immune
recognition. However, there remain numerous candidate DNA
sensors whose recognition mechanisms remain unclear. Multiple
metabolites in the TME can modulate the DNA sensing of DCs by
manipulating the metabolism of DCs. Therefore, metabolically
targeted therapies against tumor cells or DCs can promote DNA
sensing of DCs and require further exploration. In addition, a variety
of tumor immunotherapies are designed to increase the activation of
DNA sensors of DCs. A thorough understanding of the role of DNA
sensors in DCs will provide insights into DC-mediated tumor
immunotherapy.
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Glossary

APC antigen-presenting cell

AP1 activator protein 1

BMDC bone marrow-derived dendritic cell

cDC conventional DC

CTL cytotoxic T lymphocyte

cGAS cyclic GMP–AMP synthase

CIN chromosomal instability

CDN cyclic dinucleotide

CPI checkpoint inhibitor

DC dendritic cell

DAMP damage-associated molecular pattern

DHX DEAH-box helicase

DDX DEAD-box helicase

DNA-PK DNA-dependent protein kinase

ER endoplasmic reticulum

ERAD endoplasmic reticulum-associated degradation

GSDMD gasdermin D

GPR81 G protein-coupled receptor 81

HK2 hexokinase 2

HSP heat shock protein

IFN-I type 1 interferon

IRF7 IFN regulatory factor 7

ICD immunogenic cell death

ICI immune checkpoint inhibitors

ITIM immunoreceptor tyrosine-based inhibitory motif

IKK IκB kinase

IRAK IL-1R-associated kinase

KC kupffer cell

moDC monocyte-derived DCs

MyD88 myeloid differentiation primary response protein 88

MCT monocarboxylate transporter

MV microvesicle

PAMP pathogen-associated molecular pattern

PRR pattern recognition receptor

pDC plasmacytoid DCs

PKM2 pyruvate kinase M2

ROS reactive oxygen species

RT radiotherapy

STING stimulator of interferon gene

SIRPα signal regulatory protein α

TLR9 toll-like receptor 9

TAA tumor-associated antigen

TME tumor microenvironment

TIR toll/IL-1 receptor

TRAF6 TNF receptor-associated factor 6

TAK1 TGF-β activated kinase 1

TIM-3 T-cell immunoglobulin and mucin domain containing-3

TREX1 3′ repair exonuclease 1

UPR unfolded protein response

2-DG 2-deoxy-D-glucose

8-OHG 8-hydroxyguanine
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