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Introduction: Proteins that adopt multiple conformations pose significant
challenges in structural biology research and pharmaceutical development, as
structure determination via single particle cryo-electron microscopy (cryo-EM) is
often impeded by data heterogeneity. In this context, the enhanced signal-to-
noise ratio of singlemolecule cryo-electron diffraction (simED) offers a promising
alternative. However, a significant challenge in diffraction methods is the loss of
phase information, which is crucial for accurate structure determination.

Methods: Here, we present DiffraGAN, a conditional generative adversarial
network (cGAN) that estimates the missing phases at high resolution from a
combination of single particle high-resolution diffraction data and low-
resolution image data.

Results: For simulated datasets, DiffraGAN allows effectively determining protein
structures at atomic resolution from diffraction patterns and noisy low-
resolution images.

Discussion: Our findings suggest that combining single particle cryo-electron
diffraction with advanced generative modeling, as in DiffraGAN, could
revolutionize the way protein structures are determined, offering an
alternative and complementary approach to existing methods.
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1 Introduction

Single particle cryo-electron microcopy (cryo-EM) allows resolving the structure of
macromolecular complexes with near atomic resolution (Zhang et al., 2008; Nakane et al.,
2020; Yip et al., 2020). However, visualizing such biological complexes faces certain
limitations. These include the very poor contrast of proteins, the need for low electron
dose conditions to prevent radiation damage to the proteins, and the thickness of the ice
encasing the specimens (Bepler et al., 2020). The expected signal-to-noise ratio (SNR) of a
cryo-EM micrograph is estimated to be only as high as 0.1 (Baxter et al., 2009). While the
SNR of an image can be improved by increasing the incident dose, this would destroy the
macromolecule long before a sufficient number of scattering events is detected for a high-
resolution structural analysis (Miao et al., 1999). These issues severely complicate structural
analysis of small proteins, or of dynamic protein complexes that are present in many
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different conformations. In these cases, the signal becomes
increasingly difficult to distinguish from noise.

We are analyzing far-field electron scattering diffraction data
generated by diffracting a 10–45 nm narrow, parallel electron beam
on a protein sample. Assuming the beam is not much wider than the
size of the protein of interest, this approach is likely to improve the
SNR ratio compared with cryo-EM imaging (Matinyan et al., 2023).
Reportedly, much higher SNRs are observed when collecting data in
this mode (Latychevskaia and Abrahams, 2019). However,
measuring the diffracted wave function directly as a diffraction
pattern has downsides.

In single particle cryo-EM the diffracted wave function is
focused back into the image plane, providing phase information
through phase contrast. The contrast observed in such images gives
insights into the variations in electron density within the sample,
and consequently, its structure (Clabbers and Abrahams, 2018). In
the case of diffraction data, the phase information becomes much
harder to retrieve, especially when the samples are complex
molecules such as proteins. With the methodology outlined
above, there is no easy and precise way to obtain the phase
information of an electron wave function recorded in the
diffraction plane. Here, we explore a computational approach for
phase retrieval using neural networks, an approach uniquely suited
to analysis of complex, multi-dimensional data. Neural networks of
diverse topologies have been employed with great success in many
areas of image analysis. Mirroring the architecture of biological
neural networks, these computational models consist of
interconnected neurons with learnable weights. Through iterative
optimization, these networks are trained to minimize a loss function,
aligning the model’s predictions with a target domain. Among the
various neural network architectures, convolutional neural networks
(CNN) are particularly tailored for image data handling. Unlike
standard feed-forward neural networks, CNNs incorporate
specialized layers, such as convolution and pooling, to process
spatial hierarchies in the input data. This design enables the
network to recognize spatial patterns in the image, known as
receptive fields, by selectively weighting neurons based on the
significance of different portions of the input (LeCun et al., 1989).

Here, we have used conditional generative adversarial neural
networks (GANs), which typically involve a pair of CNNs, with the
purpose of generating the phase information that is missing in single
molecule diffraction data (simED). We assumed an experimental
setup in which diffraction data are collected by orthogonally
scanning a sample with a narrow beam, and subsequently
recording a low-resolution overview image of the scanned patch.
We also assumed it would be feasible to correlate the diffraction
patterns to locations in the image and identify which diffraction
patterns belong to protein. We have established such an
experimental setup, which combines software that is distributed
by the hardware manufacturers JEOL, Amsterdam Scientific
Instruments (ASI), and CEOS GmbH, and we are continuing to
improve our setup. However, our setup is evolving rapidly and has
not yet reached a stable state. In its current state, its technical details
are beyond the scope of this paper, and by the time of publication
would be superseded by improved versions. We trained a
conditional GAN with simulated diffraction data of 20 different
proteins, each in 1078 orientations, with the corresponding high-
resolution projections as desired outcome (Figure 1). Additionally,
the network was given simulated defocused, low-resolution, noisy
images of the proteins corresponding to each diffraction pattern.
The resulting conditional GAN was successfully capable of phasing
high-resolution diffraction data using noisy, low-resolution images
of test proteins that were not included in the training.

2 Materials and methods

Conditional GANs consist of two CNNs known as the generator
and the discriminator. In standard GANs (Goodfellow et al., 2014),
the generator’s role is to learn how to convert a random noise vector
x into an output image y. Conditional GANs, however, enhance this
process by requiring the generator to learn from both a random
noise vector and a specific input image. This method allows the
generator to understand and replicate the structured aspects of the
input, effectively penalizing any inaccuracies in the combined
features of the generated output.

FIGURE 1
Summary of DiffraGAN training procedure. Models of proteins were rotated to 1078 different angles, with a new pdb file of the protein saved at each
angle. A diffraction pattern, high-resolution projection image, and low-resolution image of the protein in each of the poses were generated using
multislice calculations from abTEM. These data were then used for DiffraGAN training.
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The discriminator, which is another CNN, plays a crucial role in
evaluating the generator’s outputs. It is trained adversarially to
distinguish between genuine images and the “fakes” produced by
the generator. The goal of the generator is to create images so
convincing that the discriminator cannot tell them apart from real
ones. This dynamic competition improves the generator’s ability to
produce highly realistic images, enhancing the overall performance
of the conditional GAN. The objective of conditional GAN is to
minimize the loss function expressed as:

LcGAN C,D( ) � Ex,y logD x, y( )[ ]+
Ex,z( log (1 −D x, E x, z( )( )]]

where x is the observed image, y is the target image, and z is the
random noise vector. C tries to minimize the objective against
adversarial D, which tries to maximize it.

2.1 The generator

In our generator, all data from the input image end up going
through the narrowest part of the network, forming a “U-Net”
architecture. Sometimes it can be beneficial for the GANs
performance to skip the narrowest part(s) of the generator
altogether by allowing straight connections between the early and
late layers (Isola et al., 2016). Specifically, we added a skip
connection between ι and n-ι layers, where n is the total number of

the layers, thus forming a “U-Net”with skip connections. The common
justification for allowing such skips, is that they may preserve and
propagate larger elements in the input image’s structure.

2.2 The discriminator

The discriminator evaluates the generated images and marks them
as “real” or generated based on binary cross-entropy (BCE) loss. Our
discriminator takes account the low-resolution and generated images,
and the high-resolution projections. Inspired by PatchGAN (Isola et al.,
2016), where the discriminator penalizes the structure at a scale of
predefined patches, our discriminator alsomakes n number of decisions
per image. It divides each image given to it into a specific number of
“patches” of pixels, labeling each patch as “real” or generated. The final
output of the discriminator is the average of all responses. We also
implemented L1 loss to preserve low-resolution details. This term scales
the loss of the generator according to the difference between
corresponding “real” and generated pixels. The diagrams of the
underlying discriminator and generator models are shown in Figure 2.

2.3 Datasets and data preparation

Below is a list of the proteins our conditional GAN (DiffraGAN)
was trained on (the PDB entry ID for each protein is written in
brackets next to it). The pdb files were downloaded from the Protein

FIGURE 2
Pairs of diffraction patterns and low-resolution images were given to the generator that was designed to have a U-Net shape. The generator then
generates an image conditioned on the input data. Both the generated and non-generated images are given to the discriminator. The discriminator labels
each of these images as “real” or generated using the activation map. Themore accurate the discriminator is at labelling images, the higher the loss of the
generator. The objective of DiffraGAN is to minimize the loss of the generator, i.e., to make the generated images indistinguishable from the high-
resolution images.
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Data Bank (PDB) and fixed with the python package PDBFixer1

(Eastman et al., 2017). Specifically, we replaced nonstandard
residues by their standard equivalents, removed all remaining
heterogens, added missing hydrogen atoms and deleted water
molecules. In cases the proteins were composed of multiple
chains, only chain A was used. Each of these proteins was
rotated around the center of mass, resulting in 1078 different
rotation angle combinations. For each rotation, a new .pdb file
was saved. 20 proteins were used for training and 5 proteins for test

purposes (Table 1). The test proteins had no sequence similarity
(they could not be aligned using the BLOSUM62 substitution matrix
to account for evolutionary amino acid substitutions, with minimal
gap opening and extension penalties) to the proteins that were used
for DiffraGAN training.

2.4 Multislice simulation

The electron wave function describes the probability of finding
an electron at a particular point in space. An electron wave function
passing through matter, such as a protein, is diffracted, and
analyzing such diffraction patterns can reveal the protein’s

TABLE 1 The protein.pdb files thatwere divided into training and test parts. The savedDiffraGANgeneratorweights have been used to generate images from
diffraction patterns and low-resolution images of the test proteins.

PDB entries used ID Total structure weight Resolution

Train dataset

Apo CopZ from Bacillus subtilis 1P8G 7.8 kDa NMR (Conformer 1)

Cyanobacterial copper metallochaperone, ScAtx1 1SB6 6.69 kDa NMR (Conformer 1)

C-terminal Domain (537–610) of Human Heat Shock Protein 70 2LMG 8.38 kDa NMR (Conformer 1)

Ubiquitin 1UBQ 8.58 kDa 1.80 Å

Monoclinic turkey egg lysozyme 135L 14.23 kDa 1.30Å

T4 lysozyme 137L 37.38 kDa 1.85 Å

Profilin I from Arabidopsis thaliana 1A0K 14.28 kDa 2.20Å

Peptidylprolyl isomerase, cyclophilin-like domain from Brugia
malayi

1A33 19.5 kDa 2.15 Å

Ornithine carbamoyltransferase from pyrococcus furiosus 1A1S 35.1 kDa 2.70 Å

Endoglucanase cel5a from bacillus agaradherans 1A3H 33.65 kDa 1.57 Å

Tyrosine phosphatase 1b 1A5Y 38.47 kDa 2.15 Å

Human UBC9 1A3S 18.17 kDa 2.80 Å

Cyclophilin from Brugia malayi 1A58 19.5 kDA 1.95Å

Gamma s crystallin c-terminal domain 1A7H 20.64 kDa 2.56 Å

Fusarium solani cutinase 1AGY 20.83 kDa 1.15 Å

Ribonuclease A 1AFU 27.42 kDa 2.00 Å

Glutaminase-asparaginase of acinetobacter glutaminasificans 1AGX 35.52 kDa 2.90 Å

Top domain of african horse sickness virus vp7 1AHS 40.33 kDa 2.30 Å

Type I fructose 1,6-bisphosphate aldolase 1ALD 39.34 kDa 2.00 Å

Human CD40 ligand 1ALY 15.81 kDa 2.00 Å

Test dataset

Glutamate dehydrogenase 1AUP 49.21 kDa 2.50Å

Proteinase K 6CL8 28.93 kDa 2.00 Å

Thaumatin 5K7Q 22.23 kDa 2.5 Å

Yeast Sti1 DP1 domain 2LLV 7.94 kDa NMR (Conformer 1)

Yeast Sti1 DP2 domain 2LLW 7.93 kDa NMR (Conformer 1)

1 https://github.com/openmm/pdbfixer
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structure. The diffraction pattern, the low-resolution and high-
resolution projection image pairs of the protein in each of the
.pdb files were created by multislice simulation as implemented
in the abTEM package (Madsen and Susi, 2021). In abTEM, a
complex array on a grid represents the plane wave function of the
electron beam. An electron beam interacts with a specimen through
the Coulomb potential of its electrons and nuclei. To calculate the
electrostatic potential of the sample the independent atom model
was used, which neglects any bonding effects and treats the sample
as an array of atomic potentials. The wave function is passed slice-
by-slice forward along the optical axis of the potential object,
yielding an exit wave.

The absolute square of the discrete Fourier transform of the exit
wave, yields the intensity distribution in diffraction plane. The high-
resolution projection image was calculated as a convolution of the
exit wave with a modelled CTF function with a defocus of −50 Å.
The low-resolution, defocused images were simulated using a
defocus value of −1,000Å and an envelope function with a cutoff
at 5 mrad. The diffraction patterns contain information of up to

20 mrad. The simulation and further image processing resulted in
real space sampling of 0.27 Å per pixel for high-resolution
projection images. The low-resolution images were further
degraded by including Poisson noise, which was imposed by
altering the irradiation dose per Å2 until they were almost
indistinguishable from a typical cryo-EM particle-image, however
with higher SNR (~0.8 for the resolution bin of 8 to 5 Å)
(Heymann, 2022).

The resulting dataset consists of 25 × 1078 diffraction, low-
resolution and high-resolution image triplets, each triplet
corresponding to one of the 25 proteins rotated by specific angle.
Five of the proteins were used for validation and excluded from the
training (Table 1). So far the training has been done with protein
molecules that were simulated in vacuum. Details of the training of
our DiffraGAN are described as in Figure 2.

To create the results shown below, DiffraGAN was trained using
the Adam gradient descent algorithm (Kingma and Ba, 2015), with a
learning rate of 0.00002 and with β1 parameter of 0.5. The training
was performed on the sciCORE high-performance computing

FIGURE 3
Validation of DiffraGAN using diffraction and image data that were not used in the training. Top row: high-resolution diffraction patterns. Second
row: low-resolution, defocused images. Third row: images generated by the generator using these inputs. Bottom row: target images. The axes show
pixel number.

Frontiers in Molecular Biosciences frontiersin.org05

Matinyan et al. 10.3389/fmolb.2024.1386963

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1386963


(HPC) platform of the University of Basel. Our final model was a 16-
pixel patch DiffraGAN and further adjustments of the patch size did
not improve the results significantly.

3 Results

Since there is no objective loss function to train GANs, the
performance of DiffraGAN had to be evaluated using the quality of
the generated synthetic images. By considering different aspects of
the images, from overall visual appearance to detailed statistical
distributions, the evaluation process should provide a
comprehensive assessment of the effectiveness of the image
generation process. Qualitatively, it is clear when the generator is
not working as expected when images do not correspond to the
ground truth, and somebody observing two sets of generated images
can tell which set matches the target set better “by eye.”

DiffraGAN was trained for 200 epochs using a data set of
20 proteins until the model reached an equilibrium. To evaluate
the differences between high-resolution projected and
corresponding generated images of the first test protein (PDB ID:
1AUP), a comprehensive comparison was conducted (Details of

other test proteins are available in Supplementary Material). Both
sets of images were resized to a uniform resolution of 256 ×
256 pixels, and then randomly selected pairs were analyzed. The
high-resolution projected and generated images were first visually
compared to provide an initial assessment of their similarity
(Figure 3). To further quantify the differences, a mask was
computed using a threshold (Δpixel = 10) on the smoothened
absolute differences between corresponding pixels in the
generated and projection images. This multi-step process
captures the regions where pixel differences are most
pronounced, offering a nuanced view of the spatial structure of
discrepancies (Figure 4).

We also calculated structural similarity index (SSIM) as more
perceptually relevant than other measures (Bakurov et al., 2022).
SSIM incorporates perceptual phenomena, and is calculated as:

SSIM x, y( ) � 2μxμy + C1( ) 2σxy + C2( )
μ2x + μ2y + C1( ) σ2x + σ2y + C2( )⎛⎝ ⎞⎠

Where: μx is the average of x, μy is the average of y, σ
2
x is the variance

of x, σ2y is the variance of y, σx,y is the covariance of x and y,
C1 � (k1L)2, C1 � (k2L)2, are constants to stabilize the division with a

FIGURE 4
Generated, high-resolution projection image pairs and the detected edges of their differences. The last column depicts regions with an SSIM value >
0.7. The axes show pixel number.
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weak denominator; L is the dynamic range of the pixel-values. The
results are summarized in Figure 4, which shows randomly sampled
high-resolution projected and generated images. The SSIM values
around the projection are notably low due to the projected images
having a slight defocus, which renders SSIM particularly sensitive to
fluctuations caused by defocus-induced phase reversals.

To quantitatively evaluate the degree of similarity between our
generated images and their projected counterparts, we employed
Fourier Ring Correlation (FRC) analysis (Koho et al., 2019). FRC
provides a frequency domain metric for correlation at various scales
between pairs of 2D images. Each image was Fourier transformed
and the FRC was computed by normalizing the cross-spectrum of
the two Fourier-transformed images by the geometric mean of their
power spectra. A binary map was created to visualize the regions
where the FRC values surpassed a 0.5 threshold (Figure 5).

In addition to the 2D analysis, we computed the 1D FRC curves by
averaging the FRC values over concentric rings in the frequency
domain. We also used FRC analysis to reveal the information gain
provided by the DiffraGAN by comparing the high-resolution
projections (ground truth) with noisy and generated images (Figure 6).

The FRC analysis revealed a high degree of correlation at lower
and medium spatial frequencies, as evidenced by the central region

where the FRC exceeded this threshold. This observation suggests
that the generated and projected images share significant structural
features to a high resolution of approximately 1Å. The correlation
diminished slowly at higher spatial frequencies which could be also
caused by defocus induced phase reversals. The 1D FRC profiles
confirmed the trends observed in the 2D analysis, with a drop in
correlation coefficients beyond a certain spatial frequency, while still
being high at 1Å, thereby quantitatively delineating the resolution
limits of our generated images relative to their projected
counterparts.

The average FRC, calculated using all 1078 angular orientations,
drops below 0.5 at 0.90 Å (Figure 7). The combined visualizations
and statistical analyses presented in Figures 4–6 confirm the quality
and similarity of generated images in comparison to high-resolution
projections.

8,000 high-resolution projection and DiffraGAN-generated
images were then used for two 3D reconstructions of the
simulated protein with RELION-4.0 (Kimanius et al., 2021). We
reconstructed each set of high-resolution images ab initio. Both sets
of images gave rise to a directly interpretable initial model and were
refined to convergence using gold-standard refinement procedure
without modification. As the generated images are not subject to

FIGURE 5
Fourier Ring Correlation (FRC) analysis of the high-resolution projection and generated images. For the purpose of this analysis, the binary mask
threshold value for significant correlation was set at 0.5, allowing us to discern areas of high similarity between the compared images.
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CTF-related aberrations, we turned CTF correction off in ab initio
model generation and in refinement. We fitted the PDBmodel in the
maps using ChimeraX (Goddard et al., 2018) as shown in Figure 8.
DiffraGAN sometimes struggles to generate clear outer shape
features and side chain distributions, which can translate into
poor map/model fit on the periphery of the map, highlighted in
square red dots. DiffraGAN occasionally introduces “hot” pixels in
regions beyond the protein’s structure, thereby possibly
complicating the 3D refinement process. Nevertheless, the
workflow creates a highly interpretable map that can be used for
model fitting.

4 Discussion

GANs are a powerful class of deep learning models that have
been applied to a wide range of tasks, including image generation
and natural language processing. Recently, GANs have also been
used for protein structure prediction (Strokach and Kim, 2022;
Ingraham et al., 2023).

In this paper, we explore a new approach that could make
phasing of coherent diffraction patterns of non-crystalline
specimens much simpler, and possibly the same is true for more
complex samples.

FIGURE 6
Fourier RingCorrelation (FRC) analysis of thehigh-resolutionprojectionswith noisy and generated images. First column: high-resolution diffractionpatterns.
Second column: low-resolution, defocused images. Third column: images generated by the generator using these inputs. Fourth column: FRC between ground
truth (high-resolution projection) and noisy images. Fifth column: FRC between ground truth (high-resolution projection) and generated images.
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One key advantage of using conditional GANs for protein
structure prediction from diffraction data and low-resolution
features is their ability to capture the underlying feature
distribution, which allows the model to generate diverse and
realistic protein structures rather than just predicting a single
most likely structure. This can be particularly useful for

predicting the structures of proteins with multiple possible
conformations, such as those involved in protein-protein
interactions.

It appears that DiffraGAN can generate accurate images from
corresponding single molecule diffraction patterns and low-
resolution features of previously unseen proteins. All that is

FIGURE 7
Average FRC calculated from DiffraGAN-generated model images and ground truth high-resolution projection images of the first test protein (PDB
ID: 1AUP). The FRC between model and ground truth does not reach zero at the highest resolution depicted in the graph, indicating that DiffraGAN
managed to extract some phase information close to the Nyquist frequency.

FIGURE 8
Maps created from generated and high-resolution projection images of the first test protein (PDB ID: 1AUP). Red squares represent absence of map
density in case of generated images if present in case of projected ones.
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required, is a single molecule’s diffraction pattern, its low-resolution
image, and statistics concerning the general distribution of projected
protein density. In our case, once DiffraGAN converged, it could
map diffraction patterns and defocused images to the corresponding
high-resolution image with reasonable accuracy. The model was
reliably producing similar images for the same, slightly augmented
input and corresponding to the high-resolution projection image,
showcasing its stability and robustness in generating data
(Supplementary Figure S4). While there is theoretically no limit
to the number of proteins the underlying GAN structure can be
trained on, the performance of the GAN may decrease as the
number of proteins that it is trained on increases. However, this
will increase the generalization capacity of the network, as increasing
the heterogeneity of the training data decreases the chances for
overfitting. While theoretically such a function could be created, the
increase in computational requirements could outweigh the
potential benefits. It may be more beneficial to train multiple
specialised GANs. This is equivalent to giving the GAN some
additional information, like the molecular weight, or whether it
concerns a membrane protein. How advantageous this approach
could be has yet to be explored, however, from the test results
(Supplementary Figures S1, S2), it is clear that the trained GAN
better maps the diffraction patterns from the proteins whose shape
and size resembles that of most of the proteins it was trained on,
while performing worse when trying to map the diffraction patterns
from the protein whose shape is the furthest away from the rest.

DiffraGAN has certain limitations. Firstly, the protein
models are simulated in a vacuum and the calculated
diffraction data did not simulate Poisson noise due to
counting statistics, so appropriate denoising should be ensured
before employing this method. We chose defocus to be relatively
low, because we had to use relatively small proteins to be able to
do the simulation and training in a reasonable time frame.
DiffraGAN been exclusively trained on simulated asymmetric
proteins up to 40 kDa in size and with a single defocus value.
When tested with different defocus values, DiffraGAN can still
reliably generate images from 1,500 Å defocused images
(Supplementary Figures S5, S6); however, the performance
drops significantly when the defocus is increased to 2,000 Å
(Supplementary Figure S7). We anticipate that for larger
protein complexes, higher defocus levels will produce similar
results and providing the model with a training dataset that
includes different defocus values could increase the model’s
reliability range. We are currently conducting tests to verify
this assumption. We also anticipate that our current
methodology, which has been optimized for smaller proteins,
might require substantial modification to accommodate the
unique requirements of membrane proteins. In addition, when
DiffraGAN is applied to smaller proteins below 10 kDa, as
detailed in the Supplementary Figure S3, and generated using
the exact same procedure, there are more discrepancies between
DiffraGAN results and the actual projections. This is because the
same level of noise tends to obscure more details in smaller
proteins compared to larger ones and uniform data generation
and rescaling process disproportionately impacts the diffraction
patterns of smaller proteins, often leading to a greater loss of
resolution and detail. By using diffraction data collection in
conjunction with cGAN image generation, structural analysis

of proteins with electron microscopy can be extended to proteins
that were previously infeasible to study using cryo-EM due to lack
of SNR owing to their small size.

Our results suggest that phase extension from low resolution
images to high resolution is feasible with electron diffraction data.
Unlike traditional cryo-EM, which focuses on high-resolution image
details, our goal is to capture those details in the diffraction patterns.
We are developing a general package for single molecule electron
diffraction (simED), in which first a sample is scanned with a narrow
beam, and high-resolution diffraction data are collected on the fly.
Then an overview of the sample is collected as an image, using a high
dose and defocus, aiming for localization and low-resolution
contours of any particles and phasing using DiffraGAN
(Supplementary Material S2). The additional information that
allows this extension will in part be provided by the same
restraints and constraints that allow phase extension in protein
crystallography, like histogram matching, solvent flatness combined
with the molecular contours and atomicity at high resolution. We
speculate that DiffraGAN has discovered additional restraints in the
data that are associated with macromolecular structures and may
include elements of secondary structure and other complicated
statistical correlations that are present in the data.

We are currently testing our methods on experimental data
and are investigating to what extent it is limited by additional
sources of experimental noise. Our in silico results are
promising, indicating that the use of GANs for phasing may
have the power to revolutionise methods in protein detection
and structure elucidation by offering a potential solution to the
phase problem.
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