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Dynamics simulations of hypoxia
inducible factor-1 regulatory
network in cancer using formal
verification techniques

Hafiz Muhammad Faraz Azhar, Muhammad Tariq Saeed and
Ishrat Jabeen*

School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and
Technology (NUST), Islamabad, Pakistan

Hypoxia-inducible factor-1 (HIF-1) regulates cell growth, protein translation,
metabolic pathways and therefore, has been advocated as a promising
biological target for the therapeutic interventions against cancer. In general,
hyperactivation of HIF-1 in cancer has been associated with increases in the
expression of glucose transporter type-1 (GLUT-1) thus, enhancing glucose
consumption and hyperactivating metabolic pathways. The collective behavior
of GLUT-1 along with previously known key players AKT, OGT, and VEGF is
not fully characterized and lacks clarity of how glucose uptake through this
pathway (HIF-1) probes the cancer progression. This study uses a Rene Thomas
qualitative modeling framework to comprehend the signaling dynamics of HIF-1
and its interlinked proteins, including VEGF, ERK, AKT, GLUT-1, β-catenin, C-MYC,
OGT, and p53 to elucidate the regulatory mechanistic of HIF-1 in cancer. Our
dynamic model reveals that continuous activation of p53, β-catenin, and AKT
in cyclic conditions, leads to oscillations representing homeostasis or a stable
recovery state. Any deviation from this cycle results in a cancerous or pathogenic
state. The model shows that overexpression of VEGF activates ERK and GLUT-
1, leads to more aggressive tumor growth in a cancerous state. Moreover, it is
observed that collective modulation of VEGF, ERK, and β-catenin is required
for therapeutic intervention because these genes enhance the expression of
GLUT-1 and play a significant role in cancer progression and angiogenesis.
Additionally, SimBiology simulation unveils dynamic molecular interactions,
emphasizing the need for targeted therapeutics to effectively regulate VEGF and
ERK concentrations to modulate cancer cell proliferation.

KEYWORDS

hypoxia-inducible factor-1 (HIF-1), vascular endothelial growth factor (VEGF),
oglycosylation transferase (OGT), glucose transporter-1 (GLUT-1), extracellular single
regulated kinase (ERK), cellular myelocytomatosis oncogene (C-MYC)

1 Introduction

Cancer cell growth is a fundamental biological process characterized by cell
proliferation, and an increase in cellular mass typically occurs under stress conditions.
This complex process is strictly regulated and relies on vital nutrients like lipids
and nucleic acids to provide sufficient energy to synthesize new cellular components.
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Particularly, cells have developed and improved their mechanisms
for survival, allowing them to grow and develop in harsh conditions,
which include reduced oxygen levels, inadequate availability of
nutrients, and limited energy supplies (Semenza, 2003). However,
Hypoxia-Inducible Factor-1 (HIF-1) is a transcription factor widely
distributed and expressed in multiple organs in both animal and
human organisms. It is crucial in coordinating many physiological
reactions to hypoxic circumstances, such as initiating glycolysis to
reduce oxygen deprivation and facilitating angiogenesis (Yang et al.,
2021). Moreover, the HIF-1 is a central coordinator of many
extracellular and intracellular signals associated with cellular
proliferation and impacts metabolic control. The multidimensional
nature of this entity makes it essential for both innate and adaptive
immune responses, highlighting its huge influence on various
cellular processes (Ruas et al., 2002).

Dysregulation of the HIF-1 pathway disrupts oxygen balance
and growth homeostasis, leading to pathogenic conditions such as
cancer, angiogenesis, and metabolic disorders (Semenza, 2010). To
pharmacologically targetHIF-1 for the therapy of related pathogenic
diseases, it is necessary first to understand the coordinated dynamics
of HIF-1 regulation (Semenza, 2003), (Boehme et al., 2021). Under
hypoxic conditions, the interaction between energy deprivation
and restricted nutrition availability occurs through complex
mechanisms, impacting transcriptional and post-translational
processes at various levels.The changes in gene expression facilitated
by HIF-1 initiate disruption in the oxidative metabolism of
mitochondria, glucose intake, energy production, and angiogenesis
triggering. This process promotes cancer cell migration, survival,
and multiplication (et Nurbubu, 2020).

Furthermore, the insulin and Glucagon ratio is important
for glucose homeostasis. Low glucose levels under different
physiological conditions produced by food intake or stress tumor
microenvironments such as oxygen deficiency and inflammation
release glucagon from the pancreas to increase blood glucose levels
(Melillo, 2006). However, within the domain of cellular signaling
pathways, a deficiency in oxygen and essential nutrients can lead to
increased levels of reactive oxygen species (ROS). The increase in
ROS levels results in the occurrence of oxidative stress, consequently
disrupting many signaling pathways (Boehme et al., 2021), (Panieri
and Santoro, 2016). It is important to highlight that the actions of
HIF-1 and Glucose transporter-1(GLUT-1), which are affected by
many types of reactive oxygen species (ROS), give rise to several
intracellular effects that facilitate the growth and spread of cancer
cells in situations that involve oxidative stress, limited nutritional
availability, and energy insufficiency (Nagy et al., 2019).

The complex relationships between HIF-1, O-glycosylation
transferase (OGT), Vascular endothelial growth factor (VEGF),
and protein kinase B (AKT) are crucial because they all work
together to control the expression of several enzymes involved
in glucose and fatty acid metabolism as well as the regulation
of glucose transporters during the start and development of
cancer (Panieri and Santoro, 2016). However, precise metabolic
regulation and the best possible functioning of the Mitogen-
activated protein kinases (MAPK), AMP-activated protein kinase
(AMPK), and AKT/PI3K pathways are necessary to maintain
glucose homeostasis, which makes them desirable targets for
therapeutic intervention (Jin et al., 2020), (Lee et al., 2019). In
this context, HIF-1 plays a crucial role in allowing cells to adapt

to hypoxic conditions by coordinating the expression of genes
involved in critical processes such as angiogenesis and glucose
metabolism via key cancer-related signaling pathways. HIF-1 can
promote its cancer-related actions by either acting as a facilitator
of oncogenic processes or modulating downstream targets within
tumor-promoting signaling pathways (Huang and Zhou, 2020).
Although the role of HIF-1 in cancer is well-known, there remains
a lack of comprehensive investigation into its connections with
important variables such as VEGF, GLUT-1, and OGT within the
framework of epigenetic mechanisms, along with other crucial
entities such Extracellular single regulated kinase (ERK), β-catenin,
p53, AKT, and C-MYC. A thorough examination of these factors
is necessary to gain a comprehensive understanding of how
they collectively induce the activation of HIF-1 and promote the
metastatic progression of cancer.

Prior studies have examined the therapeutic potential of HIF-
1 using in vivo and computational analyses (Huang and Zhou,
2020), (Poon et al., 2009), (Onnis et al., 2009). However, more
research is still needed into their impact on downstream target
genes, such as GLUT-1 and the crucially related signaling networks.
Consequently, to shed light on the epigenetic regulation of GLUT-
1, a crucial component in the initiation and spread of cancer, our
research focuses on constructing a Boolean Regulatory Network
(BRN) model for HIF-1 signaling. In order to accomplish this
objective, we implemented a qualitative modelling methodology
that relied on the René Thomas formalism (Thieffry and Thomas,
1995). The wet laboratory data was employed in our study, which
was represented using computation tree logic (CTL) to estimate
parameters. Additionally, we implemented the model verification
technique, as depicted in Figure 1. The primary objective of
our comprehensive examination of the model trajectories was to
clarify the interconnected pathways associated with the increased
expression of HIF-1, the initiation of the oncogene C-MYC, and
the suppression of the tumor suppressor gene p53. These elements
collectively lead to either the progression or recovery of cancer
invasion and homeostasis.

2 Materials and methods

The research method employed in this study is
visually shown in Figure 1. It describes the procedures followed
to complete the study and get the results.

2.1 Network selection and theoretical
framework for qualitative modeling

In this study, we employ a mathematical framework called
the kinetic logical formalism, initially developed by Rene Thomas
and refined in prior research on modelling biological regulatory
networks (BRNs) (Thieffry and Thomas, 1995). To conduct our
modelling, we use the GINsim utility, as described in (Ahmad et al.,
2012). However, positive and negative feedback loops are two
essential feedback mechanisms in BRNs that kinetic modeling
considers and incorporates. The activation of different components
within the network is enhanced by positive feedback processes,
which are essential in producing several stable states. Conversely,
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FIGURE 1
This workflow demonstrates the comprehensive research methodology employed in this study. Step 1: Represents the extraction of the knowledge
driven HIF-1 signaling pathways from KEGG database and creating interaction graphs from experimental data to construct a BRN by using reduction
rules. Step 2: Computation Tree Logic (CTL) formula is generated based on experimental data and parameters are assigned using SMBioNet, it uses
NuSMV for model checking to verify the experimental observation in (Supplementary Material S1). Step 3: Shows the methodology steps for the
dynamics simulation of the BRN using the GINSim tool, generating state graphs for the analysis of normal and pathogenic conditions. The resulting
state graphs are visualized in Cytoscape, emphasizing the maximum betweenness centrality of states to analyze and identify crucial trajectories, cycles
and deadlock states. Step 4: Represents the flow chart of concentration analysis of finally selected entities in SimBiology using Matlab.

negative feedback mechanisms prevent various components from
acting independently and are essential for generating oscillatory
behavior or preserving homeostasis, the state of stability within
a system (Thomas et al., 1981). Several studies have investigated
genetic networks, focusing on formalmethods for analyzing positive
and negative feedback loops, as first described by (Thieffry and
Thomas, 1995).

2.1.1 Reducing signaling pathways
In qualitative models, the state space of these models grows

exponentially with the number of components. A reduction
approach has been created to tackle this problem; it seeks
to reduce the size of qualitative models while maintaining
their structural and dynamic properties. A signaling route is
depicted in Figure 2 that has been reduced to produce a Boolean
Regulatory Network (BRN) (Cui et al., 2010), (Saeed et al.,
2016), as shown in Figure 3. The reduction procedure was carried
out by implementing particular reduction rules comprehensively

defined in prior research studies (Saadatpour and Methods, 2023),
(Naldi et al., 2010). These reduction principles have been used to
simplify complex signaling pathways like mTOR, PI3k, and AKT,
ultimately creating BRNs that can include any possible regulatory
feedback circuits (Saeed et al., 2016).

2.1.2 Semantics of qualitative models
This section provides a brief description of the formal

semantics that have been embedded into Rene Thomas'
framework (Bernot et al., 2007). The framework presented in this
study serves as a foundational theoretical basis for understanding
the precise mathematical constructs and principles that govern the
intricate dynamics and interactions of components within complex
systems. Its application is particularly focused on the domain
of biological regulatory networks. The framework developed by
Thomas offers a systematic and precisely specified approach for
identifying and studying the dynamic behaviors shown by these
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FIGURE 2
Activating insulin growth factors and energy deprivation triggers the HIF signaling pathway. It is divided into three steps: (A) When insulin binds with the
epidermal growth factor, it starts signal transduction through auto-phosphorylation. It phosphorylates the ongoing genes RKT, GRB2, IRS1 and PI3k,
which converts PIP2 to PIP3, then phosphorylation of PDK1. Additionally, PDK1 phosphorylates mTORC2, which is involved in regulating actin
cytoskeleton. On the other hand, GRB2 phosphorylates RAS and activates the MAPK signaling pathway, which starts the phosphorylation of AKT and
ERK, directly involved in Angiogenesis through VEGF and HIF-1. Furthermore, AKT is a central pathway regulator that inhibits β-catenin, p53 and
TSC1/2, which dephosphorylate RHEB and, through GTPase, activate mTORC1. (B) During the energy deficit condition, the AMP/ATP ratio is maintained
through AMPK, which dephosphorylates the mTORC1 and is involved in the process of autophagy and activates HIFs. (C) In the nucleus, HIF-1
stabilizes, binds VHL/PHD HIF1-α and reaches the target gene with the help of P300, which acts as a coactivator. The HIF-1α/HIF-1β complex binds to
the HRE region of the target gene, triggering the hypoxia response and activating various up-signaling genes, including VEGF and GLUT-1, and they
activate associated genes.

systems. As a result, it serves as a fundamental basis upon which
further research and modelling efforts are constructed.

2.1.3 Definition 1 (BRN)
Biological Regulatory Networks(BRNs), defined as complex

systems governing biological processes within living organisms,
serve as systematic frameworks for formally representing biological
interactions through directed graphs (G = (V, I)). In this
representation, 'V' signifies the discrete nodes that comprise a
biological system. The set I, which is a subset of V × V, serves
to define the interactions between entities, indicating the entities
that produce impact on others. Every biological entity inside
the network possesses both successors (G+vi) and predecessors
(G−vi) (Bernot et al., 2007).

In this system, every node referred to as an entity is allocated
a parameter denoted as ℓvi, which is dependent on the count of its
successors. When an entity possesses one or more successors, the
value of ℓvi is equivalent to its number of successors. Conversely,
if the entity has no successors, the value of ℓvi is equal to 1.
Pairs represent the edges present in the network (τ, σ), where τ
indicates the type of interaction, denoted by a positive symbol “+”
for activation or a negative symbol “-” for inhibition. The influence
threshold is defined as τ ≤ ℓvx, which is determined by the specific
properties of the interaction τ (Bernot et al., 2007).

A biological regulatory network’s “state” refers to the particular
configurations and degrees of expression of each biological
component at any one time, providing information about the
network’s dynamic behavior and reactions. This information is
critical for understanding the network’s functionality as it responds
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FIGURE 3
The HIF- one linked BRN reduces the signaling cascade
highlighted in Figure 1. Particularly, the sign “+1”indicates a positive
(activating) interaction, while the sign '-1′ indicates a negative
(inhibiting) interaction.

to various stimuli and environmental changes. The provided
information offers a concise representation of the behavior and
interaction of the components inside the system, hence providing
significant insights into its dynamic behavior.

2.1.4 Definition 2 (qualitative state)
The qualitative state of biological regulatory networks can be

accurately characterized by the vector (E = ev1, ev2, …, evn), which
provides a careful representation of the features of the network
components.The comprehensive depiction facilitates understanding
the network’s dynamics and adaptive reactions. Each component,
evi, correctly denotes the level of expression of a given entity vi
and is directly linked to the complete set Ivi. At its core, Evi
functions as an abstract concept representing the intricate and
situation-dependent expression of the biological entity vi in a certain
condition (Bernot et al., 2004). The computation of the state space
in a biological regulatory network is a crucial task logically achieved
by applying Equation 1. This mathematical equation, similar to
a Cartesian product, facilitates a systematic investigation of the
extensive and complicated network, which contains huge possible
combinations of entities at different expression levels.

Z =∏n
i=1

Ivi (1)

The letter Z plays a vital role in this equation, representing the
vast range of possible network states. It can only be calculated
by systematically summing up the many levels of expression that
define each entity. Importantly, it must be emphasized that the
dynamic interactions with its predecessors intrinsically govern the

vi expression level. The complex network of interdependencies
among entities and their surrounding variables has a significant
role in modeling the diverse range of possible states within the
system, illustrating the intricate complexity commonly observed in
biological systems.

2.1.5 Definition 3 (resources)
In a biological regulatory network (BRN), represented as G

= (V, I), an important concept is introduced: “resources.” The set
Rvz is defined as the collection of particular elements vy that
belong to the set G, except the element vz and the selection of
these elements depends upon specific criteria. Specifically, if Evy is
equal to or larger than a certain threshold τvy, vz, and a positive
interaction exist shown by αvy, vz = “+,” these elements are chosen.
Conversely, if Evy is less than the threshold τvy, vz, and αvy, vz
= indicates a negative interaction “-,” these elements are selected.
Rvz functions as a repository of resources, while vz symbolizes a
variable belonging to the V set, with its state indicated as Evz. The
existence of activators and the lack of inhibitors determine whether
or not to treat entity “vi” as a resource. If vi has activators, it can be
considered a component of Rvi. On the contrary, when inhibitors are
present, they have a role in preventing vi creation. As Vi progresses
along its evolutionary path toward its goal state, its expression level,
represented by Kvi, is closely related to positive integers. These
numbers are also known as logical parameters and are grouped
under Rvi (Bernot et al., 2004).

The resource idea outlined above is crucial in understanding the
complex relationships between nodes in a BRN. These interactions
determine the presence or absence of particular activators and
inhibitors in addition to the quantitative expression levels of these
entities.The complex dynamics of the system are carefully controlled
by logical parameters, which significantly impact the network’s
behavior and ability to achieve specified regulatory results.

2.1.6 Definition 4 (state graph)
In the graphical representation of a BRN shown as G =

(V, I), the state graph, denoted by E = (S, T), includes two
important nodes (Bernot et al., 2004).

2.1.6.1 Set of states (S)
This part is a grouping of states, where each state is an

arrangement of unique entities in the network. It essentially records
the system’s configuration at a certain moment in time.

2.1.6.2 Transition relation (T ⊆ S × S)
This relation describes how the system can change from one

state to another and defines the relationship between states. This
elucidates the dynamic nature of the network.

The transition relation (T) follows a certain condition: s⇒ s' ∈ T
if the following requirements are satisfied.

• In a biological regulatory network, differences in the expression
levels of two separate entities, called Evx and Evx', in different
states (s and s'), are written as Evx = Evx△ Kx (Rvx).

• Expression levels in state s and state s' are the same for all other
entities y ∈ V (apart from x), shown as {x}Epy = Epy.
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As a result of this description, we can see how the state
graph is built and how changes in the expression levels of certain
entities in the network determine transitions between states. The
framework offers a systematic approach to understanding the
network’s dynamic behavior and the factors that drive its transitions
between various states.

2.2 Model verification for the parameter
estimate

The parameter selection in qualitative modeling of Thomas
networks is significantly influenced by logical factors determining
the system’s behavior that are initially unknown. The previously
mentioned features or parameters play a crucial role in developing
the system’s dynamic phenomena such as cycles, stable states
and transitions, which are visually represented as a directed state
graph (Bernot et al., 2004). The presented graph comprehensively
represents significant phenomena to systematically identify and
validate these parameters, by employing a formal model-checking
approach using the tool SMBioNet, specifically designed to analyze
such networks (Khalis et al., 2003). The SMBioNet tool enables
the implementation of this method, which is intended to explore
various states of themodel andmatch parameters with experimental
data ensuring both logical consistency and biological relevance.
Parameters that are logically consistent are of utmost significance in
qualitative modeling (Thieffry and Thomas, 1995).

In qualitative modeling, parameters do not take numerical
values but are instead logical in nature, defining whether a biological
entity, such as a gene or protein, is active, inhibited, or neutral.
SMBioNet constructed based on qualitative formalism developed
by Rene Thomas relies on two phases: the initial phase of the
parameter derivation process involves formulating hypotheses based
on biological data. This information is encapsulated in a CTL
equation that defines temporal properties of biological entities like
stability, oscillations and their network interactions, or specific
sequences of activation and inhibition expected in biological systems
(Baltazar et al., 2011). The second phase set of logical constraints
derived from an iterative process to fine-tune the model parameters.
These parameters are systematically modified to either satisfy the
CTL formulae or match the observed biological behaviors, ensuring
logical consistency across different states and conditions within the
network (Thieffry and Thomas, 1995), (Baltazar et al., 2011).

However, we used model checking after this iterative change to
confirm the settings. The chosen parameters created the intended
qualitative characteristics, such as stable states or oscillating
patterns, and were consistent with experimental data, SMBioNet
thoroughly examined every state of the network (Khalis et al., 2003).
The resulting model visually depicted these dynamic behaviors
as a directed state graph, emphasizing important characteristics
like stable states and cycles essential for comprehending the
system’s dynamics.

2.2.1 Quantifiers in computational tree logic
InCTL quantifiers play a crucial role in expressing the properties

and behaviors of systems. Quantifiers allow us to explain the
existence or absence of certain states or paths inside a system’s
state space. However, CTL utilizes a formula (zpi = n) to evaluate

the current state. This formula determines whether the expression
level of the variable pi precisely matches the required value n. This
evaluation process facilitates the systematic analysis of dynamic
behaviors in biological systems. The formulation of CTL formulae
involves the combination of logical connectives with temporal
operators. Within the context of logical connectives, the utilization
of negation (“¬”), logical disjunction (“∨”), logical conjunction
(“∧”), and implication (“⇒”) is prominent. In addition to this, we
incorporate temporal operators that consist of pairs of symbols.
In these combinations, the first element may take the form of
an “A,” which would indicate the existence of all possible routes,
or it could take the form of an “E,” which would indicate the
existence of at least one path. After this, operators such as “X”
are used to signify the subsequent state, “F” is used to denote any
upcoming state, and “G” symbolizes all potential future states. In
order to generate formal expressions that specify characteristics
and behaviors within a system, the CTL quantifiers and operators
are essential components. They provide the accurate and organized
expression of system attributes and the need to perform analysis and
verification (Bernot et al., 2004).

2.2.2 Definition 5
The construction of CTL formulae, denoted as ϕ, is an essential

activity within a Biological Regulatory Network setting described
as G = (V, I). The formulae contain atomic expressions that can
appear in three unique forms: “⊤,” which represents the Boolean
value true, “⊥,” which denotes the Boolean value false, or atomic
propositions organized as (vi = n). In this context, the symbol
“vi” denotes a variable that is present in the state graph, whereas
“n” is a value that lies inside the interval [0, ℓvi]. Furthermore,
different logical combinations are observed as atomic expressions
in atomic formulae. These logical operators include negation, which
expresses the opposite of a condition (¬ϕ); logical conjunction,
signifying that both conditions must be true (ϕ ∧ ψ); logical
disjunction, indicating that either condition being true is sufficient
(ϕ ∨ ψ); and implication, representing that if the first condition is
true, it implies the truth of the second (ϕ ⇒ ψ). CTL formulae
are instrumental in formally defining the intricate features and
behaviors of BRNs by employing these operators to describe and
analyse their dynamic interactions. These frameworks offer a strong
foundation for representing and examining these networks' dynamic
attributes and qualities, enabling a thorough comprehension and
detailed investigation of their complex dynamics.

2.3 Dynamic simulations of BRN

GINsim, a tool of significant value in biological modelling, is
crucial in constructing state graphs that provide insights into two
essential dynamics in biological systems.The same phenomenon can
be observed through the qualitative cycle represented by the ordered
pairs (0,0), (1,0), (1,1), and (0,1). This cycle is a typical reaction
mechanism in biological systems to preserve homeostasis. On the
other hand, as the state (2,1) illustrates, a qualitative situation may
result in various actions, which could eventually lead to pathogenic
effects or deadlock states. In particular, four distinct qualitative states
collectively constitute a cyclic behavior: (0,0), (1,0), (1,1), and (0,1).
These states are crucial in maintaining equilibrium and controlling
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dynamic processes, making them essential to comprehending the
cyclic behavior seen inmanybiological systems (Schwab et al., 2020).

The development of state graphs, which are representations of
the dynamic behaviors observed in biological systems, relies heavily
on qualitative modelling methodologies. However, it becomes
essential to adopt a systematic method when dealing with a
state graph exhibiting higher complexity levels. The complex
characteristics inherent in qualitative modelling can result in
creating a comprehensive state graph, even when dealing with
interaction networks of a relatively small scale. Moreover, the state
graphs represent qualitative states using extended binary sequences.
Due to the complex structure of these state graphs, conducting a
manual analysis becomes difficult. Therefore, researchers frequently
employ network analysis techniques based on graph theory to
overcome the difficulty of choosing crucial trajectories within state
graphs produced by qualitative modelling (Gonzalez et al., 2006).
This methodology facilitates a more precise and effective analysis of
the complex dynamics essential in biological systems.

2.3.1 Network analysis
Using graph-theoretic approaches has shown to be particularly

efficient in examining extensive protein networks. Within the
domain of graph connection, network analysis methodologies
demonstrate proficiency in structuring the state graph by
highlighting nodes according to their betweenness centrality
rankings, ranging from the highest to the lowest values. States
with high betweenness centralities are of great interest in biological
phenomena.These states are more likely to arise and indicate factors
that substantially impact numerous biological processes. Utilizing
betweenness centrality measures allows for the assessment and
differentiation of qualitative states, facilitating the identification
of significant and influential paths within a certain cycle (U. B.-
J. of mathematical sociology and undefined, 2001). Identifying
crucial nodes within complex biological regulatory networks
is essential for understanding cellular processes. Centrality, a
commonly utilized measure derived from Social Network Analysis
in graph-theoretic frameworks, is commonly applied to assign
rankings to entities inside these complex networks (Kourtellis et al.,
2013). Centrality analysis is a highly important method for
identifying crucial aspects and characteristics of complex biological
regulation networks. This technique provides insights into the key
players and their interactions, enhancing our understanding of
these networks.

2.3.2 Definition 6 (quantifying betweenness
centrality)

In the framework of state graph analysis designated by “R”
betweenness centrality appears as a key metric to assess the
importance of particular qualitative states. In order to achieve
a more thorough understanding of this concept, it is essential
to examine it within the framework of three discrete qualitative
states, namely, e1, e2, and e3. These states play a crucial role in
comprehensively examining the phenomenonobserved in biological
systems, highlighting their dynamic behaviors andmechanisms that
maintain equilibrium. When attempting to find the most efficient
route between states e1 and e2, it is crucial to consider the total
number of paths that pass through the intermediate state e3 (L. F.-
 Sociometry and undefined, 1977).

The betweenness centrality, written as BC(e3), is a quantitative
measure that analyses the degree to which the state e3 serves
as a bridge or intermediary relationship between other states
within the network. The given statement quantifies the proportion
of the shortest pathways that include e3 while examining all
possible combinations of states between e1 and e2. However,
the mathematical representation of e3 by calculating betweenness
centrality is described in Equation 2:

BC(E3) = ∑
e1≠e2≠e3

BC(e1,e2)e3 = ∑
e1≠e2≠e3

(σe1,e2(e3)
σe1,e2

(2)

The symbol σe1, e2(e3) is utilized to quantify the shortest pathways
from the initial state s1 to the final state e2 while incorporating the
intermediate state e3. It is an effective technique for comprehending
and improving systems, especially in domains like network analysis
and transportation of genes or entities. Meanwhile, the shortest
routes connecting states e1 and e2 are represented by σe1, e2. All
possible variations of e1, e2, and e3 states are included in the
summing process. It is important to highlight that within the state
graph of a biological system, every qualitative state corresponds
to a distinct and possible pattern. However, it is important to
emphasize that the edges of the state graph are commonly started
in random order, which adds to the network’s behavior and
structure complexity. This complexity highlights the significance of
betweenness centrality to identify the central function of individual
states in the larger network dynamics.

2.4 SimBiology simulations of solute
concentrations

SimBiology, a computationalmodeling and simulation platform,
was employed to investigate the dynamics of solute concentrations
within the biological system under study. The model incorporated
key biological entities, such as p53, AKT, β-catenin, VEGF, HIF-
1, ERK, and GLUT-1, with their initial concentrations derived
from literature and empirical data to reflect their typical levels in
cancerous tissues. A detailed model of the system was constructed,
incorporating the relevant biological processes and interactions.
Initial concentrations of all solutes were specified, and the
model was simulated over time. The simulated concentrations
of various solutes were monitored and analyzed to gain insights
into their behavior and the underlying mechanisms influencing
their dynamics (David et al., 2015). The simulation was run over
biologically relevant time units to capture both rapid signaling
events and longer-term equilibrium states. Ordinary differential
equations (ODEs) were used to define the interactions between
these solutes, with rate constants representing their production,
degradation, and feedback mechanisms. These constants were
carefully chosen based on experimental data, ensuring the biological
relevance of the interactions. Equilibrium concentrations were
calculated to identify stable states in the system, and sensitivity
analysis was conducted to ensure the robustness of the model,
allowing for insights into how small changes in parameters could
affect system behavior. Concentration versus time curves were
plotted to visualize the changes in solute concentrations over time.
Equilibrium concentrations were calculated to identify the stable
state of the system. SimBiology built-in functions were utilized
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to assess concentration gradients, fluxes, and accumulation areas,
providing further insights into solute distribution and transport
within the system (Bassingthwaighte et al., 2012).

3 Results and discussions

3.1 Network selection

A knowledge-driven qualitative Biological Regulatory Network
(BRN) of HIF-1 was extracted from the literature. The selection
of specific entities (HIF-1, ERK, VEGF, p53, β-catenin, AKT,
GLUT-1, C-MYC, OGT) for the creation of the BRN is based
on their significant contribution to complex cellular processes in
cancer. Understanding these entities and their interactions is crucial
in unraveling cellular control and investigating new therapeutics
linked to cancer. These entities are intertwined within a complex
network, where the activation or dysregulation of one entity sets
off a chain reaction, influencing others and contributing to cancer
progression. Based on the comprehensive signaling pathways shown
in Figure 2, HIF-1, a transcription factor sensitive to reduced oxygen
levels (hypoxia), initiates the activation of specific genes, including
VEGF and GLUT-1. These genes are known to have a significant
influence in facilitating angiogenesis and enhancing glucose uptake,
respectively. The impact of the activation of VEGF and GLUT-
1 is highly critical inside the hypoxic tumor microenvironment,
specifically for tumor growth and metastasis. (Maxwell et al., 1997),
(Wincewicz et al., 2007). As a result, the activation of ERK, a
central regulator in cell signaling, leads to increased cell proliferation
and survival, fueling uncontrolled cancer growth (Minet et al.,
2000). The p53 protein, a critical factor in suppressing tumor
growth, assumes a central position in regulating the cell cycle and
programmed cell death, known as apoptosis, to maintain cellular
homeostasis. Disruptions in the p53 gene’s functionality impair
crucial regulatory processes, hence facilitating uncontrolled cellular
proliferation, frequently observed in many human malignancies.
It highlights the significant consequence of p53 in inhibiting
abnormal cell growth and its involvement in preventing tumors
(Sermeus and Michiels, 2011). Due to this, dysregulation of β-
catenin within the Wnt signaling pathway disrupts normal cell
adhesion and gene expression, thus raising cancer development and
AKT’s role in cell survival and proliferation grants cancer cells a
survival advantage (Cui et al., 2010). Moreover, the upregulation of
GLUT-1 is strongly associated with the Warburg effect, a metabolic
phenomenon observed in cancer cells characterized by enhanced
glucose uptake (Li et al., 2015). Subsequently, C-MYC, an oncogene,
boosts uncontrolled cell division, and OGT’s capacity to modify
protein function can significantly impact cellular processes and
potentially contribute to cancers (et Nurbubu, 2020). These entities
constitute a highly complex and intertwined network, highlighting
the significance of comprehending their roles within regulatory
networks to unravel disease mechanisms and identify potential
therapeutic targets. Qualitative modelling is employed to dissect
these entities’ stepwise processes and interactions, providing a
detailed understanding of how they influence each other and cellular
behavior in cancer.

The finally selected network included fourteen interactions and
nine biological entities, as shown in Figure 3. The selected activator

entities, includingHIF-1, VEGF, and ERK, create a positive feedback
loop, which is recognized to yield numerous stable/deadlock states.
A positive feedback loop comprises positive interactions and an
even number of inhibitory or negative interactions (PLAHTE et al.,
2011). It functions similarly to a toggle switch, simultaneously
expressing just one of the two entities (Gardner et al., 2000).
A negative circuit comprises a negative interaction of an odd
number that results in homeostasis or periodic behavior, such as
the interaction between C-MYC, VEGF, AKT, and β-catenin. Three
complex HIF-1-based regulatory circuits generate cell proliferation
and regulate oscillations. The circuits under consideration consist
of three distinct positive feedback loops. The first loop involves the
interaction between VEGF and ERK. The second loop incorporates
VEGF, AKT, and p53. The third loop comprises C-MYC, VEGF,
ERK, GLUT 1, and OGT. A comprehensive examination of
these regulatory patterns provides useful insights into the various
behaviors that the system could show. Moreover, the computation of
logical parameters exposes the huge functional dynamics that have
both positive/negative routes in a complicated system.

3.2 Parameters estimation

Computing logical parameters in biological regulatory networks
is crucial for modelling complex systems, predicting network
behavior under different conditions, and gaining insights into
biological processes. The model trajectories are derived by
examining logical parameters' binary values (0 or 1), visually
represented as a state transition graph in Figure 5. These parameters
are computed by utilizing Computational Temporal Logic (CTL)
algorithms, which are driven by well-established qualitative
observations (Baltazar et al., 2011).

The CTL data presented in Table 1 shows changes in the HIF-
1 route, which is the first formula in the biological system that
expresses high expression of VEGF, OGT, and GLUT-1, all of
which are required for tumor cell proliferation, vasculogenesis, and
metastasis (Chae et al., 2011), (Hendriksen et al., 2009), (Lei et al.,
2020). Under hypoxia, hepatocellular carcinoma cells with high
HIF-1 and GLUT-1 expression regulate tissue oxygen supply and
energy metabolism (Chae et al., 2011), (Hendriksen et al., 2009),
(Amann et al., 2009). The downregulation of Akt in hypoxic
conditions is a part of the cellular response to adapt to the stress
of low oxygen. This downregulation is thought to be a protective
mechanism, as it helps to conserve energy and limit processes
that require oxygen, such as cell proliferation. Additionally, the
downregulation of AKT in hypoxia contributes to the activation
of alternative survival pathways that are better suited for low-
oxygen environments (Mottet et al., 2003). However, decreased
AKT expression owing to dephosphorylating progressively leads
(symbolized by “CTL operator⇒“) to a stable pathogenic/oncogenic
state (symbolized by CTL operator EF and AG) for all entities with
high expression levels also for one path future state and all paths
globally except AKT.

Only those parameters that fulfill the CTL formulae were chosen
using the SMBioNet software (Helikar et al., 2011). It lists all the
models in detail and picks the ones whose sets of parameters match
the experimental data given as temporal logic formulae. As a result,
eight sets of logical parameters were generated by SMBioNet, all of
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TABLE 1 The SMBioNet setup utilizes Computational Temporal Logic (CTL) equations to infer logical parameters. The second formula is specifically
constructed to monitor homeostasis, whereas the other two are intended to observe a state of stability or homeostasis.

No. CTL formula References

1 ((VEGF = 1&OGT = 1&GLUT1 = 1&HIF-1 = 1&AKT = 0&P53 = 1)⇒
EF(AG(VEGF = 1&OGT = 1&GLUT1 = 1&HIF-1 = 1&AKT = 0&P53 = 1)))

Chae et al. (2011); Lei et al. (2020); Sermeus and Michiels (2011)

2 and((VEGF = 0&OGT = 0&GLUT1 = 0&HIF-1 = 0&AKT = 1&P53 = 0)⇒
EF(AG(VEGF = 0&OGT = 0&GLUT1 = 0&HIF-1 = 0&AKT = 1&P53 = 0)))

Mottet et al. (2003)

3 and((VEGF = 0&HIF-1 = 0&GLUT1 = 1&AKT = 1&P53 = 1)⇒
EX(EF(VEGF = 0&GLUT1 = 1&ERK = 1&OGT = 1&CMYC = 1
&BCAT = 1&HIF-1 = 0&AKT = 1&P53 = 1)))

Amann et al. (2009); Chae et al. (2011); Das et al. (2015)

which point to a single deadlock state (1,1,1,1,1,0,1,1,1). The source
code of SMBioNet and the output results used to calculate model
parameters are found in (Supplementary Material S2).The existence
or absence of resources determines every entity’s ability to adjust or
modify its expression level.The present state of a gene is compared to
values of logical parameters indicated in Supplementary Table S1 at
each given time instant to determine its change in expression level.
According to the calculated values, ERK maintains or increases its
expression level in the presence of a HIF-1 activation signal.

In response to ERK activation, a simultaneous upregulation
of HIF-1 expression is observed while the inhibitory influence of
p53 remains present. Only in the absence of an AKT inhibitor
signal does the tumor suppressor protein p53’s expression
level rise. The third formula in Table 1 considered as VEGF
and HIF-1 expression suppressed while maintaining GLUT-1,
p53, and AKT expression levels. The interplay among glucose
transporters (GLUTs), hypoxia-inducible factor 1 (HIF-1), and
glycolytic enzymes has been observed across a spectrum of
cancers (Chae et al., 2011; Amann et al., 2009; Das et al.,
2015). However, particularly intriguing is the exploration of
outcomes arising from the simultaneous inhibition of HIF-1 and
activation of GLUT-1.

HIF-1 and GLUT-1 regulate mRNA and protein levels in human
gastric and ovarian cancers (Amann et al., 2009). State transition
graphs are primarily used to examine the mutual behavior of
genes functioning in a biological system (Schwab et al., 2020).
Figure 4 shows a heatmap of the eight sets of logical parameters
SMBioNet created in this scenario. Model validation of these data
sets confirms the chosen logical parameters, which offer insights into
potential biological pathways associated with cancer invasion and
recovery. Briefly, the induction of HIF-1 in the presence of ERK is a
constant observation across all eight parameter sets, indicating that
a parameter set that permits HIF-1 to reach its maximum threshold
value of '1′may be harmful to cancer cells. In maintaining natural
dynamic processes, these parameters (M8) allow for interactions
across all nodes while maintaining their interdependencies for
activation and suppression. The state transition graph represents
these dynamics. The source code of the input models can be
found in the (Supplementary Material S3). The computed values
also show that when GLUT-1, VEGF, OGT, and the oncogene
C-MYC upregulate, HIF-1 continues to be expressed at a higher
level. On the other hand, activating the p53 inhibitor stops HIF-1
from rising above the typical threshold value. Furthermore, in the

absence of AKT inhibitory signals, p53 expression rises, and GLUT-
1 is activated in response to the HIF-1 signal (Yeung et al., 2008).
Interpreting the trajectories within the state transition graph is
essential to thoroughly understanding gene behavior in the context
of a dynamic biological system.

3.3 Dynamic simulations of BRN

3.3.1 State transition graphs
The Cytoscape software is employed to visualize the state

transition graph consisting of 512 nodes (Figure 5). The state
graph is created by the GINsim tool using the estimated
SMBioNet parameters as indicated in the last column of
Supplementary Table S1. The states of biological entities are
arranged in a manner that reflects their betweenness centrality.
The state graph represents the system’s status at any given time using
an indicator containing the expression levels of all entities provided.
These entities are ordered: (HIF-1, ERK,VEGF, p53, β-catenin, AKT,
GLUT-1, C-MYC, OGT). A typical qualitative condition within the
state graph in Figure 5 is distinguished by reduced expression levels
of HIF-1, VEGF, ERK, GLUT-1, and OGT as well as the tumor
suppressor genes C-MYC, p53. On the other hand, the pathogenic
qualitative condition is characterized by increased levels of HIF-1,
VEGF,GLUT-1, andERKexpression.This visual depiction facilitates
comprehension of the dynamic functioning of the system and offers
valuable insights into the shift from a healthy to a diseased state.

This qualitative state (0,0,0,0,0,0,0,0,0) in biological systems
exhibits oscillatory behaviors or homeostasis under normal
conditions; in a normal state, the overall behavior of the system
shows cyclic. As a result, a good qualitative model should
include disease/pathogenic and typical homeostatic characteristics
such as cycles and closed paths. Under typical physiological
conditions, the biological system exhibits homeostasis, defined
by the downregulation of oncogenes such as OGT, GLUT-1, and
C-MYC. This state is achieved when VEGF activation is absent
and reduced levels of ERK. In contrast, a pathological condition
characterized by high levels of HIF-1 and oncogene expression
is indicated by the trajectory (1,1,1,1,1,0,1,1,1) as illustrated in
Figure 5. The transition from homeostasis to a pathogenic state is
a significant alteration in the system’s behavior, frequently linked
to the progression of the disease. The deadlock state’s mediate
predecessors up to two layers have low betweenness centrality,
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FIGURE 4
The Heatmap generated from the logical parameters computed on SMBioNet reveals the presence of eight distinct parameter sets. Among these, a
preferred set of parameters was determined via model checking, and the results are visually depicted in the form of a heatmap, accompanied by their
respective resources labeled as M1 through M8. Each column in this heatmap represents a distinct set of logical parameters, with green denoting
moderate expression, red denoting overexpression, and yellow denoting under expression of an entity.

illustrated by circles with significantly greater influence and yellow
color. This indicates a greater chance of the infected system
regaining stability by passing through a sequence of stable states
that hold less importance within the recovery process, as denoted
by their low betweenness centrality. However, high betweenness
centrality indicates essential nodes that control information flowand
influence network dynamics, offering insights into key regulators or
potential intervention points in disease mechanisms. The previously
mentioned trajectories are crucial in enabling interactions inside
the system, significantly enhancing its adaptability and flexibility.
The model (Figure 5) highlights a series of cycles computed using
the GINsim software, which is shown as the outermost circle. The
states within the cycles demonstrate significant levels of betweenness
centrality, as denoted by the yellow circles, whereas red circles depict
the states with low betweenness centrality. This representation helps
us better understand the network structure and how it affects the
system’s dynamics.

3.3.2 Selection of cycle
The occurrence of cycles within the model holds significant

importance, enabling the finding of the most probable biological
cycle. Figure 5 presents a computed cycle utilizing the Cytoscape

tool, which uses betweenness centrality to rank states. The ranking
of states based on their betweenness centrality is further information
in (Supplementary Material S4). In this visual depiction, nodes with
larger diameters indicate states with greater betweenness centrality.
This methodology facilitates the identification of crucial states
within the network, providing insights into the most significant
components and their possible effects on biological processes. The
cycle with the highest betweenness centrality: (1,0,1,1,1,1,1,0,1)
→ (0,0,1,1,1,1,1,0,1) → (0,0,1,1,1,1,0,0,1) → (0,1,1,1,1,1,0,0,1) →
(1,1,1,1,1,1,0,0,1) → (1,1,0,1,1,1,0,0,1) → (1,0,0,1,1,1,0,0,1) →
(1,0,0,1,1,1,0,1,1) → (1,0,1,1,1,1,0,1,1) → (1,0,1,1,1,1,0,1,0) →
(1,0,1,1,1,1,0,0,0) → (1,0,1,1,1,1,1,0,0) shows oscillations of all
entities except p53, β-catenin and AKT. The cycle indicates that
homeostasis requires continual activation of p53, β-catenin and
AKT. By disrupting this process, commonly achieved by the
overexpression of HIF-1, GLUT-1, and OGT, a transition can
occur, leading to either a malignant state (1,1,1,1,1,0,1,1,1) or a
state of recovery (0,0,0,0,0,1,0,0,0). This binary sequence appears to
represent a state where several signaling pathways and molecules
associated with cancer are activated or upregulated. This could
indicate a malignant state with increased cell proliferation, survival,
and angiogenesis. The “0”for AKT might suggest a potential
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FIGURE 5
The highest betweenness and centrality cycle is retrieved at the outermost layer. The top layer entities show arrows (red and green) representing a
specific entity’s production and degradation. Furthermore, the neighboring entities of the pathogenic state (111,110,111) show continuous activation of
HIF, GLUT-1, and OGT, whereas the neighboring entities of the normal state (000,001,000) show continual degradation of C-MYC and OGT.

inhibition or downregulation of this pathway, which is often
associated with anti-apoptotic signals. The transition process is
made possible through the downregulation of C-MYC and OGT,
two crucial factors involved in cellular growth and metabolism
(Ferrer et al., 2014), (Jóźwiak et al., 2014).The previouslymentioned
dynamics highlight the system’s susceptibility to changes in crucial
regulatory elements, which affect the balance between normal and
disease states.

The cyclic trajectories illustrated in Figure 5 precisely indicate
the presence of p53, β-catenin, and AKT proteins. These entities
fulfill a useful regulatory function in the hypoxia-inducible factor
(HIF) system, aiding in preserving homeostasis within the model.
On the other hand, when HIF-1 expression is dysregulated
and causes the activation of cellular proliferation mechanisms,
particularly ERK and GLUT-1, it has the potential to give rise to
problems such as diabetes ormore severe illnesses such as oncogenes
is. This highlights the crucial significance of these regulatory
components in regulating the dynamic equilibrium of the system
and its potential deviation toward pathological conditions.

3.3.3 Subgraphs
The subgraphs are extracted from the state graph and shown in

Figures 6, 7. These subgraphs depict the behavior of states step by
step to induce changes and show how the biochemical system goes
toward cancer progression or recovery state. In light of the complex
structure of the broad state network that arises from qualitative
modelling, we utilized the concept of average betweenness centrality,
as outlined in Definition 6, to identify significant trajectories.
This methodology enabled us to prioritize significant trajectories
without needing to examine each individually, as shown in

Figure 6. The chosen trajectory was decided by identifying the
maximum betweenness centrality. This trajectory initiated from
the initial state (1,0,1,1,1,0,0,1) and led to either the pathogenic
or deadlock state (1,1,1,1,1,0,1,1,1). Proto-oncogenes such as C-
MYC and AKT are essential constituents of the signaling network
under normal physiological circumstances, exerting significant
influence on the regulation of cellular development (Hers and
Vincent, 2023), (Asano et al., 2004). The previous path selection
highlights the importance of these parameters and their possible
influence on the shift from a normal to a pathogenic state.

Gain-of-function mutations turn a proto-oncogene into an
oncogene, resulting in increased protein expression, signaling
pathway alterations, and increased glycolytic flux via the HIF-
1 system and inflammatory response. HIF-1, VEGF, p53, β-
catenin, AKT, and OGT expression is increased in critical
trajectories that begin at (1,0,1,1,1,1,0,0,1). When the body
is under stress, increased ERK expression is considered to
signify a metabolic transition from oxidative phosphorylation to
glycolysis. HIF transcriptional response has been shown to activate
in response to this stress, subsequent in the qualitative state
(1,1,1,0,1,1,0,0,0). As shown in Figure 6, the following trajectories
illustrate thatHIF-1 is overexpressed in numerous states, resulting in
a pathogenic/deadlock state, validating the increasing evidence that
HIF serves various functions during increased cellular metabolism.

3.3.4 Bifurcation states
The dynamic qualitative model illustrates a pathogenic or

deadlock condition (1,1,1,1,1,0,1,1,1) represent AKT is inhibited in
hypoxic conditions as part of the cellular response to low oxygen,
which involves the activation of HIF-1 and changes in energy
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FIGURE 6
(A) The subgraph depicts the entities starting from the state (101,111,001), showing blue and inducing step-by-step changes of the path that goes
towards the normal or pathogenic state. Green entities show that the path goes towards the recovery state from different bifurcation points (pink
color), and red indicates that the path goes towards the pathogenic state. Moreover, red circles show important critical trajectories at different points.
(B) This path derived from the network shown in part (A), clearly illustrates the critical trajectories as they transition from the bifurcation point toward
normal and pathogenic states.

metabolism. Conversely, AKT is activated in homeostatic conditions
(0,0,0,0,0,1,0,0,0) when cells receive signals from growth factors and
have sufficient nutrients for growth and survival. The regulation of
AKT in different conditions underscores its key role in integrating
signals related to oxygen availability, energy status, and cell survival,
as evidenced by previous studies highlighting its central role in
cellular signaling pathways and its significance in responding to
changes in oxygen levels, energy fluctuations, and promoting cell
survival (Hoxhaj and Cancer, 2020), (Jóźwiak et al., 2014). The
state graph exhibits cyclic patterns of β-catenin, p53, and AKT,
specifically oscillations. These patterns indicate the dynamic nature
of the system.The presented graphical representation offers valuable
insights into the dynamics of state transitions and the functions
performed by crucial regulatory entities. The biological system
might follow numerous pathways and qualitative states. One of
the bifurcation points (1,0,0,0,0,1,1,0,0) goes towards the deadlock
state (1,1,1,1,1,0,1,1,1). The sequence of subsequent changes in gene
expression determines the precise trajectory of a biological system’s
progress toward a goal. For example, prolonged stimulation of
VEGF and ERK results in a pathogenic/deadlock state. When a

biochemical system reaches a point of no return, it cannot return to a
bifurcation point or any other qualitative state and nevermoves back
to the normal homeostatic response. A crucial component of this
research entails the computation of logical parameters that exclude
the qualitative condition (1,1,1,1,1,0,1,1,1) as the state of a deadlock.
The development of a realistic therapeutic objective is of the greatest
significance in facilitating the shift of the biological system from
a deadlock to a state of recovery or homeostasis. Identifying and
subsequently targeting these factors makes it possible to construct
therapeutic interventions that efficiently lead the system toward a
healthier and more stable state.

3.3.5 Highest betweenness centrality paths
ThisQualitative model simulates the interactions between genes

and proteins in cancer progression. The paths shown in Figures 6,
7 are extracted from the state graph based on higher betweenness
centrality. Figure 6 graph shows that one of the critical trajectories or
bifurcation points (0,0,1,0,1,1,0,0,0) goes towards the recovery state
if VEGF and β-catenin expression is low.However, if ERK expression
is high, the cancer cells will move towards the more aggressive
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FIGURE 7
(A) The subgraph depicts the same entities as Figure 6, starting from the state (101,111,001) showing blue and inducing step-by-step path changes
towards the normal or pathogenic state. Green entities show that the path goes towards the recovery state from different bifurcation points (pink
color), and red indicates that the path goes towards the pathogenic state. Moreover, red circles show important critical trajectories at different points.
(B) This path extracted from the larger network as they transition from the bifurcation point toward normal and pathogenic states.

state (0,1,1,0,1,1,0,0,0). The sequence of subsequent changes in
gene expression determines the precise trajectory of a biological
system’s progress toward a goal. However, in the subsequent critical
trajectory, there is an observed increase in the expression levels
of HIF-1 and GLUT-1, while the expression levels of β-catenin,
VEGF, and ERK are decreased. This leads to the formation of a
specific state that includes the expression pattern (1,0,0,0,0,1,1,0,0).
The observed transition signifies a noteworthy alteration in the
system’s behavior, marked by modifications in the expression
levels of crucial regulatory entities. This transition holds potential
significance for therapeutic interventions and understanding disease
states. At this bifurcation state (1,0,0,0,0,1,1,0,0), HIF-1 expression is
downregulated, and the system returns to a normal or homeostatic
state despite the elevated expression of AKT and GLUT-1 that are
often overexpressed together in cancer cells. This co-overexpression
leads to several synergistic effects that promote cancer progression
(Gang et al., 2017). Whereas upregulation of OGT with the
subsequent consistent activation of AKT and GLUT-1 augment,
the hyper-activation of HIF-1 leads to a pathogenic/deadlock state
because it creates a positive feedback loop that drives cancer
cell growth and survival. Alternatively, the third bifurcation point
(1,1,1,0,1,1,0,0,0) illustrates that inhibiting/downregulating VEGF,

ERK, GLUT-1, and HIF-1 expression prevents tumors growth and
metastasis and promotes a return to a homeostatic state. In contrast,
high expression of GLUT-1 leads to a pathogenic/deadlock state.
However, the potential therapeutic target is HIF-1 along with VEGF
and β-catenin because in the presence of HIF-1, VEGF and β-
catenin canwork together to promote tumors growth andmetastasis
(Zhang et al., 2017), (Ye et al., 2018), (Kaidi et al., 2007). Due to the
influence of these two entities, GLUT-1 expression is also inhibited,
but if HIF-1 and GLUT-1 expression are high along with OGT, the
system never returns to normal homeostasis or recovery state. As
a result, collectively controlled expression of VEGF, GLUT-1, and
OGT to inhibit cancer progression.

The second-largest betweenness centrality path is taken from
the state graph to emphasize the significant trajectories. The first
bifurcation point (0,0,1,1,1,1,0,0,1) is shown in Figure 7. If VEGF
and OGT expression is downregulated from this state, the system
returns to a homeostatic or recovery state; when VEGF and
OGT expression is downregulated, HIF-1 expression may also be
downregulated. This may happen because VEGF and OGT can both
stabilize HIF-1 protein levels. By downregulating VEGF and OGT
expression, HIF-1 protein levels may decrease, which could lead to a
decrease in HIF activity, whereas inhibiting OGT expression moves
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towards the next bifurcation state (0,0,1,1,1,1,0,0,0). The first critical
trajectory (0,0,1,1,1,1,0,0,0) illustrates the same as shown in Figure 6,
inhibiting VEGF and β-catenin goes towards recovery state, but
if p53 expression in downregulated shows that path goes towards
next state. At the same time, β-catenin is downregulated and
moves towards the next critical trajectory. The most significant
trajectory (0,0,1,1,0,1,0,0,0) shows the expression of VEGF and
ERK; VEGF is downregulated simply as the system goes towards
a normal or recovery state. The crucial role of ERK at this state
shows high expression and moves towards the next Bifurcation state
(1,1,1,1,0,1,0,0,0). VEGF can activate ERK, and ERK can activate
HIF-1, that are involved in angiogenesis and cell proliferation.
This creates a positive feedback loop that can drive tumors
growth and metastasis. At this point, p53 is a downregulated
path that goes toward another state where initially HIF-1 and
GLUT-1 expression is increased, but due to inhibition of VEGF,
which leads to downregulation of ERK and ultimately HIF-
1 and GLUT-1. However, p53 can inhibit ERK activity, but
mutated p53 cannot. This means that cancer cells with mutated
p53 will have high levels of ERK activity, which can promote
tumor growth and metastasis. However, if upregulation of the
HIF-1 signaling from this critical trajectory (1,1,1,1,0,1,0,0,0)
causes hyper-activation of GLUT-1 and the path goes toward
pathogenic or deadlock state.

When a biochemical system reaches a point of no return, it
cannot return to a bifurcation point or any other qualitative state
and never moves back to the recovery or normal homeostatic
response. Calculating logical parameters is of crucial importance in
ensuring that the dynamic models do not include the qualitative
state (1,1,1,1,1,0,1,1,1) as the state of deadlock. In hypoxia
stabilizing HIF-1α through inhibition of glycogen synthase kinase
3β and prolonged hypoxia leads to AKT inactivation. However,
subsequent downregulation of HIF-1 activity by decreasing HIF-1α
accumulation, highlighting a biphasic effect on HIF-1α stabilization
in response to varying oxygen levels (Mottet et al., 2003). Identifying
a realistic therapeutic objective is a crucial step that directs the
biological system from a pathogenic condition toward a normal or
homeostatic state. Recognizing these factors makes it feasible to
create efficient therapeutic strategies for returning the system to a
balanced or healthy state.

The fundamental difference between these two biological routes
as shown in Figures 6B, 7B lies in their outcomes and implications,
particularly in cancer. One of these pathways exhibits a state
characterized by a deadlock with elevated expression levels of
GLUT-1 and OGT. In contrast, the other pathway demonstrates
an increased expression of VEGF and ERK, and importantly, it
never reverts to a normal physiological state. In the first route,
marked by high GLUT-1 and OGT expression, the cells exhibit a
metabolic state often associated with cancer cells. However, GLUT-1
is responsible for glucose uptake, and OGT is involved in adding O-
GlcNAc modifications to proteins. The state in inquiry is frequently
distinguished by heightened glucose metabolism, referred to as
the Warburg effect, which supplies cancer cells with the requisite
energy and substrates for accelerated growth and multiplication
(Vaupel et al., 2019), (Heiden et al., 2009). This pathway is like a
“deadlock” because it reinforces the cancerous phenotype, making
it challenging for the cells to revert to their normal, non-cancerous
state. Conversely, the second pathway with elevated VEGF and ERK

expression is significant for angiogenesis and tumor progression.
VEGF is a very influential pro-angiogenic factor that induces the
development of new blood vessels, a pivotal mechanism for the
proliferation of tumors, as it ensures an adequate blood supply.
ERK, part of the MAPK signaling pathway, is often activated in
response to growth factor signaling, including VEGF. When ERK
is activated, it can contribute to cell proliferation, migration, and
survival, further fueling the tumor’s expansion. Unlike the first
pathway, this one is characterized by sustained activation, and the
cells never return to their normal state, making it a hallmark of
aggressive and invasive cancers.

The observation that VEGF activates ERK and influences
GLUT-1 highlights a critical intersection between angiogenesis and
cancer metabolism. VEGF expression levels should be regulated
and maintained at a low threshold by normal physiological
conditions. This mostly occurs through the regulatory influence
of the hypoxia-inducible factor (HIF). Maintaining equilibrium in
VEGF expression is highlighted since a level of VEGF can result
in unregulated angiogenesis, a characteristic feature observed
in numerous solid tumors. Simultaneously, the downstream
activation of extracellular signal-regulated kinase (ERK) can
extend the duration of cancer cell proliferation and migration.
Within the context of this intricate biological system, several
key regulatory entities, including VEGF, ERK, and OGT,
exhibit a notable upregulation, with each of them playing
significant roles in cancer progression, angiogenesis, and cell
proliferation. These heightened expressions are central to the
dynamics of this system.

The Qualitative model of this system unveils insightful
trajectories. In particular, it highlights that a sustained upregulation
of these three pivotal genes, namely, p53, β-catenin, and AKT,
ultimately leads to a restorative cascade of events, including the
return of oscillations within these genes and a gradual progression
towards a state of recovery or normal homeostasis. In Figure 5,
these trajectories are vividly depicted, showcasing the journey
from a perturbed biological state to a normalized one. This visual
representation provides a clear and intuitive understanding of
the process. Furthermore, Figures 6, 7 provide a comprehensive
depiction of the dynamic changes in gene expression along the
important pathways throughout the transition of the biological
system fromone qualitative state to another.These figures essentially
serve as maps, charting the changes in gene expression throughout
the system’s journey. The key insight derived from these findings is
that the biological system evolves from a qualitative, perturbed state
to a cyclic, oscillatory state under the influence of calculated logical
parameters.This transformation represents a pivotal attractorwithin
the system, signifying a return to normal homeostatic conditions.
It reveals the system’s intrinsic capacity to regain equilibrium,
a fundamental element in the body’s response to maintain
physiological balance and health. This insight carries significant
implications for understanding and potentially manipulating the
dynamics of biological systems, especially in the context of disease
and therapeutic interventions.

Furthermore, SimBiology-generated concentration analysis
graphs (Figure 8) enable precise tracking of minute changes in
biological entity concentrations over time, down to seconds.
Supplementary Material S5 provides the ordinary differential
equations (ODEs) representing model interactions. The initial high

Frontiers in Molecular Biosciences 14 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1386930
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Azhar et al. 10.3389/fmolb.2024.1386930

concentrations of p53, β-catenin, and AKT depicted in Graph a
(Figure 8) unveil a dynamic scenario. Analysis reveals that the p53
tumor suppressor experiences a concentration increase within one
to three time units when interacting with AKT at a concentration of
0.31 mM/L. The observed increase in p53 concentration following
its interaction with AKT suggests a critical role for p53 as a
tumor suppressor. This dynamic indicates a responsive regulatory
mechanismwhere AKT, a key signalingmolecule in cell survival and
proliferation, influences p53 levels to maintain cellular homeostasis
and prevent uncontrolled cell growth. Simultaneously, β-catenin
undergoes a decline from 0.8 mM/L to 0.02 mM/L, while AKT
stabilizes at 0.03 mM/L, indicating a regulated biological response.
The marked decline of β-catenin from 0.8 mM/L to 0.02 mM/L
indicates a potential suppression of its oncogenic functions. β-
catenin is involved in cell adhesion and signaling pathways that
promote proliferation. Its decrease, alongside increased p53 levels,
hints at a coordinated response to mitigate cancer progression.
Initially, concentrations of C-MYC and VEGF surge significantly,
reaching approximately 0-0.21 mM/L. The significant increase in
C-MYC and VEGF concentrations reflects heightened cellular
activities such as proliferation and angiogenesis, processes crucial
for tumor growth and metastasis. Elevated VEGF, in particular,
drives the formation of new blood vessels, supplying nutrients and
oxygen to rapidly growing tumors. This surge signals heightened
cell proliferation, angiogenesis, and potential alterations in cellular
adhesion influenced by OGT. This coordinated biological activity
enhances the invasive potential of cancer cells, facilitatingmetastasis
to distant organs. Notably, this heightened state transitions into a
stable equilibrium alongside critical entities such as HIF-1, ERK,
and GLUT-1. The transition to a stable equilibrium involving HIF-
1, ERK, and GLUT-1 suggests an integrated network where these
factors collaboratively enhance tumor aggressiveness. HIF-1, known
for its role in cellular response to hypoxia, promotes angiogenesis
and metabolic adaptation, while ERK signaling is central to cell
proliferation. GLUT-1, a glucose transporter, facilitates metabolic
shifts necessary for the increased energy demands of cancer cells.
Moving to Graph b (Figure 8), simulations monitoring VEGF,
ERK, and HIF-1 concentrations over 20 seconds unfold. VEGF
concentrations peak at 0.087 mM/L, while ERK concentrations
approach 0.08 mM/L within five to six time units. The observed
peak concentrations of VEGF and ERK correlate with enhanced
angiogenesis and metabolic reprogramming. This interplay between
signaling pathways and nutrient uptake is critical for sustaining
tumor growth and supporting the invasive potential of cancer cells.
The distinctive downregulation of VEGF compared to the slower
degradation of ERK suggests an intricate regulatory mechanism
to maintain homeostasis within the tumor microenvironment.
This insight emphasizes the potential for therapeutic strategies
that focus on modulating these dynamics to prevent excessive
activation of pro-tumorigenic pathways.HIF-1 concentrations reach
amaximum of 0.038 mM/L around the 5-time unit mark but regress
to near zero by the 20-time unit mark (0.002 mM/L). Building upon
insights from Figure 6, it becomes evident that VEGF stimulates
the expression of HIF-1 by increasing ERK concentrations, thereby
influencing angiogenesis and tumor progression. Graph c (Figure 8)
introduces an intriguing perspective on hyper activation of ERK
and GLUT-1. Elevating ERK concentrations (0.9 mM/L) influences
GLUT-1 (1.0 mM/L), underscoring the critical intersection

between angiogenesis and cancer metabolism. Consequently, OGT
concentrations escalate to 0.82 mM/L, alongside heightened HIF-1
(0.2 mM/L) and VEGF (0.88 mM/L) within approximately two-
time units, propelling the system toward a more aggressive and
cancerous state. In Graph d (Figure 8), inhibiting the concentrations
of ERK (0.25 mM/L) and GLUT-1 (0.35 mM/L) restrains OGT,
VEGF, and HIF-1, placing the system in an intermediate state.
This strategic intervention prevents the system from progressing
toward hyper activation, offering potential insights into therapeutic
interventions to mitigate aggressive cancer states. The observed
pairwise concentration dynamics reveal a distinctive pattern: VEGF
undergoes more rapid downregulation than ERK degradation,
suggesting a regulatory mechanism for maintaining homeostasis.
This implies that therapeutic strategies should prioritize expeditious
clearance of VEGF post-function and a deliberately slower
degradation rate for ERK, mitigating the risk of prolonged HIF-1
activation and downstream signaling cascade hyperactivation. The
findings highlight the importance of targeting specific pathways. For
instance, strategies to promote the rapid clearance of VEGF post-
activation could limit angiogenesis, while carefully controlling ERK
degradation may prevent prolonged HIF-1 activation. This dual
approach could reduce the risk of enhancing tumor aggressiveness.
Another critical insight from this constraint relationship is the
necessity for GLUT-1 overexpression under cancerous conditions
to potentiate its activating effect on HIF-1, preventing premature
OGT degradation. These unique insights highlight the importance
of thorough wet-lab explorations into the functions of HIF-1, VEGF,
OGT, ERK, and GLUT-1, especially in the context of targeted
interventions designed to impede cancer cell proliferation.

4 Discussion

Over the last few decades, there has been an extensive amount
of research that has contributed to a better understanding of glucose
metabolism in both healthy and rapidly dividing cancer cells. HIF-
1, VEGF and GLUT-1 have been identified as key contributors
in the metabolic context, and their aberrant regulation is strongly
linked to the onset and progression of diverse malignancies
(Maxwell et al., 1997), (Pouysségur et al., 2006), (Wiesener et al.,
2003). To unravel the complex dynamics of this regulatory
network, a discrete model (0,1) was constructed, providing
insights into the qualitative behaviors of these crucial entities
(Bernot et al., 2004).

The qualitative model has uncovered insights into the intricate
interplay between genes and proteins driving cancer progression. It
predicts the presence of cycles representing homeostasis and a stable
state indicative of disease. According to the most physiologically
realistic approach, it is required that the levels of expression
for all entities, except p53, β-catenin, and AKT, would exhibit
oscillatory behavior in order to sustain a state of equilibrium,
and constant expression is vital for sustaining homeostasis. Our
proposed qualitative model comprehensively explores the complex
dynamics within biological systems, focusing on the dynamics
of genes and proteins in cancer progression. Analyzing state
transitions and critical trajectories unveils pivotal factors driving
cancer’s advancement and identifies potential therapeutic targets to
disrupt this process. The study highlights three distinct trajectories
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FIGURE 8
Simulation of the dynamic response of a cellular system: (A) It shows perturbations in p53, β-catenin, and AKT levels, with all other entities starting at
zero concentration. (B) This graph shows the average value of VEGF, ERK, and HIF-1 over time. (C) It shows the initial high concentration of GLUT-1 and
ERK, followed by a decrease in concentration in (D). This decrease in concentration inhibits the
concentration of other entities, such as OGT, HIF-1, and C-MYC.

explained in previously highest betweenness centrality path section,
each with unique implications for cancer. The first pathway in
Figure 6, characterized by high GLUT-1 and OGT expression,
reflects the Warburg effect, indicating metabolic changes that fuel
rapid cancer cell growth (Jóźwiak et al., 2014). A “deadlock”
condition blocks the cells' ability to revert to a non-malignant
form within this biological process. In contrast, the second pathway
in Figure 7, characterized by increased levels of VEGF and ERK
expression, plays a key function in the process of angiogenesis and
the advancement of tumors, ultimately resulting in the development
of aggressive forms of cancer (Wiesener et al., 2003), (Lee et al.,
2006). Maintaining VEGF expression balance is crucial, as excessive
VEGF can lead to uncontrolled angiogenesis, a common feature in
solid tumors. This study emphasizes the importance of regulating
key genes such as p53, β-catenin, and AKT to guide the biological
system back to recovery and normal homeostasis. The illustrations
of transitions and gene expression change along these critical paths
provide valuable insights into the system’s journey. This research
reveals the system’s innate ability to evolve from a perturbed
state to a cyclic, oscillatory state, signifying a return to normal
physiological conditions. This insight carries broad implications
for understanding and potentially manipulating the dynamics of
biological systems, particularly in the context of diseases and
therapeutic interventions.

While the BRN approach used in this study offers valuable
insights into the qualitative dynamics of cancer progression,
it is important to recognize its inherent limitations that could
affect the model’s accuracy and predictive power. The primary

limitation of the BRN approach is its reliance on binary states
(0,1), which oversimplifies the continuous and dynamic nature
of gene and protein expression in biological systems, where
responses often involve graded variations rather than sharp
transitions (Banf and Rhee, 2017). This binary simplification
may overlook subtle variations in gene expression and regulatory
interactions that are crucial for a comprehensive understanding
of the system’s complexity. Additionally, the model’s focus on a
limited number of key players, such as HIF-1, VEGF, Glut-1,
and p53, can restrict its scope, potentially excluding significant
regulatory factors and interactions that play vital roles in cancer
progression. To tackle these limitations, future discussions should
emphasize integrating more sophisticated modeling techniques
that accommodate continuous variables, as well as expanding
the network to include a broader array of molecular players
and their interactions. This approach could enhance the model’s
accuracy and provide a more holistic view of the complex
dynamics involved in cancer biology. However, while these
findings offer a detailed view of the system’s regulatory behavior,
the reliance on computational predictions warrants further
experimental validation to strengthen the real-world applicability of
the results.

Future validation methods could include in vitro experiments
involving cancer cell lines or in vivo animal models (Sun et al.,
2018). For instance, cell culture models could be used to test
the predicted oscillatory expression patterns of key genes such
as HIF-1, VEGF, and Glut-1 under varying conditions that
simulate cancerous growth. Additionally, animal models could help
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assess the role of VEGF in tumor angiogenesis and explore how
therapeutic interventions targeting these pathways influence tumor
development. This would allow researchers to directly test the
model’s predictions, such as the impact of sustained VEGF and
ERK expression on aggressive tumor growth or the role of Glut-
1 and OGT in metabolic shifts that support cancer proliferation.
Moreover, the SimBiology simulation revealed intricate molecular
concentration dynamics over time, highlighting critical interactions.
Key findings include the time-dependent relationships among
p53, AKT, beta-catenin, C-MYC, OGT, VEGF, HIF-1, ERK,
and GLUT-1, impacting angiogenesis and cancer metabolism.
The study underscores the importance of targeted therapeutics,
emphasizing faster VEGF downregulation and controlled ERK
degradation to prevent hyper-activation of downstream signaling
cascades and suggests further wet-lab exploration for effective
cancer cell proliferation targeting. Overall, this study deepens our
comprehension of the intricate dynamics of cancer progression and
lays the foundation for developing targeted therapeutic strategies
to restore homeostasis and combat the disease. However, to fully
leverage these insights and develop practical applications, further
wet-lab experiments are essential. Future experimental work could
not only validate the predicted interactions but also guide the
development of novel therapeutic strategies aimed at disrupting
the key pathways identified in this model. For instance, by
experimentally targeting the pathways related to VEGF, Glut-1, and
p53, it may be possible to design treatments that halt tumor growth
by restoring the system to a balanced, oscillatory state that resembles
normal physiological conditions. It brings us closer to deciphering
the complexity of cancer and offers hope for more effective
interventions in the future.

5 Conclusion

This study offers significant insights into the complex regulatory
networks that govern cancer progression, particularly through
the lens of key pathways such as PI3K-Akt, HIF-1, and Wnt
signaling. By leveraging bifurcation analysis and trajectorymapping,
the model identifies crucial decision-making points in cellular
processes that dictate whether a system moves toward a normal
state, enters a quiescent phase, or spirals into a pathological,
cancerous deadlock. Key components like AKT, HIF-1, VEGF,
and GLUT-1 emerge as pivotal regulators within this framework.
Their dynamic interplay highlights how external factors such as
oxygen availability, metabolic stress, and growth signals drive
either adaptive responses or malignant transformations. The model
shows that persistent activation of these pathways can trap the
system in an oncogenic state, suggesting that timely intervention
at these critical points could help restore normal cellular
function.

Additionally, this analysis provides insights into specific
regulatory mechanisms, such as the role of HIF-1, VEGF and β-
catenin in listing the balance between angiogenesis and tumor
inactivity. The model identifies conditions under which the
system may recover from cancerous states, emphasizing the
importance of targeting these molecular drivers therapeutically.
By identifying logical control parameters that either promote
recovery or push the system toward malignancy, the model

not only deepens our understanding of cancer biology but also
opens new avenues for therapeutic innovation. Overall, this
research contributes to a broader understanding of cancer as a
dynamic, non-linear process, where small perturbations in key
pathways can lead to vastly different outcomes. This enhanced
knowledge of state transitions and critical thresholds offers
a promising framework for future cancer therapies that aim
to disrupt these pathways at key intervention points, thereby
preventing cancer progression or promoting recovery from
malignant states.
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