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Introduction: Although B-cell acute lymphoblastic leukemia (B-cell ALL) survival
rates have improved in recent years, Hispanic children continue to have poorer
survival rates. There are few tools available to identify at the time of diagnosis
whether the patient will respond to induction therapy. Our goal was to identify
predictive biomarkers of treatment response, which could also serve as
prognostic biomarkers of death, by identifying methylated and differentially
expressed genes between patients with positive minimal residual disease
(MRD+) and negative minimal residual disease (MRD-).

Methods: DNA and RNA were extracted from tumor blasts separated by
immunomagnetic columns. Illumina MethlationEPIC and mRNA sequencing
assays were performed on 13 bone marrows from Hispanic children with
B-cell ALL. Partek Flow was used for transcript mapping and quantification,
followed by differential expression analysis using DEseq2. DNA methylation
analyses were performed with Partek Genomic Suite and Genome Studio.
Gene expression and differential methylation were compared between
patients with MRD−/− and MRD+/+ at the end of induction chemotherapy.
Overexpressed and hypomethylated genes were selected and validated by RT-
qPCR in samples of an independent validation cohort. The predictive ability of the
genes was assessed by logistic regression. Survival and Cox regression analyses
were performed to determine the association of genes with death.

Results: DAPK1, BOC, CNKSR3, MIR4435-2HG, CTHRC1, NPDC1, SLC45A3,
ITGA6, and ASCL2 were overexpressed and hypomethylated in MRD+/+

patients. Overexpression was also validated by RT-qPCR. DAPK1, BOC, ASCL2,
and CNKSR3 can predict refractoriness, but MIR4435-2HG is the best predictor.
Additionally, higher expression ofMIR4435-2HG increases the probability of non-
response, death, and the risk of death. Finally, MIR4435-2HG overexpression,

OPEN ACCESS

EDITED BY

Qingyu Luo,
Dana–Farber Cancer Institute, United States

REVIEWED BY

Lin Han,
Dana–Farber Cancer Institute, United States
Kezhi Yan,
Cystic Fibrosis Foundation, United States

*CORRESPONDENCE

Alba Lucía Combita,
acombita@cancer.gov.co

Yulieth Torres-Llanos,
yxtorresl@unal.edu.co

RECEIVED 12 February 2024
ACCEPTED 28 February 2024
PUBLISHED 30 April 2024

CITATION

Torres-Llanos Y, Zabaleta J, Cruz-Rodriguez N,
Quijano S, Guzmán PC, de los Reyes I,
Poveda-Garavito N, Infante A, Lopez-Kleine L
and Combita AL (2024), MIR4435-2HG as a
possible novel predictive biomarker of
chemotherapy response and death in pediatric
B-cell ALL.
Front. Mol. Biosci. 11:1385140.
doi: 10.3389/fmolb.2024.1385140

COPYRIGHT

© 2024 Torres-Llanos, Zabaleta, Cruz-
Rodriguez, Quijano, Guzmán, de los Reyes,
Poveda-Garavito, Infante, Lopez-Kleine and
Combita. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 30 April 2024
DOI 10.3389/fmolb.2024.1385140

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1385140&domain=pdf&date_stamp=2024-04-30
mailto:acombita@cancer.gov.co
mailto:acombita@cancer.gov.co
mailto:yxtorresl@unal.edu.co
mailto:yxtorresl@unal.edu.co
https://doi.org/10.3389/fmolb.2024.1385140
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2024.1385140


together with MRD+, are associated with poorer survival, and together with
overexpression of DAPK1 and ASCL2, it could improve the risk classification of
patients with normal karyotype.

Conclusion: MIR4435-2HG is a potential predictive biomarker of treatment
response and death in children with B-cell ALL.

KEYWORDS

B-cell acute lymphoblastic leukemia, biomarkers, MRD, gene expression, DNA
methylation, prognosis, treatment response

1 Introduction

B-cell acute lymphoblastic leukemias (B-cell ALL) are the most
frequent neoplasms in children (Pui et al., 2008). Cure rates for acute
lymphoblastic leukemias (ALL) have improved remarkably in the
last 4 decades; however, while developed countries achieve 80% cure
rates, those rates are around 60% in developing countries (Vera et al.,
2012). Some studies have shown that, even under the same
treatment protocols, Hispanic children have worse survival and
treatment response compared to White and Asian children
(Matasar et al., 2006; Walsh et al., 2013; Walsh et al., 2014). The
mechanisms underlying these differences in survival rates are
still unknown.

Currently, clinical parameters such as leukocyte count, age,
extramedullary infiltration, chromosomal translocations, and
minimal/measurable residual disease (MRD) classify patients into
risk groups. MRD is the most used variable to define treatment
response (van Dongen Jacques et al., 1998; Van Dongen JJM et al.,
2015). However, due to low survival rates in our patients, it is
possible to propose that those variables do not fully define risk
groups, which leads to incorrect selection of chemotherapy protocol,
affecting patient survival (Sok et al., 2022).

In ALL, gene expression alterations not only result from
mutations; alterations at the epigenetic level also play a relevant
role in this pathology (Garcia-Manero et al., 2009; Newton et al.,
2014; Hu and Shilatifard, 2016; Nordlund and Syvänen, 2018). Thus,
epigenetic alterations, including aberrant DNA methylation, could
act as important molecular mechanisms in developing resistance to
treatment of ALL (Newton et al., 2014). In bone marrow (BM), DNA
methylation patterns change during normal hematopoiesis and play
an essential role in lineage differentiation (Cullen et al., 2014;
Wainwright and Scaffidi, 2017). As in normal cells, tumor cells
may also depend on specific DNA methylation patterns to acquire
their phenotype and maturation patterns (Patel and Vanharanta,
2017;Wainwright and Scaffidi, 2017; Poli et al., 2018). Therefore, the
characterization of aberrant patterns in DNAmethylation in tumors
can provide important clues about how gene expression is regulated
in these pathologies (Nordlund and Syvänen, 2018). Hogan et al.,
2015 found that patients with relapses presented promoter
hypermethylation and identified a clear signature of differentially
expressed genes at the time of diagnosis and relapse; moreover, this
signature differs between early-relapse patients and to late-relapse
patients. Similarly, aberrant promoter methylation has been
associated with MRD. For example, aberrant methylation of the
promoters of the RASSF6 and RASSF10 genes has been observed in
adults with B-cell ALL, which can be detected in peripheral blood
and could be useful as potential biomarkers to measure MRD

(Younesian et al., 2019). Furthermore, it has been reported that
promoter methylation of the TLX3 and FOXE3 genes in children
with B-cell ALL differentiates MRD + patients from MRD-patients
(Chatterton et al., 2014).

Although differential methylation and gene expression patterns
have been observed between samples at diagnosis and in relapse,
whether these variables could be tools to predict treatment response,
including relapse or death, is yet to be determined. Also, a CpG
island methylation analysis identified candidate genes as biomarkers
of pediatric ALL subgroups and their correlation with disease
prognosis (Stumpel et al., 2009). Identifying genomic markers,
derived from methylation and gene expression analysis, could
improve risk classification, and define patient prognosis.

We hypothesized that gene expression and DNA methylation of
blasts obtained at diagnosis differ between MRD+ and MRD-
patients and that by comparing these two conditions, candidate
genes predictive of treatment response and death could be identified.
We collected BM samples obtained at diagnosis, purified leukemic
blasts, and compared gene expression andDNAmethylation profiles
between MRD+ and MRD-patients at the end of induction, looking
for overexpressed and hypomethylated genes in MRD + patients.
Subsequently, we evaluated if the selected genes could predict
response to induction chemotherapy, or death. The search for
new genomic biomarkers will improve risk classification and, in
the future, patient survival.

2 Materials and methods

2.1 Patient samples

Forty-three patients with B-ALL who attended the Instituto
Nacional de Cancerología, Hospital Militar Central and Hospital
Universitario San Ignacio (Bogotá, Colombia) between 2017 and
2021 were included. The discovery cohort consisted of 13 BM
samples taken at the time of the diagnosis in which RNA-seq/
DNA methylation protocols were performed. Sequencing data from
12 patients was used to enrich the survival analyses. Eighteen BM
samples taken at the time of the diagnosis were included in the
validation cohort by RT-qPCR.

Newly diagnosed patients were included in the study when they
entered to the institutions for symptomatology associated with ALL
and after verification of the inclusion criteria (not having received
chemotherapy, not having another type of cancer, not having genetic
diseases and being younger than 18 years old). The diagnosis was
confirmed using flow cytometry (Van Dongen JJM et al., 2012) and
morphological analysis of BM. This study was conducted following
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the recommendations of the Colombian Regulation for Research in
Humans (Resolution 8430 of 1993, Ministry of Health of Colombia)
and in accordance with the Declaration of Helsinki and approved by
each participating institution’s Institutional Review Boards (IRB).
All methods for nucleic acid analysis were approved by the LSUHSC
Translational Genomics Core’s Institutional Biosafety Committee
protocol number 17370. Informed consent was signed by the parents
of all participants. Each patient was treated according to the assigned
risk and in accordance with the Berlin-Frankfurt-Munich protocol
(Stary et al., 2014). Patients with treatment abandonment or non-
adherence to it were excluded.

According to the Berlin-Frankfurt-Munich protocol, response to
induction therapy was evaluated by flow cytometry detecting MRD
at day 15, where patients with <0.1% residual blasts in BM were
MRD-, and patients with >0.1% residual blasts were considered
MRD+. At day 33, patients with <0.01% residual blasts in BM were
MRD-, while patients with >0.01% residual blasts were MRD+
(Stary et al., 2014). Therefore, we considered patients with MRD-
day15 and MRD-day33 as MRD−/− and patients with MRD +
day15 and MRD + day33 as refractory patients or MRD+/+.

2.2 Blasts isolation and purification

BM samples were collected by a hemato-oncologist and
processed within 24 h after sample collection. First, mononuclear
cells were separated from BM by density-gradient centrifugation
(Lymphoprep, Lonza). The blasts were separated using magnetic
microbeads coated with anti-CD19 or anti-CD34 antibodies,
followed by MACS column enrichment (Miltenyi, Bergisch
Gladbach, Germany). The purity of sorted blasts was assessed
with CD34-PERCPCy5.5, CD45-V500, CD19-PECy7, and
CD10 APC antibodies. Data was acquired in a FACSCanto II
flow cytometer (Becton/Dickinson Biosciences, San Jose, CA),
using the FACSDiva software program. Infinicyt software
(Cytognos SL, Salamanca, Spain) was used for data analysis
(Cruz-Rodriguez et al., 2016).

2.3 DNA and RNA extraction

DNA and RNA were extracted from MACS-sorted blasts using
the Allprep mini kit and the robotic workstation QIAcube (Qiagen,
Hilden, Germany). RNA quality was evaluated using the Agilent
RNA 6000 Nano and Pico kits in the Agilent 2100 Bioanalyzer. RNA
concentration was calculated using the Qubit™ RNA High
Sensitivity and Broad Range kits, while DNA concentration was
calculated using the Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific).

2.4 Library preparation and RNA sequencing

Samples with RIN >6 and purity by flow cytometry with >90%
blasts were selected for RNA-seq. For RNA library preparation,
300 ng of total RNA was used. TruSeq Stranded mRNA RNA
libraries were prepared following Illumina’s protocol. Resulting
libraries were sequenced at 2 × 75 bp on a NextSeq550 sequencer

system at the Stanley S. Scott Cancer Center’s Translational
Genomics Core at LSUHSC-New Orleans. On average, more
than 50 million reads per sample were obtained. FASTQ files
were uploaded to Partek Flow for analysis. First, removal of
contaminant sequences (rDNA, mtrDNA, tRNA) was done with
Bowtie 2.0 v2.2.5. Reads were aligned to the hg38 version of the
human genome, using STAR 2.7.3a. Genes were quantified with
RefSeq 96. For the analysis, genes with less than 5 reads in at least
80% of the samples were excluded. One sample with a low
correlation (<0.4) with respect to the others was removed.
Normalization was done with the Median Ratio and differential
expression analysis was assessed with DESEQ2. Hierarchical
clustering, pathways (KEEG) and GO terms were all analyzed in
Partek Flow.

2.5 DNA methylation assay

Bisulfite conversion was performed in 500 ng of DNA for each
sample following the recommendations of the EZ DNA
Methylation-Startup Kit (Catalogue number D5001, Zymo
Research, United States). Bisulfite-converted DNA was amplified
and hybridized to the Infinium Methylation EPIC Kit chips and
scanned on the Illumina’s iScan. Analysis of the methylation assays
was done in Partek Genomic Suite. Low-confidence probes
(p-value >0.05) and probes mapped to X and Y chromosomes
were excluded. Normalization was done using NOOB
(normalization for Illumina Infinium methylation arrays).

2.6 RT-qPCR

Total RNA from sorted blasts was treated with DNase I
Amplification Grade (Invitrogen, United States) prior to reverse
transcription. cDNA was synthesized using the SuperScript III First-
Strand Synthesis SuperMix Kit (Invitrogen, United States), following
the manufacturer’s procedures. TaqMan probes were used to
quantify mRNA expression levels of candidate genes obtained by
RNA-seq analysis (Assay IDs: DAPK1 Hs00234489_m1; NPDC1
Hs00209870_m1; CNKSR3 Hs00295109_m1; SLC18A2
Hs00996835_m1; CTHRC1 Hs00298917_m1; BOC Hs00264408_
m1; SLC45A3 Hs00263832_m1; GAPDH Hs99999905_m1, ASCL2
Hs00270888_s1; MIR4435-2HG Hs03680374_m1). The reaction
was amplified in a QuantStudio 12 K plex Real-Time PCR
machine (Applied Biosystems). The 2−ΔΔCT method was used to
estimate the fold induction of each gene usingGAPDH and Ct values
to determine the fold change (FC) for each sample. A pool of
samples was used as internal calibrator, as well as water as negative
control. Assays were done in duplicate.

2.7 Statistical analysis

2.7.1 Transcriptomic and methylation data analysis
Normalization and differential expression analysis were

performed using the Deseq2 library in RStudio. Differentially
expressed genes (DEGs) were selected if they had a
p-value <0.05 and a FC > 2. ggplot library was used to generate

Frontiers in Molecular Biosciences frontiersin.org03

Torres-Llanos et al. 10.3389/fmolb.2024.1385140

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385140


heatmaps, and GenomeStudio to calculate beta values for each
hybridized probe. The Partek Genomic Suite was used for
differential methylation analysis to identify genes with
differentially methylated CpGs (GDMCpGs). GDMCpGs were
chosen if they had FC > 2 and FDR <0.05. Enrichment analysis
and functional gene annotation were performed Clusterprofiler in
RStudio. Pearson correlation was used to determine correlation
between overexpressed genes and hypomethylated probes; those
with an inverse correlation less than −0.50 and a
p-value <0.05 were selected.

2.7.2 Experimental design
Figure 1 describes the methodological design of the study. Gene

and methylation profiles of induction treatment were compared
between MRD−/− vs. MRD+/+. Treatment response was the only
variable used to define profiles in each comparison.

2.7.3 RT-qPCR analysis
Spearman correlation was used to determine any correlation

between normalized RNA-seq counts and FC values for RT-qPCR.
Genes with p-value <0.05 and r > 0.72 were selected. Mann-Whitney
test was used to compare FC between MRD−/− and MRD+/+

patients. GraphPad software was used for statistical tests and
graphic images. In both analyses, outliers were identified by the
ROUT method (Q = 1%) and excluded from the analyses.

2.7.4 Clinical data analysis
To compare clinical variables between patient cohort, t-test and

chi-square tests were used. The follow-up time for relapse and death
was 2 years. Logistic regression analysis was performed to evaluate
whether candidate genes could predict treatment response. Survival
analyses were estimated according to gene expression using Kaplan-
Meier curves. Cox regression was used to determine whether gene
expression conferred a higher risk of death. The Youden index of
normalized RNA-seq counts was used to define the cutoff threshold
for overexpression for each gene.

3 Results

Table 1 describes the clinicopathological characteristics of the
patients included in the discovery cohort, and Supplementary
Material S1 shows the clinical variables of the validation cohort.
As can be observed, no differences in clinical variables between
MRD+/+ and MRD−/− patients, except for risk, were found.
However, this was to be expected because MRD+/+ patients are
considered intermediate to high risk, whereas MRD−/− patients
may be low to intermediate risk. Interestingly, more than seventy
percent of patients had normal karyotype. The MRD−/− group had
1 death related to relapse and progression and another one due to
febrile neutropenia. Similarly, the MRD+/+ group had one death due

FIGURE 1
Methodological design of the study. We describe the descriptive cohort (n = 13) in which DNA methylation and gene expression analyses were
performed separately, comparing the results between MRD−/− vs. MRD+/+. From the comparisons, 10 DEGs with differentially methylated CpGs were
selected and verified in the validation cohort (n = 18) via RT-qPCR. Subsequently, the predictive ability of genes on outcomes such as achievement of
complete remission at end of induction and death was tested. The relationship between gene overexpression and overall survival and risk of death
was also assessed.
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to relapse and progression and 4 deaths during the induction phase
(very aggressive disease).

3.1 Identification of DEGs

To identify genes that could differentiate MRD+/+ patients from
MRD−/− patients, we performed RNA-seq and MethylationEPIC in
nucleic acids extracted from immunomagnetic column-enriched
leukemic blasts obtained at the time of diagnosis. MRD status
was obtained from medical charts at day 15 and 33. We then
compared the gene expression and DNA methylation profiles
between MRD−/− vs. MRD+/+ patients. Unsupervised hierarchical
cluster analysis showed 117 upregulated and 36 downregulated

DEGs MRD+/+ vs. MRD−/− patients (Figure 2A). Among the
biological processes with the highest number of genes involved
are neutrophil activation, serine/threonine membrane receptors,
extracellular matrix organization, among others ((Figure 2B). The
cellular components with the highest number of genes involved
include cell-cell junction, adhesion, vesicles, among
others ((Figure 2C).

3.2 Identification of GDMCpGs

Additionally, a total of 2726 GDMCpGs were identified between
MRD+/+ and MRD−/− patients (Figure 3A). To establish a
correlation between DEGs and their corresponding methylation

TABLE 1 Clinical characteristics of the DISCOVERY cohort.

Clinical characteristics MRD+/+ (n = 6) MRD−/− (n = 7)

n (%) Mean (range) n (%) Mean (range) p-value

AGE (years) 11 (3–17) 10.7 (3–15) 0.91

SEX

Female 2 (33.3) 2 (28.5) 0.85

Male 4 (66.7) 5 (71.5)

WBC (cel/mL) 90.7 (9.7–292) 35.99 (6.22–91.8) 0.22

RISK

Low 0 (0) 1 (14.2) 0.03

Intermediate 2 (33.3) 6 (85.8)

High 4 (66.7) 0 (0)

EXTRAMEDULLAR INFILTRATION

Yes 1 (16.6) 2 (28.5) 0.61

No 5 (83.4) 5 (71.5)

CORTICOID RESPONSE

Yes 5 (83.4) 7 (100) 0.26

No 1 (16.6) 0 (0)

CARIOTYPE/MOLECULAR ALTERATIONS

Normal 4 (66.8) 5 (71.4) 0.56

t (1; 19) 1 (16.6) 1 (14.3)

t (9; 22) 1 (16.6) 0 (0)

t (3; 14) 0 (0) 1 (14.3)

RELAPSE

Yes 1 (16.6) 1 (14.2) 0.90

No 5 (83.4) 6 (85.8)

DEATH

Yes 4 (66.7) 2 (28.5) 0.16

No 2 (33.3) 5 (71.5)

MRD+/++/+ indicates minimal residual disease positive. MRD−/−-/- indicates minimal residual disease negative.
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levels, we compared DEGs and GDMCpGs to determine if there
were common genes between the two techniques. This comparison
revealed 40 common genes between MRD +/+ and MRD −/−
patients (Figure 3B). Notably, we observed a significative inverse
correlation involving the overexpression of 10 genes and their
associated CpGs hypomethylation (Table 2).

3.3 Gene verification by RT-qPCR

Subsequently, gene expression was verified by RT-qPCR and all
genes showed correlation between the normalized read counts
(RNA-seq) and the 2−ΔΔCT values obtained from RT-qPCR.
Remarkably, CTHRC1, CNKSR3, MIR4435-2HG, DAPK1, and
ITGA6 demonstrated correlations exceeding 0.80 (Figure 4).
Although SLC18A2 was the gene with the best concordance, it
was excluded from the analysis because only 6 patients were used
for this analysis.

Then, we wanted to test if the expression of these genes
remained differential between MRD- and MRD + patients in the
validation cohort. Due to the low incidence of the disease (Katz et al.,
2015) and the small number of MRD + patients, samples from the
MDR + patients in the discovery cohort were pooled with those from
the validation cohort for RT-qPCR analyses. Consistent with RNA-
seq results, all genes except CTHRC1 were overexpressed in MRD+/+

patients by RT-PCR (Figure 5).

3.4 Predictive value of genes

Afterward, we used logistic regression to evaluate whether genes
could predict response to induction chemotherapy. Remarkably,
MIR4435-2HG was found to be the best predictor of whether a
patient would be MRD−/−, MRD+/+ (Figures 6A,B). It was observed
that genes DAPK1, BOC, ASCL2, and CNKSR3 could also predict
whether the patient would be MRD−/− or MRD+/+ (Supplementary
Material S2). To assess whetherMIR4435-2HG could predict the risk
of death, we performed logistic regression using our normalized read
counts. We observed that MIR4435-2HG can predict death with
good sensitivity and specificity (Figures 6C,D). Interestingly, we
found that patients with counts >5.1 had a 66% probability of being
MRD+/+ to treatment (refractory), and this probability increased
proportionally to increases in gene expression. Similarly, the
probability of death increased when counts were >7.0 (Figure 6E).

3.5 Relationship between gene expression
and risk of death

With the aim of testing the potential of the identified genes as
predictive biomarkers of mortality, four Cox regression models were
performed to determine the clinical variables that influence patient
survival (white blood cell count at diagnosis, age, extramedullary
infiltration, response on day 8 of corticosteroid treatment, MRD on

FIGURE 2
Differentially expressed genes between MRD+ and MRD-patients. (A)Heatmap of DEGs between MRD−/− and MRD+/+. Each column represents an
individual patient and horizontal axis indicates each differentially expressed gene. In blue scale downregulated genes, and the red scale shows
upregulated genes (FC > 2 and <−2, p-value <0.05). (B) Dot plot showing the 7 most significant biological processes in which differentially expressed
genes between conditions are grouped. (C) Dot plot showing the 10 most significant cellular components in which differentially expressed genes
between conditions are grouped.
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day 15, and at the end of treatment). induction) and overexpression
of the identified genes.

The initial model incorporated current clinical variables used to
determine the risk of death, but none of these variables
demonstrated a significant association with increased risk of
mortality. In the second model, both clinical variables and gene
overexpression were considered, with none of these variables
increasing the risk of death. In the third model, MRD and
overexpression of selected genes were included, revealing that
overexpression of MIR4435-2HG emerged as the unique variable
that elevated the risk of death 74-fold. Similarly, the fourth model,
which evaluated the complete gene profile, indicated that
overexpression of MIR4435-2HG significantly elevated the risk of
death. (Table 3).

In line with the previous result, survival analysis showed that
patients with MIR4435-2HG overexpression had worse survival;
however, it is important to validate this result in a larger cohort
of patients (Figure 7A). Since MRD is the current variable most
commonly used to define the risk of death, however, for the survival
analysis we first considered MRD at the end of induction, effectively
demonstrating that MRD-patients have better survival than MRD +
patients. (Figure 7B). Importantly, a more accurate separation of
survival curves was achieved when we compared the survival of
patients combining MRD+ with MIR4435-2HG overexpression
versus MRD-patients with MIR4435-2HG down-expression. This
revealed that patients with MRD+ and MIR4435-2HG
overexpression experienced markedly worse survival (Figure 7C).

Finally, given that more than half of our patients had normal
karyotype, we evaluated whether selected genes could improve risk
classification in this subgroup of patients. Remarkably, the
simultaneous overexpression of MIR4435-2HG, DAPK1, and

ASLC2 was associated with worse survival in patients with
normal karyotype compared to those who did not overexpress
them (Figure 7D).

4 Discussion

Given the wide genetic and epigenetic heterogeneity inherent in
ALL, there is a critical need for new biomarkers to improve the
prognosis of patients (Lejman et al., 2022). The present study
conducted an integrative analysis of genome-wide DNA
methylation and gene expression by RNA-seq in a cohort of
14 pediatric patients with B-cell ALL to explore whether
differential DNA methylation genes and gene expression patterns
could be proposed as potential predictive biomarkers that
differentiate responder from non-responder patients and confer
risk of death in pediatric patients with B-cell ALL.

Aberrant DNA methylation has been considered a hallmark in
different types of cancer, including ALL (McCabe et al., 2009;
Hanahan, 2022). Consistent with the findings of Borssén et al.,
2018, our study demonstrated a clear separation in both DNA
methylation and gene expression profiles between MRD- and
MRD + patients. Notably, the overexpression of genes was
associated with a more aggressive phenotype. Previously,
Figueroa et al., 2013 reported that aberrant DNA methylation in
childhood ALL could play a crucial role as a determinant of gene
expression in disease-specific alterations. In our study, we observed a
negative correlation between hypomethylation of CpGs and
overexpression of genes DAPK1, CNKSR3, MIR4435-HG2,
CTHRC1, NPDC1, SLC45A3, ITGA6, ASCL2, and BOC,
supporting the idea that changes in DNA methylation have the

FIGURE 3
Genes with differentially methylated CpGs between MRD+ and MRD-patients. (A)Heatmap of differentially methylated GDMCpGs between MRD−/
− and MRD+/+. Each column represents an individual patient and horizontal axis indicates the beta values of each differentially methylated CpG.
Hypomethylated probes are shown in green and hypermethylated probes in red. The MRD−/− patient group is shown in orange and the MRD+/+ patient
group in red. FC > 2 and <−2, p-value <0.05. (B) Venn diagram identifying common DEGs and GDMCpGs after MRD−/− vs. MRD+/+ comparison.
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TABLE 2 Relationship between beta values of CPGS sites and normalized RNASEQ counts of differentially expressed genes between MRD+/+ and MRD−/− patients.

Relation
to CpGs
island

AFC050 AEM087 LSA023 JM040 CZA072 DFP084 KDA013 DSR017 JSR021 HCMMX1 JMC053 LVC063 ESR082 p-value Rho

CNKSR3

Normalized
RNAseq
counts

5.39 4.49 7.01 8.20 11.94 8.41 4.20 4.28 4.58 5.90 4.77 6.10 3.63 0.04 −0.57

cg00460149 0.10 0.22 0.07 0.06 0.09 0.09 0.24 0.60 0.13 0.21 0.20 0.07 0.48

CTHRC1

Normalized
RNAseq
counts

6.00 6.17 3.63 10.76 11.57 10.42 4.29 4.09 4.24 4.35 7.22 5.33 4.28 0,001 −0.78

cg01224234 0.47 0.47 0.22 0.05 0.06 0.17 0.79 0.83 0.81 0.82 0.07 0.73 0.83

NPDC1

Normalized
RNAseq
counts

11.79 11.51 5.83 7.91 13.17 12.45 4.66 5.68 5.32 4.71 6.42 8.90 9.16 0,003 −0.74

cg14190761 Island 0.07 0.15 0.20 0.09 0.05 0.08 0.29 0.24 0.18 0.18 0.20 0.26 0.18

DAPK1

Normalized
RNAseq
counts

13.20 10.94 5.75 12.47 12.19 13.07 10.23 4.65 7.59 9.04 4.98 8.69 5.37

cg08719486 N_Shore 0.74 0.43 0.55 0.43 0.14 0.35 0.82 0.72 0.88 0.47 0.82 0.85 0.47 0.14 −0.42

cg11518830 0.07 0.13 0.35 0.07 0.17 0.10 0.13 0.52 0.44 0.16 0.55 0.18 0.75 0,0001 −0.87

SLC45A3

Normalized
RNAseq
counts

8.83 8.50 6.99 9.67 12.74 12.34 7.11 5.95 6.40 5.27 9.32 7.30 5.46

cg01455178 N_Shore 0.32 0.72 0.52 0.71 0.15 0.24 0.74 0.71 0.75 0.80 0.78 0.81 0.39 0.02 −0.60

cg04896348 0.37 0.69 0.63 0.09 0.15 0.41 0.61 0.58 0.62 0.61 0.61 0.67 0.65 0,007 −0.69

ITGA6

Normalized
RNAseq
counts

14.90 10.68 8.75 10.51 15.81 15.34 10.62 11.99 8.73 10.83 10.01 10.64 8.06

(Continued on following page)
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TABLE 2 (Continued) Relationship between beta values of CPGS sites and normalized RNASEQ counts of differentially expressed genes between MRD+/+ and MRD−/− patients.

Relation
to CpGs
island

AFC050 AEM087 LSA023 JM040 CZA072 DFP084 KDA013 DSR017 JSR021 HCMMX1 JMC053 LVC063 ESR082 p-value Rho

cg07592198 0.12 0.46 0.46 0.82 0.29 0.36 0.73 0.80 0.70 0.55 0.75 0.75 0.74 0,008 −0.69

cg13586889 0.05 0.14 0.08 0.08 0.05 0.06 0.39 0.19 0.37 0.16 0.22 0.10 0.20 0.05 −0.53

MIR4435-2HG

Normalized
RNAseq
counts

6.30 5.54 4.90 6.04 9.43 7.20 4.55 4.74 4.89 4.55 5.15 4.44 4.42 0.04 −0.56

cg24783876 0.08 0.69 0.53 0.08 0.26 0.06 0.22 0.68 0.73 0.79 0.65 0.42 0.67

SLC18A2

Normalized
RNAseq
counts

4.08 4.3 4.85 6.1 9.46 11.4 4.29 4.28 4.48 4.05 4.25 4 3.63

cg03570973 N_Shore 0.81 0.5 0.4 0.15 0.67 0.07 0.79 0.59 0.79 0.71 0.82 0.81 0.8 0.01 −0.63

cg08521987 Island 0.51 0.11 0.2 0.22 0.1 0.07 0.67 0.4 0.5 0.26 0.44 0.48 0.78 0.01 −0.64

cg27186877 0.12 0.1 0.08 0.09 0.08 0,007 0.17 0.17 0.16 0.06 0.54 0.34 0.36 0.09 −0.47

cg00512279 Island 0.63 0.15 0.19 0.18 0.22 0,006 0.7 0.47 0.47 0.2 0.59 0.53 0.74 0.01 −0.63

ASCL2

Normalized
RNAseq
counts

5.52 7.08 4.19 7.8 8.71 8.15 5.18 4.09 4.37 3.63 3.63 4.36 4.27

cg11644479 Island 0.74 0.57 0.23 0.30 0.47 0.44 0.75 0.74 0.73 0.84 0.78 0.72 0.74 0.03 −0.59

cg13762320 Island 0.91 0.74 0.61 0.60 0.68 0.71 0.93 0.77 0.83 0.86 0.94 0.91 0.91 0.03 −0.59

cg19284039 Island 0.83 0.62 0.29 0.36 0.56 0.45 0.85 0.50 0.87 0.89 0.85 0.78 0.72 0.09 −0.48

cg26051413 Island 0.74 0.62 0.32 0.30 0.54 0.43 0.69 0.46 0.82 0.65 0.79 0.73 0.69 0.12 −0.45

cg13930892 Island 0.61 0.23 0.43 0.17 0.21 0.23 0.55 0.32 0.42 0.28 0.74 0.78 0.74 0.01 −0.63

BOC

Normalized
RNAseq
counts

4.52 6.09 4.50 4.59 8.17 7.60 4.10 4.09 4.06 3.63 5.04 4.52 4.27

cg22413784 0.55 0.75 0.76 0.12 0.42 0.41 0.75 0.74 0.78 0.81 0.74 0.76 0.80 0,008 −0.70
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potential to influence gene expression. While it is widely
recognized that promoter methylation can influence gene
expression (Moore et al., 2013), the specific biological
mechanisms driving this alteration in leukemias remain
unclear. Some researchers have proposed several approaches
that may be linked to mutations in the epigenetic machinery.
For instance, mutations in DNMTAs have been associated with a
gain of function in the protein, leading to either global or
segmented hypermethylation (Schulze et al., 2016; Brunetti

et al., 2017). Conversely, alterations in DNA demethylation
mechanisms, such as gain-of-function mutations in TET
enzymes, can result in zones of hypomethylation (Huang
et al., 2013; Bowman and Levine, 2017; Wu and Zhang, 2017).
Additionally, some studies have suggested a correlation between
altered methylation states and the availability of the substrate
SAM (S-adenosylmethionine), indicating that a low dietary
intake of SAM-containing foods could impact an individual’s
methylation states (Mentch et al., 2015).

FIGURE 4
Correlation of RNA-seq data with RT-qPCR. Spearman correlation plot between normalized RNA-seq counts (X-axis) and 2−ΔΔCT (Y-axis) of DAPK1
(n = 13), CNKSR3 (n = 12), MIR4435-HG2 (n = 13), CTHRC1 (n = 12), NPDC1 (n = 10), SLC45A3 (n = 13), ITGA6 (n = 12), ASCL2 (n = 11), BOC (n = 13), and
SLC18A2 (n = 6) genes. p-value <0.05 and r < 0.70.
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FIGURE 5
Comparison of fold change of the genes betweenMRD- andMRD+by RT-qPCR. Dot plot showing the comparison of FC of the nine selected genes
between MRD−/− and MRD+/+ patients. Mann-Whitney test was used to compare FC between the groups (p-value = 0.03 (*), 0.0021 (**); 0.0008 (***),
ns = >0.05)). Number of samples corresponding to each analysis: MIR4435-HG2 (MRD−/− = 12 vs. MRD+/+ = 8), DAPK1 (MRD−/− = 12 vs. MRD+/+ = 9),
CNKSR3 (MRD−/− = 10 vs. MRD+/+ = 6), CTHRC1 (MRD−/− = 12 vs. MRD+/+ = 9), NPDC1 (MRD−/− = 9 vs. MRD+/+ = 9), SLC45A3 (MRD−/− = 12 vs.
MRD+/+ = 9), ITGA6 (MRD−/− = 13 vs. MRD+/+ = 8), ASCL2 (MRD−/− = 10 vs. MRD+/+ = 6) and BOC (MRD−/− = 11 vs. MRD+/+ = 9).

Frontiers in Molecular Biosciences frontiersin.org11

Torres-Llanos et al. 10.3389/fmolb.2024.1385140

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385140


However, this study does not fully elucidate the
biological mechanism underlying hypomethylation
associated with gene overexpression. Nevertheless, these

findings provide valuable insights that can help generate new
hypotheses to further understand the underlying biological
mechanisms.

FIGURE 6
ROC curves and logistic regression graphs ofMIR4435-2HG as a predictor of chemotherapy response and survival. Logistic regression analysis and
ROC curves to determine the predictive capacity of the MIR4435-2HG and to determine its sensitivity and specificity. In logistic regressions, the
probability of having one of the outcomes is represented on the Y-axis by numbers between 0 and 1, where 1 indicates that the patient does not respond
to treatment and 0 indicates that the patient responds to treatment. On the X-axis, RNA-seq counts for theMIR4435-2HG gene are observed. (A,B)
Prediction of if patient will beMRD−/− orMRD+/+ and (C,D)whether theywill survive. Scatter plot of the relationship of RNAseq counts to the probability of
death (red) or being refractory (blue) (E). Likelihood ratio test, p-value <0.05 and area under the ROC curve >0.77 and p-value <0.05.
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Aberrant patterns of DNA methylation have been linked to
clinical outcome in patients with ALL; however, further research is
required to evaluate the clinical utility of some of these findings
(Tsellou et al., 2005; Roman-Gomez et al., 2007; Kuang et al., 2008;
Musialik et al., 2015; Mai et al., 2016; Ogawa et al., 2016). In this
study, we selected MIR4435-2HG, DAPK1, ASCL2, BOC, and
CNKSR3 as potential biomarkers of treatment response. Their
overexpression reliably predicts treatment failure or refractoriness
with high sensitivity and specificity. Notably, among these
biomarkers, MIR4435-2HG stands out as the most robust
predictor of therapeutic failure.

Recently, selected genes had been described as possible
diagnostic and prognostic biomarkers in different types of cancer
and other non-neoplastic diseases (Table 4).

In particular, MIR4435-2HG, which is a long non-coding
RNA, is also known as LncRNA-AWPPH, LINC00978, or
MORRBID (Ghasemian et al., 2022). Interestingly, MIR4435-
2HG overexpression has previously been associated with
hypomethylation in gliomas (Zhong et al., 2022). In patients
with T-cell ALL, MIR4435-2HG showed an elevated expression
compared to healthy individuals and has been linked to the
promotion of proliferation as well as the inhibition of
apoptosis of ALL cell lines (Li et al., 2020). Although the
precise biological role of MIR4435-2HG is still under
investigation, it is known to contribute by deregulating
different signaling pathways associated with proliferation,
invasion, migration, epithelial-mesenchymal transition, and
apoptosis. Specifically, it plays a role in signaling pathways

such as TGF-β, WNT-β catenin, MDM2/p53, PI3K/AKT,
Hippo, and MAPK/ERK (Ouyang et al., 2019; Zhong et al., 2022).

Unfortunately, no clinical variable was identified as risk factor
for death in our population; however,MIR4435-2HG overexpression
was found to significantly increases risk of death, predicts death, and
correlated with poorer survival. Similar findings have been reported
in acute myeloid leukemia by Zhigang Cai et al., 2020. Moreover, in
other cancer models,MIR4435-2HG overexpression has consistently
been associated with worse progression-free survival and overall
survival (Ouyang et al., 2019; Zhu et al., 2020; Zhong et al., 2022).

No studies have explored the relationship between aberrant
DNA methylation, gene overexpression, and MRD during
induction chemotherapy. However, certain authors have reported
differences in the methylation profiles of patients who experienced
relapse compared to those who did not (Borssén et al., 2018), where
patients with a less methylated CpG island methylator phenotype at
diagnosis exhibited inferior overall survival compared to those with
more methylated CpG island phenotype. In a prior study, Sandoval
et al., 2012 reported hypomethylation in various genome regions,
including Polycomb target genes, and its association with poor
survival and relapse. Similarly, Hogan et al. reported epigenetic
dysregulation in the acquisition of chemoresistance during relapse,
involving genes CDKN2A, COL6A2, PTPRO, and CSMD1 (Hogan
et al., 2015).

The search for biomarkers in the transcriptome or methylome of
patients is very valuable, especially when 25% of patients with
pediatric leukemia lack detectable genetic alterations and have a
low mutation rate, which is a challenge for risk classification

TABLE 3 Multiple Cox regression using currently clinical variables and gene profile.

Parameter Model 1. Currently
used clinical variables

Model 2. Currently
used clinical variables

and gene profile

Model 3. Gene profile
and MRD

Model 4. Gene profile

p-value OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value OR (95%CI)

Age 0.62 NC 0.89 0.20 (0.001–4.79)

WBC 0.72 NC >0.99 NC

Extramedullar infiltration >0.99 NC >0.99 NC

Corticoid response 0.18 NC >0.99 NC

MRD + day 15 0.90 NC 0.39 0.14 (0.0002–9.03) 0.29 0.20 (0.002–3.24)

MRD + end of induction 0.31 NC 0.27 3.71 (0.22–258.3) 0.14 6.82 (0.50–189.3)

MIR4435-2HG 0.17 NC 0.01 74.38 (4.18–6502) 0.007 22.7 (2.73–327.7)

DAPK1 >0.99 NC 0.37 3.12 (0.16–96.95) 0.27 3.23 (0.30–28.07)

ITGA6 0.15 0.01 (0.0006–5.48) 0.06 0.03 (0.00002–1.59) 0.11 0.06 (0.001–1.89)

NPDC1 >0.99 NC 0.06 13.22 (0.68–631) 0.07 12.62
(1.02–342.6)

CNKSR3 0.78 1.53 (0.04–36.46) 0.61 1.17 (0.11–9.55) 0.93 1.09 (0.12–8.72)

ASCL2 >0.99 NC 0.60 1.58 (0.08–29.20) 0.99 0.98 (0.05–19.78)

CTHRC1 >0.99 NC 0.59 0.43 (0.02–5.49) 0.22 0.25 (0.02–2.42)

SCL45A3 >0.99 NC 0.63 2.55 (0.08–45.41) 0.97 1.04 (0.02–72.07)

BOC 0.50 0.19 (0.0004–19.70) 0.16 0.51 0.39 (0.02–10.47)

MRD + indicates minimal residual disease positive. NC, No calculable;. WBC, white blood counts. Statistically significant results are shown in bold.
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FIGURE 7
Relationship of the MIR4435-2HG expression with death. Kaplan-Meier analysis comparing 2-year survival with respect (A) MIR4435-2HG
expression (n = 26); (B)MRD—or MRD + at the end of induction treatment (n = 26); (C) patients with overexpression ofMIR4435-2HG and MRD + at the
end of induction vs patients with low expression ofMIR4435-2HG and MRD-at the end of induction (n = 26); and (D) patients with normal karyotype and
overexpression or not of MIR4435-2HG, ASCL2, and DAPK1 (n = 15). p-value = <0.05.

TABLE 4 List of genes choose as possible predictive biomarkers of induction chemotherapy response.

Gene
name

FC p-value Rho Cancer association Ref

DAPK1 3.9 0,000009 −0.91 Gastric, pancreatic, head and neck, thyroid, brain, uterine,
lung, esophageal cancers, CLL, AML and MDS

Calmon et al. (2007), Greco et al. (2010), Qin et al. (2014), Wang
et al. (2014), Yuan et al. (2017), Wei et al. (2020), Gasimli et al.

(2022), Guru et al. (2022), Movahhed et al. (2022)

CNKSR3 5.7 0,0003 −0.85 Melanoma Lake et al. (2013)

SLC18A2 8.7 0,0009 −0.8 Prostate cancer and AML Sørensen et al. (2009), Lebedev et al. (2019)

CTHRC1 5.5 0,003 −0.76 Renal, head and neck, liver, stomach, lung, endometrial
and colorectal cancers

Sial et al. (2021), Meng et al. (2022)

NPDC1 4.4 0,003 −0.74 Gastric, neuroblastoma, pancreatic neuroendocrine
tumors and AML

Bloomston et al. (2004), Tong et al. (2013), Nguyen et al. (2019),
Dong et al. (2022)

BOC 4.6 0.01 −0.68 Gastric and pancreatic cancers Mathew et al. (2014), Fattahi et al. (2021)

ASCL2 5.4 0,004 −0.66 Colorectal, gastric and lung cancer. Risk of ALL in
pregnancy

Kwon et al. (2013), Hu et al. (2016), Potter et al. (2018), Zuo et al.
(2018), Wu et al. (2022)

SLC45A3 3.9 0.03 −0.59 Prostate cancer Esgueva et al. (2010)

0,04 −0.57

ITGA6 3.8 0.02 −0.63 Multiple myeloma and AML Yamakawa et al. (2012), Song et al. (2021)

MIR4435-
2HG

4.4 0.02 −0.55 Digestive, reproductive, respiratory, nervous, and urinary
tumors, AML and T-cell ALL

Ouyang et al. (2019), Shen et al. (2020), Zhu et al. (2020),
Ghasemian et al. (2022), Zhong et al. (2022)
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(Iacobucci and Mullighan, 2017). Interestingly, in our cohort, more
than 70% of our patients showed no genetic alterations but displayed
overexpressed of MIR4435-2HG, DAPK1 and ASCL2, which
correlated with worse survival. These results suggest that
assessing the expression of these genes by RT-qPCR could
improve risk classification, especially in patients without genetic
alterations.

While MIR4435-2HG overexpression appears to be a poor
prognostic factor, the association of DAPK1 expression with poor
prognosis is controversial (San Jose-Eneriz et al., 2013). In this study,
we associated DAPK1 overexpression and hypomethylation with
therapeutic failure, and poorer survival in patients with normal
karyotype. DAPK1 has also been associated with resistance to
imatinib in chronic myeloid leukemia (Guru et al., 2022),
autophagia (Singh et al., 2016), alterations in the p53 signaling
pathway in chronic lymphocytic leukemia (Wang et al., 2014) and
methylated in myelodysplastic syndrome (Greco et al., 2010).

Here we propose a gene profile that can predict treatment
response in children with B-ALL In particular, we demonstrate
for the first time that MIR4435-2HG is overexpressed and
hypomethylated in MRD + patients, and that it has the ability to
predict treatment response and confer an increased risk of death in
those patients who overexpress it (Figure 8). The detection of
MIR4435-2HG could be combined with MRD analysis to
improve risk classification, particularly in patients with normal
karyotype. The proposed genetic profile offers the possibility of
expanding research into new biomarkers predictive of response to

treatment, which, in the future, would be a valuable tool to improve
risk classification. A great contribution of this study is that the genes
can be identified by RT-qPCR, which is efficient, fast, and cost-
effective at the clinical level.

The limitations of this study are associated with the relatively low
number of newly diagnosed patients eligible for this investigation, as
well as the limited number of MRD + patients. Another limitation is
associated with the follow-up duration for the patients, typically
limited 2 years in most cases, which does not allow us to generate
a solid conclusion about patient survival (death). Therefore, it is
crucial to validate these results in a larger cohort of patients with a
prolonged follow-up period for a more comprehensive evaluation.
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FIGURE 8
Proposed scheme for pediatric B-cell ALL patients. Patients with B-ALL who overexpress the MIR4435-2HG, DAPK1, ASCL2, ITGA6, NPDC1,
SLC45A3, CNKSR3 and CTHRC1 genes have a high probability of being MRD+ and dying. The overexpression could be related to hypomethylation of the
CpGs sites of these genes. The genes overexpressed are related to different hallmarks of cancer.

Frontiers in Molecular Biosciences frontiersin.org15

Torres-Llanos et al. 10.3389/fmolb.2024.1385140

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385140


de ética en investigación (Hospital Militar Central). Comité de ética
en investigaciones del Instituto Nacional de Cancerología (Instituto
Nacional de Cancerología). The studies were conducted in
accordance with the local legislation and institutional
requirements. Written informed consent for participation in this
study was provided by the participants’ legal guardians/next of kin.

Author contributions

YT-L: Writing–review and editing, Writing–original draft,
Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding
acquisition, Formal Analysis, Data curation, Conceptualization.
JZ: Writing–review and editing, Supervision, Software,
Methodology, Investigation, Formal Analysis, Data curation. NC-
R: Writing–review and editing, Methodology, Investigation, Formal
Analysis, Conceptualization. SQ: Writing–review and editing,
Methodology, Formal Analysis, Data curation. PG:
Writing–review and editing, Methodology, Formal Analysis,
Conceptualization. IR: Writing–review and editing, Methodology,
Formal Analysis. NP-G: Writing–review and editing, Methodology.
AI: Writing–review and editing, Methodology, Funding acquisition.
LL: Writing–review and editing, Methodology, Investigation,
Formal Analysis, Data curation. Alba Lucia AC: Writing–review
and editing, Writing–original draft, Visualization, Supervision,
Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal Analysis, Conceptualization.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was supported by the Instituto Nacional de Cancerología and
Hospital Universitario San Ignacio. JZ received funding from
NIH grants P20 GM121288-06 and R25GM1148309-01.

Acknowledgments

We are mainly grateful to the patients who agreed to participate in
the study, as well as to their tutors. We also thank the institutions that
recruited the patients (Instituto Nacional de Cancerología, Hospital
Militar Central and Hospital Universitario San Ignacio), especially Dr.
Amaranto Suárez who provided support in the diffusion of the project
within the Instituto Nacional de Cancerología, as well as Dr. David
Garay, Dr. Eddie Pabón, Dr. Camila Prada, Dr. Jorge Buitrago, Andrea
Naranjo, Giovanna Bedon, Bibiana Martinez, Paula Toro and Cindy
Arevalo. Finally, special thanks to the Fundación Colombiana de
Leucemia y Linfoma for the financial support to Yulieth Torres-
Llanos in her PhD studies.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/
full#supplementary-material

References

Bloomston, M., Durkin, A., Yang, I., Rojiani, M., Rosemurgy, A. S., Enkmann, S., et al.
(2004). Identification of molecular markers specific for pancreatic neuroendocrine
tumors by genetic profiling of Core biopsies. Ann. Surg. Oncol. 11 (4), 413–419. doi:10.
1245/ASO.2004.03.077

Borssén, M., Nordlund, J., Haider, Z., Landfors, M., Larsson, P., Kanerva, J., et al. (2018).
DNA methylation holds prognostic information in relapsed precursor B-cell acute
lymphoblastic leukemia. Clin. Epigenetics 10 (1), 31–37. doi:10.1186/s13148-018-0466-3

Bowman, R. L., and Levine, R. L. (2017). TET2 in normal and malignant
hematopoiesis. Cold Spring Harb. Perspect. Med. 7 (8), a026518. doi:10.1101/
cshperspect.a026518

Brunetti, L., Gundry, M. C., and Goodell, M. A. (2017). DNMT3A in leukemia. Cold
Spring Harb. Perspect. Med. 7 (2), a030320. doi:10.1101/cshperspect.a030320

Cai, Z., Aguilera, F., Ramdas, B., Daulatabad, S. V., Srivastava, R., Kotzin, J. J., et al.
(2020). Targeting bim via a lncRNA morrbid regulates the survival of preleukemic and
leukemic cells. Cell Rep. 31 (12), 107816. doi:10.1016/j.celrep.2020.107816

Calmon, M. F., Colombo, J., Carvalho, F., Souza, F. P., Filho, J. F. G., Fukuyama, É. E.,
et al. (2007). Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and
ADAM23 in head and neck cancer. Cancer Genet. Cytogenet 173 (1), 31–37. doi:10.
1016/j.cancergencyto.2006.09.008

Chatterton, Z., Burke, D., Emslie, K. R., Craig, J. M., Ng, J., Ashley, D. M., et al. (2014).
Validation of DNA methylation biomarkers for diagnosis of acute lymphoblastic
leukemia. Clin. Chem. 60 (7), 995–1003. doi:10.1373/clinchem.2013.219956

Cruz-Rodriguez, N., Combita, A. L., Enciso, L. J., Quijano, S. M., Pinzon, P. L.,
Lozano, O. C., et al. (2016). High expression of ID family and IGJ genes signature as
predictor of low induction treatment response and worst survival in adult Hispanic
patients with B-Acute lymphoblastic leukemia. J. Exp. Clin. Cancer Res. 35 (1), 64–14.
doi:10.1186/s13046-016-0333-z

Cullen, S. M., Mayle, A., Rossi, L., and Goodell, M. A. (2014). Hematopoietic stem cell
development: an epigenetic journey. Curr. Top. Dev. Biol. 107, 39–75. doi:10.1016/B978-
0-12-416022-4.00002-0

Dong, R., Chen, S., Lu, F., Zheng, N., Peng, G., Li, Y., et al. (2022). Models for
predicting response to immunotherapy and prognosis in patients with gastric cancer:
DNA damage response genes. Biomed. Res. Int. 2022, 4909544. doi:10.1155/2022/
4909544

Esgueva, R., Perner, S., J Lafargue, C., Scheble, V., Stephan, C., Lein, M., et al. (2010).
Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy
cohort. Mod. Pathol. 23 (4), 539–546. doi:10.1038/modpathol.2009.193

Fattahi, S., Nikbakhsh, N., Ranaei, M., Sabour, D., and Akhavan-Niaki, H. (2021).
Author Correction: association of sonic hedgehog signaling pathway genes IHH, BOC,
RAB23a andMIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci. Rep.
11 (1), 16027. doi:10.1038/s41598-021-95379-8

Figueroa, M., Chen, S., Andersson, A. K., Phillips, L. A., Li, Y., Sotzen, J., et al. (2013).
Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia.
J. Clin. Invest. 123 (7), 3099–3111. doi:10.1172/JCI66203

Frontiers in Molecular Biosciences frontiersin.org16

Torres-Llanos et al. 10.3389/fmolb.2024.1385140

https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1385140/full#supplementary-material
https://doi.org/10.1245/ASO.2004.03.077
https://doi.org/10.1245/ASO.2004.03.077
https://doi.org/10.1186/s13148-018-0466-3
https://doi.org/10.1101/cshperspect.a026518
https://doi.org/10.1101/cshperspect.a026518
https://doi.org/10.1101/cshperspect.a030320
https://doi.org/10.1016/j.celrep.2020.107816
https://doi.org/10.1016/j.cancergencyto.2006.09.008
https://doi.org/10.1016/j.cancergencyto.2006.09.008
https://doi.org/10.1373/clinchem.2013.219956
https://doi.org/10.1186/s13046-016-0333-z
https://doi.org/10.1016/B978-0-12-416022-4.00002-0
https://doi.org/10.1016/B978-0-12-416022-4.00002-0
https://doi.org/10.1155/2022/4909544
https://doi.org/10.1155/2022/4909544
https://doi.org/10.1038/modpathol.2009.193
https://doi.org/10.1038/s41598-021-95379-8
https://doi.org/10.1172/JCI66203
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385140


Garcia-Manero, G., Yang, H., Kuang, S. Q., O’Brien, S., Thomas, D., and Kantarjian,
H. (2009). Epigenetics of acute lymphocytic leukemia. Semin. Hematol. 46 (1), 24–32.
doi:10.1053/j.seminhematol.2008.09.008

Gasimli, K., Raab, M., Becker, S., Sanhaji, M., and Strebhardt, K. (2022). The role of
DAPK1 in the cell cycle regulation of cervical cancer cells and in response to topotecan.
J. Cancer 13 (3), 728–743. doi:10.7150/jca.66492

Ghasemian, M., Rajabibazl, M., Sahebi, U., Sadeghi, S., Maleki, R., Hashemnia, V.,
et al. (2022). Long non-coding RNA MIR4435-2HG: a key molecule in progression of
cancer and non-cancerous disorders. Cancer Cell Int. 22, 215. doi:10.1186/s12935-022-
02633-8

Greco, M., D’Alò, F., Scardocci, A., Criscuolo, M., Fabiani, E., Guidi, F., et al. (2010).
Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and
therapy-related myeloid neoplasms. Blood Cells Mol. Dis. 45 (3), 181–185. doi:10.1016/j.
bcmd.2010.05.008

Guru, S. A., Sumi, M. P., Mir, A. R., Beg, M. M. A., koner, B. C., and Saxena, A. (2022).
Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle
and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib
respondents and poor survival. BMC Cancer 22 (1), 405. doi:10.1186/s12885-022-
09481-9

Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46.
doi:10.1158/2159-8290.CD-21-1059

Hogan, L. E., Meyer, J. A., Yang, J., Wang, J., Wong, N., Yang, W., et al. (2015).
Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals
therapeutic strategies. Blood 118 (19), 5218–5226. doi:10.1182/blood-2011-04-345595

Hu, D., and Shilatifard, A. (2016). Epigenetics of hematopoiesis and hematological
malignancies. Genes Dev. 30 (18), 2021–2041. doi:10.1101/gad.284109.116

Hu, X. G., Chen, L., Wang, Q. L., Zhao, X. L., Tan, J., Cui, Y. H., et al. (2016). Elevated
expression of ASCL2 is an independent prognostic indicator in lung squamous cell
carcinoma. J. Clin. Pathol. 69 (4), 313–318. doi:10.1136/jclinpath-2015-203025

Huang, H., Jiang, X., Li, Z., Li, Y., Song, C. X., He, C., et al. (2013). TET1 plays an
essential oncogenic role in MLL-rearranged leukemia. Proc. Natl. Acad. Sci. U. S. A. 110
(29), 11994–11999. doi:10.1073/pnas.1310656110

Iacobucci, I., and Mullighan, C. G. (2017). Genetic basis of acute lymphoblastic
leukemia. J. Clin. Oncol. 35 (9), 975–983. doi:10.1200/JCO.2016.70.7836

Katz, A. J., Chia, V. M., Schoonen, W. M., and Kelsh, M. A. (2015). Acute lymphoblastic
leukemia: an assessment of international incidence, survival, and disease burden. Cancer
Causes Control 26 (11), 1627–1642. doi:10.1007/s10552-015-0657-6

Kuang, S. Q., Tong, W. G., Yang, H., Lin, W., Lee, M. K., Fang, Z. H., et al. (2008).
Genome-wide identification of aberrantly methylated promoter associated CpG islands
in acute lymphocytic leukemia. Leukemia 22 (8), 1529–1538. doi:10.1038/leu.2008.130

Kwon, O. H., Park, J. L., Baek, S. J., Noh, S. M., Song, K. S., Kim, S. Y., et al. (2013).
Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and
resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci. 104 (3), 391–397. doi:10.
1111/cas.12076

Lake, S. L., Damato, B. E., Kalirai, H., Dodson, A. R., Taktak, A. F. G., Lloyd, B. H.,
et al. (2013). Single nucleotide polymorphism array analysis of uveal melanomas reveals
that amplification of CNKSR3 is correlated with improved patient survival. Am.
J. Pathology 182 (3), 678–687. doi:10.1016/j.ajpath.2012.11.036

Lebedev, T. D., Vagapova, E. R., Popenko, V. I., Leonova, O. G., Spirin, P. V., and
Prassolov, V. S. (2019). Two receptors, two isoforms, two cancers: comprehensive
analysis of kit and trka expression in neuroblastoma and acute myeloid leukemia. Front.
Oncol. 9, 1046. doi:10.3389/fonc.2019.01046

Lejman, M., Chałupnik, A., Chilimoniuk, Z., and Dobosz, M. (2022). Genetic
biomarkers and their clinical implications in B-cell acute lymphoblastic leukemia in
children. Int. J. Mol. Sci. 23, 2755. doi:10.3390/ijms23052755

Li, X., Song, F., and Sun, H. (2020). Long non-coding RNA AWPPH interacts with
ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell
acute lymphoblastic leukemia. Oncol. Lett. 20 (5), 239. doi:10.3892/ol.2020.12102

Mai, H., Liu, X., Chen, Y., Li, C., Cao, L., Chen, X., et al. (2016). Hypermethylation of
p15 gene associated with an inferior poor long-term outcome in childhood acute
lymphoblastic leukemia. J. Cancer Res. Clin. Oncol. 142 (2), 497–504. doi:10.1007/
s00432-015-2063-6

Matasar, M. J., Ritchie, E. K., Consedine, N., Magai, C., and Neugut, A. I. (2006).
Incidence rates of the major leukemia subtypes among U.S. Hispanics, Blacks, and non-
Hispanic Whites. Leuk. Lymphoma 47 (11), 2365–2370. doi:10.1080/
10428190600799888

Mathew, E., Zhang, Y., Holtz, A. M., Kane, K. T., Song, J. Y., Allen, B. L., et al. (2014).
Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by
Hedgehog signaling. Cell Rep. 9 (2), 484–494. doi:10.1016/j.celrep.2014.09.010

McCabe, M. T., Brandes, J. C., and Vertino, P. M. (2009). Cancer DNA methylation:
molecular mechanisms and clinical implications. Clin. Cancer Res. 15, 3927–3937.
doi:10.1158/1078-0432.CCR-08-2784

Meng, C., Zhang, Y., Jiang, D., and Wang, J. (2022). CTHRC1 is a prognosis-related
biomarker correlated with immune infiltrates in colon adenocarcinoma. World J. Surg.
Oncol. 20 (1), 89. doi:10.1186/s12957-022-02557-7

Mentch, S. J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., et al.
(2015). Histonemethylation dynamics and gene regulation occur through the sensing of
one-carbon metabolism. Cell Metab. 22 (5), 861–873. doi:10.1016/j.cmet.2015.08.024

Moore, L. D., Le, T., and Fan, G. (2013). DNA methylation and its basic function.
Neuropsychopharmacology 38 (1), 23–38. doi:10.1038/npp.2012.112

Movahhed, P., Saberiyan, M., Safi, A., Arshadi, Z., Kazerouni, F., and Teimori, H.
(2022). The impact of DAPK1 and mTORC1 signaling association on autophagy in
cancer. Mol. Biol. Rep. 49, 4959–4964. doi:10.1007/s11033-022-07154-1

Musialik, E., Bujko, M., Kober, P., Wypych, A., Gawle-Krawczyk, K., Matysiak, M.,
et al. (2015). Promoter methylation and expression levels of selected hematopoietic
genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res. 50 (1), 26–32. doi:10.
5045/br.2015.50.1.26

Newton, T. P., Cummings, C. T., Graham, D. K., and Bernt, K. M. (2014). Epigenetics
and chemoresistance in childhood acute lymphoblastic leukemia. Int. J. Hematol. Oncol.
3 (1), 19–30. doi:10.2217/ijh.13.68

Nguyen, C. H., Glüxam, T., Schlerka, A., Bauer, K., Grandits, A. M., Hackl, H., et al.
(2019). SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes
disease aggressiveness. Sci. Rep. 9 (1), 9139. doi:10.1038/s41598-019-45579-0

Nordlund, J., and Syvänen, A. C. (2018). Epigenetics in pediatric acute lymphoblastic
leukemia. Semin. Cancer Biol. 51, 129–138. doi:10.1016/j.semcancer.2017.09.001

Ogawa, S., Tsuchida, M., Kaizu, K., Manabe, A., Sato, Y., Aoki, T., et al. (2016). Long-
term outcome of 6-month maintenance chemotherapy for acute lymphoblastic
leukemia in children. Leukemia 31 (3), 580–584. doi:10.1038/leu.2016.274

Ouyang, W., Ren, L., Liu, G., Chi, X., and Wei, H. (2019). Lncrna mir4435-2hg
predicts poor prognosis in patients with colorectal cancer. PeerJ 2019 (4). doi:10.7717/
peerj.6683

Patel, S. A., and Vanharanta, S. (2017). Epigenetic determinants of metastasis. Mol.
Oncol. 11 (1), 79–96. doi:10.1016/j.molonc.2016.09.008

Poli, V., Fagnocchi, L., and Zippo, A. (2018). Tumorigenic cell reprogramming and
cancer plasticity: interplay between signaling, microenvironment, and epigenetics. Stem
Cells Int. 2018, 4598195. doi:10.1155/2018/4598195

Potter, C., Moorman, A. V., Relton, C. L., Ford, D., Mathers, J. C., Strathdee, G., et al.
(2018). Maternal red blood cell folate and infant vitamin B12 status influence
methylation of genes associated with childhood acute lymphoblastic leukemia. Mol.
Nutr. Food Res. 62 (22), 1800411. doi:10.1002/mnfr.201800411

Pui, C.-H., Leslie, L., and Robison, A. T. L. (2008). Acute lymphoblastic leukaemia.
Lancet 371, 1030–1043. doi:10.1016/s0140-6736(08)60457-2

Qin, Y., Ye, G. X., Wu, C. J., Wang, S., Pan, D. B., Jiang, J. Y., et al. (2014). Effect of
DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-
3 cell line. Int. J. Clin. Exp. Pathol. 7, 7536–7544.

Roman-Gomez, J., Jimenez-Velasco, A., Barrios, M., Prosper, F., Heiniger, A., Torres,
A., et al. (2007). Poor prognosis in acute lymphoblastic leukemia may relate to promoter
hypermethylation of cancer-related genes. Leuk. Lymphoma 48 (7), 1269–1282. doi:10.
1080/10428190701344899

Sandoval, J., Heyn, H., Méndez-González, J., Gomez, A., Moran, S., Baiget, M., et al.
(2012). Genome-wide DNA methylation profiling predicts relapse in childhood B-cell
acute lymphoblastic leukaemia. Br. J. Haematol. 160, 406–409. doi:10.1111/bjh.12113

San Jose-Eneriz, E., Agirre, X., Rodriguez-Otero, P., and Prosper, F. (2013). Epigenetic
regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 5
(5), 525–538. doi:10.2217/epi.13.56

Schulze, I., Rohde, C., Scheller-Wendorff, M., Bäumer, N., Krause, A., Herbst, F., et al.
(2016). Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood
127 (12), 1575–1586. doi:10.1182/blood-2015-07-655928

Shen, H., Sun, B., Yang, Y., Cai, X., Bi, L., Deng, L., et al. (2020). MIR4435-2HG
regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by
upregulating TGF-β1. Odontology 108 (4), 553–559. doi:10.1007/s10266-020-00488-x

Sial, N., Ahmad, M., Hussain, M. S., Iqbal, M. J., Hameed, Y., Khan, M., et al. (2021).
CTHRC1 expression is a novel shared diagnostic and prognostic biomarker of survival in six
different human cancer subtypes. Sci. Rep. 11 (1), 19873. doi:10.1038/s41598-021-99321-w

Singh, P., Ravanan, P., and Talwar, P. (2016). Death associated protein kinase 1
(DAPK1): a regulator of apoptosis and autophagy. Front. Mol. Neurosci. 9, 46. doi:10.
3389/fnmol.2016.00046

Sok, P., Brown, A. L., Taylor, O. A., Bernhardt, M. B., Bernini, J. C., Erana, R. A., et al.
(2022). Abstract 3633: disparities in relapse among a large multi-ethnic population of
children diagnosed with acute lymphoblastic leukemia (ALL): a report from the
Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. Cancer Res.
82 (12), 3633. doi:10.1158/1538-7445.AM2022-3633

Song, S., Zhang, J., Su, Q., Zhang, W., Jiang, Y., Fan, G., et al. (2021). Downregulation
of ITGA6 confers to the invasion of multiple myeloma and promotes progression to
plasma cell leukaemia. Br. J. Cancer 124 (11), 1843–1853. doi:10.1038/s41416-021-
01362-5

Sørensen, K. D., Wild, P. J., Mortezavi, A., Adolf, K., Tørring, N., Heebøll, S., et al.
(2009). Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent
adverse predictor of biochemical recurrence after radical prostatectomy. Clin. Cancer
Res. 15 (4), 1400–1410. doi:10.1158/1078-0432.CCR-08-2268

Frontiers in Molecular Biosciences frontiersin.org17

Torres-Llanos et al. 10.3389/fmolb.2024.1385140

https://doi.org/10.1053/j.seminhematol.2008.09.008
https://doi.org/10.7150/jca.66492
https://doi.org/10.1186/s12935-022-02633-8
https://doi.org/10.1186/s12935-022-02633-8
https://doi.org/10.1016/j.bcmd.2010.05.008
https://doi.org/10.1016/j.bcmd.2010.05.008
https://doi.org/10.1186/s12885-022-09481-9
https://doi.org/10.1186/s12885-022-09481-9
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1182/blood-2011-04-345595
https://doi.org/10.1101/gad.284109.116
https://doi.org/10.1136/jclinpath-2015-203025
https://doi.org/10.1073/pnas.1310656110
https://doi.org/10.1200/JCO.2016.70.7836
https://doi.org/10.1007/s10552-015-0657-6
https://doi.org/10.1038/leu.2008.130
https://doi.org/10.1111/cas.12076
https://doi.org/10.1111/cas.12076
https://doi.org/10.1016/j.ajpath.2012.11.036
https://doi.org/10.3389/fonc.2019.01046
https://doi.org/10.3390/ijms23052755
https://doi.org/10.3892/ol.2020.12102
https://doi.org/10.1007/s00432-015-2063-6
https://doi.org/10.1007/s00432-015-2063-6
https://doi.org/10.1080/10428190600799888
https://doi.org/10.1080/10428190600799888
https://doi.org/10.1016/j.celrep.2014.09.010
https://doi.org/10.1158/1078-0432.CCR-08-2784
https://doi.org/10.1186/s12957-022-02557-7
https://doi.org/10.1016/j.cmet.2015.08.024
https://doi.org/10.1038/npp.2012.112
https://doi.org/10.1007/s11033-022-07154-1
https://doi.org/10.5045/br.2015.50.1.26
https://doi.org/10.5045/br.2015.50.1.26
https://doi.org/10.2217/ijh.13.68
https://doi.org/10.1038/s41598-019-45579-0
https://doi.org/10.1016/j.semcancer.2017.09.001
https://doi.org/10.1038/leu.2016.274
https://doi.org/10.7717/peerj.6683
https://doi.org/10.7717/peerj.6683
https://doi.org/10.1016/j.molonc.2016.09.008
https://doi.org/10.1155/2018/4598195
https://doi.org/10.1002/mnfr.201800411
https://doi.org/10.1016/s0140-6736(08)60457-2
https://doi.org/10.1080/10428190701344899
https://doi.org/10.1080/10428190701344899
https://doi.org/10.1111/bjh.12113
https://doi.org/10.2217/epi.13.56
https://doi.org/10.1182/blood-2015-07-655928
https://doi.org/10.1007/s10266-020-00488-x
https://doi.org/10.1038/s41598-021-99321-w
https://doi.org/10.3389/fnmol.2016.00046
https://doi.org/10.3389/fnmol.2016.00046
https://doi.org/10.1158/1538-7445.AM2022-3633
https://doi.org/10.1038/s41416-021-01362-5
https://doi.org/10.1038/s41416-021-01362-5
https://doi.org/10.1158/1078-0432.CCR-08-2268
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385140


Stary, J., Zimmermann, M., Campbell, M., Castillo, L., Dibar, E., Donska, S., et al.
(2014). Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of
the randomized intercontinental trial ALL IC-BFM 2002. J. Clin. Oncol. 32 (3), 174–184.
doi:10.1200/JCO.2013.48.6522

Stumpel, D. J. P. M., Schneider, P., van Roon, E. H. J., Boer, J. M., de Lorenzo, P.,
Valsecchi, M. G., et al. (2009). Specific promoter methylation identifies different
subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences
clinical outcome, and provides therapeutic options. Blood 114 (27), 5490–5498.
doi:10.1182/blood-2009-06-227660

Tong, C.W., Wang, J. L., Jiang, M. S., Hsu, C. H., Chang,W. T., and Huang, A. M. (2013).
Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in
neuroblastoma IMR-32 cells. Gene 515 (1), 62–70. doi:10.1016/j.gene.2012.11.026

Tsellou, E., Troungos, C., Moschovi, M., Athanasiadou-Piperopoulou, F.,
Polychronopoulou, S., Kosmidis, H., et al. (2005). Hypermethylation of CpG islands
in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur.
J. Cancer 41 (4), 584–589. doi:10.1016/j.ejca.2004.12.010

Van Dongen Jjm, Lhermitte, L., Böttcher, S., Almeida, J., Van Der Velden, V. H. J.,
Flores-Montero, J., et al. (2012). EuroFlow antibody panels for standardized
n-dimensional flow cytometric immunophenotyping of normal, reactive and
malignant leukocytes. Leukemia 26 (9), 1908–1975. doi:10.1038/leu.2012.120

Van Dongen Jjm, Van Der Velden, V. H. J., Brüggemann, M., and Orfao, A. (2015).
Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for
sensitive, fast, and standardized technologies. Blood 125 (26), 3996–4009. doi:10.
1182/blood-2015-03-580027

van Dongen Jacques, J. M., Taku, S., Panzer-Grümayer, E. R., Andrea, B., Pongers-
WillemseMarja, J., Lilly, C., et al. (1998). Prognostic value of minimal residual disease in
acutelymphoblastic leukaemia in childhood. Lancet 352, 1731–1738. doi:10.1016/
S0140-6736(98)04058-6

Vera, A. M., Pardo, C., Duarte, M. C., and Suárez, A. (2012). Experiencia en el análisis
de la mortalidad por leucemia aguda pediátrica en el Instituto Nacional de Cancerología.
Biomédica 32 (3), 355–364. doi:10.7705/biomedica.v32i3.691

Wainwright, E. N., and Scaffidi, P. (2017). Epigenetics and cancer stem cells:
unleashing, hijacking, and restricting cellular plasticity. Trends Cancer 3 (5),
372–386. doi:10.1016/j.trecan.2017.04.004

Walsh, K. M., Chokkalingam, A. P., Hsu, L. I., Metayer, C., De Smith, A. J., Jacobs, D.
I., et al. (2013). Associations between genome-wide Native American ancestry, known
risk alleles and B-cell ALL risk in Hispanic children. Leukemia 27, 2416–2419. doi:10.
1038/leu.2013.130

Walsh, K. M., de Smith, A. J., Welch, T. C., Smirnov, I., Cunningham, M. J., Ma, X.,
et al. (2014). Genomic ancestry and somatic alterations correlate with age at diagnosis in
Hispanic children with B-cell acute lymphoblastic leukemia. Am. J. Hematol. 89 (7),
721–725. doi:10.1002/ajh.23727

Wang, L. Q., Kwong, Y. L., Wong, K. F., Kho, C. S. B., Jin, D. Y., Tse, E., et al. (2014).
Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic
lymphocytic leukemia. J. Transl. Med. 12 (1), 52. doi:10.1186/1479-5876-12-52

Wei, J., Xie, Q., Liu, X., Wan, C., Wu, W., Fang, K., et al. (2020). Identification the
prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia.
Ann. Transl. Med. 8 (11), 678. doi:10.21037/atm-20-3296

Wu, L., Sun, S., Qu, F., Liu, X., Sun, M., Pan, Y., et al. (2022). ASCL2 affects the efficacy
of immunotherapy in colon adenocarcinoma based on single-cell RNA sequencing
analysis. Front. Immunol. 13, 829640. doi:10.3389/fimmu.2022.829640

Wu, X., and Zhang, Y. (2017). TET-mediated active DNA demethylation:
mechanism, function and beyond. Nat. Rev. Genet. 18 (9), 517–534. doi:10.
1038/nrg.2017.33

Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E., and Morishita, K. (2012). The
increased expression of integrin α6 (itga6) enhances drug resistance in evi1 high
leukemia. PLoS One 7 (1), e30706. doi:10.1371/journal.pone.0030706

Younesian, S., Shahkarami, S., Ghaffari, P., Alizadeh, S., Mehrasa, R., and Ghaffari, S.
H. (2019). Residual methylation of tumor suppressor gene promoters, RASSF6 and
RASSF10, as novel biomarkers for minimal residual disease detection in adult acute
lymphoblastic leukemia. Ann. Hematol. 98 (12), 2719–2727. doi:10.1007/s00277-019-
03775-y

Yuan, W., Chen, J., Shu, Y., Liu, S., Wu, L., Ji, J., et al. (2017). Correlation of
DAPK1 methylation and the risk of gastrointestinal cancer: a systematic review and
meta-analysis. PLoS One 12 (9), e0184959. doi:10.1371/journal.pone.0184959

Zhong, C., Xie, Z., Zeng, L. H., Yuan, C., and Duan, S. (2022). MIR4435-2HG is a
potential pan-cancer biomarker for diagnosis and prognosis. Front. Immunol. 13,
855078. doi:10.3389/fimmu.2022.855078

Zhu, L., Wang, A., Gao, M., Duan, X., and Li, Z. (2020). LncRNA MIR4435-2HG
triggers ovarian cancer progression by regulating miR-128-3p/CKD14 axis. Cancer Cell
Int. 20 (1), 145. doi:10.1186/s12935-020-01227-6

Zuo, Q., Wang, J., Chen, C., Zhang, Y., Feng, D. X., Zhao, R., et al. (2018).
ASCL2 expression contributes to gastric tumor migration and invasion by
downregulating miR223 and inducing EMT. Mol. Med. Rep. 18 (4), 3751–3759.
doi:10.3892/mmr.2018.9363

Frontiers in Molecular Biosciences frontiersin.org18

Torres-Llanos et al. 10.3389/fmolb.2024.1385140

https://doi.org/10.1200/JCO.2013.48.6522
https://doi.org/10.1182/blood-2009-06-227660
https://doi.org/10.1016/j.gene.2012.11.026
https://doi.org/10.1016/j.ejca.2004.12.010
https://doi.org/10.1038/leu.2012.120
https://doi.org/10.1182/blood-2015-03-580027
https://doi.org/10.1182/blood-2015-03-580027
https://doi.org/10.1016/S0140-6736(98)04058-6
https://doi.org/10.1016/S0140-6736(98)04058-6
https://doi.org/10.7705/biomedica.v32i3.691
https://doi.org/10.1016/j.trecan.2017.04.004
https://doi.org/10.1038/leu.2013.130
https://doi.org/10.1038/leu.2013.130
https://doi.org/10.1002/ajh.23727
https://doi.org/10.1186/1479-5876-12-52
https://doi.org/10.21037/atm-20-3296
https://doi.org/10.3389/fimmu.2022.829640
https://doi.org/10.1038/nrg.2017.33
https://doi.org/10.1038/nrg.2017.33
https://doi.org/10.1371/journal.pone.0030706
https://doi.org/10.1007/s00277-019-03775-y
https://doi.org/10.1007/s00277-019-03775-y
https://doi.org/10.1371/journal.pone.0184959
https://doi.org/10.3389/fimmu.2022.855078
https://doi.org/10.1186/s12935-020-01227-6
https://doi.org/10.3892/mmr.2018.9363
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1385140

	MIR4435-2HG as a possible novel predictive biomarker of chemotherapy response and death in pediatric B-cell ALL
	1 Introduction
	2 Materials and methods
	2.1 Patient samples
	2.2 Blasts isolation and purification
	2.3 DNA and RNA extraction
	2.4 Library preparation and RNA sequencing
	2.5 DNA methylation assay
	2.6 RT-qPCR
	2.7 Statistical analysis
	2.7.1 Transcriptomic and methylation data analysis
	2.7.2 Experimental design
	2.7.3 RT-qPCR analysis
	2.7.4 Clinical data analysis


	3 Results
	3.1 Identification of DEGs
	3.2 Identification of GDMCpGs
	3.3 Gene verification by RT-qPCR
	3.4 Predictive value of genes
	3.5 Relationship between gene expression and risk of death

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


