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Objectives: Junctional proteins are involved in tumorigenesis. Therefore, this
study aimed to investigate the association between junctional genes and the
prognosis of patients with lung adenocarcinoma (LUAD).

Methods: Transcriptome, mutation, and clinical data were retrieved from The
Cancer Genome Atlas (TCGA). “Limma” was used to screen differentially
expressed genes. Moreover, Kaplan–Meier survival analysis was used to
identify junctional genes associated with LUAD prognosis. The junctional
gene-related risk score (JGRS) was generated based on multivariate Cox
regression analysis. An overall survival (OS) prediction model combining the
JGRS and clinicopathological properties was proposed using a nomogram and
further validated in the Gene Expression Omnibus (GEO) LUAD cohort.

Results: To our knowledge, this study is the first to demonstrate the correlation
between the mRNA levels of 14 junctional genes (CDH15, CDH17, CDH24,
CLDN6, CLDN12, CLDN18, CTNND2, DSG2, ITGA2, ITGA8, ITGA11, ITGAL,
ITGB4, and PKP3) and clinical outcomes of patients with LUAD. The JGRS was
generated based on these 14 genes, and a higher JGRS was associated with older
age, higher stage levels, and lower immune scores. Thus, a prognostic prediction
nomogram was proposed based on the JGRS. Internal and external validation
showed the good performance of the prediction model. Mechanistically, JGRS
was associated with cell proliferation and immune regulatory pathways.
Mutational analysis revealed that more somatic mutations occurred in the
high-JGRS group than in the low-JGRS group.

Conclusion: The association between junctional genes and OS in patients with
LUAD demonstrated by our “TCGA filtrating andGEO validating”model revealed a
new function of junctional genes.
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1 Introduction

Lung cancer has the highest mortality rate of all cancers.
There were 2, 200, 000 incidences and 1,800,000 deaths from lung
cancer in 2020 worldwide, accounting for more deaths than liver
and stomach cancers combined (Leiter et al., 2023). The overall
5-year survival rate of patients with lung cancer is approximately
15%, and patients with distant metastases have an even lower
survival rate of 8% (Sung et al., 2021). Most lung cancers form in
the epithelial cells lining the respiratory tract. Non-small cell
lung cancer (NSCLC) and small cell lung cancer (SCLC) are the
two main types of lung carcinoma (Zhao et al., 2021). Lung
adenocarcinoma (LUAD) is the most common type of NSCLC,
accounting for more than 40% of all lung cancer cases (Denisenko
et al., 2018). Moreover, approximately 70% of patients with
NSCLC have inoperable local or metastatic tumors at the time
of diagnosis (Katzel et al., 2009). Hence, the identification of
reliable prognostic biomarkers for high-risk patients with LUAD
is important for designing treatment strategies.

Most studies have identified biomarkers for diagnosis and/or
prognosis. The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases have been widely used to predict cancer
prognoses. For example, differentially methylated sites (DMSs) were
selected from a TCGA-LUAD cohort, used to construct a robust
DMS-based prognostic signature, and validated in a GEO cohort
(Wang X. et al., 2021). Tumor mutation burden (TMB) can affect
immune infiltrates and alter gene expression. A previous study
stratified patients with LUAD into higher- and lower-TMB
subgroups, screened nine immune genes, and used a prognostic
signature based on these nine immune genes to predict patient
prognoses (Zhao et al., 2021). Other studies have used similar
strategies to screen biomarkers and construct LUAD prognostic
nomograms based on either a group of specific genes, a gene family,
or biological/physiological factors, such as lncRNA (Zeng et al.,
2023), pyroptosis (Song et al., 2021), T-cell marker genes (Peng et al.,
2024), tumor microenvironment-related genes (Li et al., 2023),
integrin genes (Wang Y. et al., 2021; Zhang S. et al., 2023) and
oxidative stress (Qian et al., 2023). Although most studies used the
TCGA and/or GEO databases and incorporated the genomic profiles
and clinical information to construct prediction models, some used
databases such as SEER without incorporating genomic information
(Zuo et al., 2021) whereas a few others were based on cohorts from
local hospitals (Sun et al., 2021). Recent studies that have focused on
predicting the prognosis of patients with LUAD are summarized in
Supplementary Table S1. The accuracy and efficiency of some
models in previous studies were compromised. Some studies only
provided calibration curves, but without the area under the curve
(AUC) or C-index values (Li et al., 2023; Peng et al., 2024). Similarly,
others only identified independent prognostic factors but did not
propose a prognostic prediction model (Zhang Z. et al., 2023).
Furthermore, some studies only included a limited number of
patient samples for the training and testing cohorts. External
verification ensures the universality of the prognostic prediction
model. However, some studies did not conduct external validation.
Therefore, we aimed to develop a more accurate and reliable overall
survival (OS) prediction model for patients with LUAD.

Lung cancer generally develops in cells lining air passages,
predominantly originating from epithelial cells. Junctional

proteins play major roles in these cells, mainly regulating cell-cell
adhesion and adhering cells to the extracellular matrix. Thus, they
can seal cellular sheets and control the paracellular flux of ions and
solutes (Buckley and St Johnston, 2022; Kuo et al., 2022;
Troyanovsky, 2023). Potential biomarkers of junctional genes
have been identified to monitor diseases, including cancers
(Wang D. W. et al., 2022; Hashimoto and Oshima, 2022; Parrish
et al., 2022; Lin et al., 2023; Nehme et al., 2023). Altered expression
of junctional genes can disrupt cell-cell adhesion, which is an initial
step in cancer cell invasion. Consequently, defective cell-cell
adhesion allows extra nutrients and growth factors to flow from
the luminal fluid and facilitates aggressive tumor growth. During
intravasation and extravasation, cancer cells disrupt cell-cell
junctions and transverse through the paracellular pathways of
endothelial cells that serve as a barrier for cancer cells (Wang
and Liu, 2022; Wautier and Wautier, 2022). Therefore, junctional
genes play important roles in tumorigenesis and cancer progression.
However, the predictive value of junctional genes for the prognosis
of patients with LUAD has not been studied. We used Limma and
Kaplan-Meier plot analyses to screen prognosis-related junctional
genes based on the genomic and clinical data from TCGA.
Furthermore, we constructed a nomogram for predicting the OS
of patients with LUAD and validated it in four GEO datasets.

2 Materials and methods

2.1 Retrieval of analytical data

For the TCGA-LUAD cohort, mRNA expression data and
clinical information of patients with LUAD were acquired from
https://portal.gdc.cancer.gov/. Originally, the data were obtained
from 617 patients. Patients without overall survival data or
events were subsequently excluded. We included 463 patients
with LUAD and 59 healthy lung tissues as controls. The database
contains 105 members of the junctional gene family, as listed in
Supplementary Table S2. Four validation datasets were acquired
from GEO (https://www.ncbi.nlm.nih.gov/geo/): GSE17538,
GSE31210, GSE37745, and GSE72094. Each GEO dataset
included 232, 226, 106, 398 patients, respectively. Among them,
GSE17538 is a colon cancer cohort, which was used here as an extra
external validation cohort. The rest three GSE cohorts are LUAD
cohorts. Clinical information and mRNA expression data were
extracted from these datasets.

2.2 Screening of differentially expressed
genes (DEGs) using “Limma”

TCGA data comprised 24,987 genes with RNASeq data. The
“Limma” package (version 3.52.4) in R (version 4.2.1, R Foundation
for Statistical Computing, Vienna, Austria) was used to screen genes
with differential expression in LUAD tissues compared to normal
lung tissues. DEGs with |log 2-fold change (log2FC)| >1 and false
discovery rate (FDR) <0.05 were considered significant, and volcano
plots were constructed. Heatmaps were plotted using the
“pheatmap” package in R (version 1.0.12). The “ggpubr” package
(version 0.6.0) was used to draw a boxplot for observing the
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differential expression of the selected DEGs between LUAD and
normal lung tissues.

2.3 Kaplan–Meier survival analysis

Kaplan-Meier plots were constructed to identify predictive
DEGs for the OS of patients with LUAD. First, the “survival”
(version 3.5.7) and “survminer” (version 0.4.9) packages were
used to define the optimal cutoff point and draw survival curves
for each low or high gene expression group. Log-rank tests were
subsequently conducted to assess the predictive potential of
junctional genes for the survival probability of patients with
LUAD. Genes with p < 0.01 were considered to have significant
predictive value and subjected to subsequent analyses.

2.4 Construction of the junctional genes-
related risk score (JGRS)

Genes with p < 0.01 were selected from Kaplan-Meier plots and
incorporated into multivariate Cox regression to develop the JGRS.
For each gene, expression higher and lower than the cut-off point
was designated as 1 and 0, respectively. The following formula was
used to calculate the risk score of each patient with LUAD:

JGRS � ∑ βi × Expi

Where βi represents the coefficient of each gene and Expi
represents the designated gene expression value, which was either
1 or 0. The association between JGRS and eight clinical
characteristics, including sex, age, p-stage, tumor (T), node (N),
metastasis (M) stage, and immune and stromal scores, was
calculated. The “estimate” package (version 1.0.13) in R was used
to obtain the immune and stromal scores. The Wilcoxon rank-sum
test was used for paired comparisons, and p < 0.05 was considered
significant. Patients were then stratified into high- and low-JGRS
groups according to the JGRS cutoff point, and Kaplan-Meier curves
were plotted to compare survival between the two groups.

2.5 Development and assessment of
the nomogram

OS is the life span of patients upon pathological diagnosis until
the day of death or the last follow-up. Here, patients were censored if
they were alive or had no adverse events at the last follow-up visit.
Nomograms are commonly employed to model cancer prognosis by
combining all predictors. In the present study, age, sex, and p-stages
were defined as continuous, binary, and multiple categorical
variables, respectively. Each predictor contributed to a score, and
then a final total point was obtained by summing all the contributors
and scaling to the axis of the probabilities of survival to predict the 1-
, 2-, and 3-year OS probabilities (Iasonos et al., 2008). The area
under the curve (AUC) by “timeROC” package (version 0.4),
C-index by “simplevis” package (version 7.0.0), calibration curves
by “rms” package (version 6.5.0), and decision curve analysis (DCA)
by “ggDCA” package (version 1.2) were used to determine the

effectiveness of the nomogram. The nomogram was further
validated using four GEO cohorts.

2.6 Gene set enrichment analysis (GSEA)

GSEA is an efficient analytical method that focuses on two
opposing biological states to determine statistically significant
differences in biological pathways (Subramanian et al., 2007).
The “clusterProfiler” package (version 4.4.4) was used to conduct
GSEA to identify functionally relevant pathways regulated by JGRS;
p < 0.05 was considered statistically significant.

2.7 Analysis of the tumor immune
microenvironment (TIME)

CIBERSORT and TIMERmethods based on the “IOBR” R package
(version 0.99.9) were used to evaluate the infiltration condition of
immune cells. The results were visualized using the “ggplot2” package
(version 3.4.2). Furthermore, the correlation between the expression of
each gene input into the JGRS formula and abundance of immune cells

TABLE 1 Clinical characteristics of patients with LUAD in the TCGA cohort.

Characteristics TCGA cohort (N = 463)

N %

Sex

Men 213 46

Women 250 54

Age

Mean (SD) 65.0 10.1

Median [Min, Max] 65.0 [33.0, 88.0]

Na 10 2.2

T stage

T1 162 35

T2 243 52.5

T3 40 8.65

T4 15 3.2

TX 3 0.65

N stage

N1 320 69.1

NX 143 30.9

M stage

M0 304 65.7

M1 20 4.3

MX 139 30

Pathological stage

Stage I 259 56

Stage II 108 23.3

Stage III 68 14.7

Stage IV 21 4.5

Na 7 1.5
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were analyzed through “xCell” package (version 1.1.0) and
demonstrated using “ggplot2” package (version 3.4.2).

2.8 Analysis of the genetic mutation status in
the low- and high-JGRS groups

Somatic mutations in the TCGA-LUAD cohort, including
nonsynonymous and synonymous mutations, were downloaded
from https://portal.gdc.cancer.gov/. Significantly differentially
mutated genes (p < 0.05) between the low- and high-JGRS groups
were screened, and the correlations between these mutated genes were
analyzed using “maftools” (version 2.14.0). Only genes mutated more
than 30 times in at least one group were considered. The statistical test
for the frequency of mutations was evaluated through a one-sided z-test
and two-sided Chi-square test; p < 0.05 was considered significant.

3 Results

3.1 Clinical information of LUAD cohorts and
the analytical scheme of the study

Clinical and mRNA expression data were extracted from the
TCGA database, including 59 normal and 463 LUAD samples. The
median age of patients with LUAD in the TCGA cohort was
65 years, and all patients were between 33 and 88 years of age.
Among them, 213 patients were men (46%) and 250 were women
(54%). Information on the tumor (T), node (N), as well as metastasis
(M) and p-stages is shown in Table 1. Clinical information of the
four GEO cohorts is provided in Supplementary Table S3. We first
screened differentially expressed junctional genes between normal
lung and LUAD tissues. The genes associated with OS of patients
were used to establish the JGRS. Subsequently, we proposed a
nomogram incorporating the JGRS and corresponding clinical
parameters and further validated it in four GEO cohorts. In
addition, the characteristics of the biological pathways, immune
infiltration, and mutational status between the low- and high-JGRS
groups were analyzed. The workflow for screening the potential
junctional gene prognostic panel is shown in Figure 1. DEGs, heat
maps, Kaplan-Meier survival curves, nomogram interactive line
diagrams, ROC curves, calibration curves, GSEA, and gene
mutation status analyses were performed. The corresponding
results were generated using RStudio (version 4.2.1).

3.2 Identification of DEGs

To identify the DEGs associated with OS of patients with
LUAD, we first compared the mRNA expression profiles of normal
lung and LUAD tissues in the TCGA cohort. Of the 24,987 genes
identified, 105 were junctional genes (Supplementary Table S2).
Moreover, 1716 and 1,667 genes whose expression was
upregulated and downregulated, respectively, were identified;
the volcano plot is shown in Figure 2A. A heat map of the
expression of 105 junctional genes in normal lung and LUAD
tissues was plotted (Figure 2B). Of the 3,383 genes with altered
expression, 28 were junctional genes, as shown in Figure 2C. These

junctional genes showed significant differences in expression
between normal lung and LUAD tissues (Supplementary Figure
S1). Of the 28 junctional genes identified, the expression of 17
(CDH15, CLDN10, CDH17, CTNND2, ITGA11, CLDN9, CLDN3,
CLDN4, CLDN6, CDH24, DSP, CDH3, ITGB4, PKP3, ITGA2,
CLDN12, and DSG2) was significantly upregulated in LUAD
tissues, whereas that of 11 genes (JAM3, CDH13, ITGA8,
CDH5, JAM2, ITGAL, CLDN18, CLDN5, CDH19, DST, and
ITGA10) was significantly downregulated in LUAD tissues. The
28 junctional genes were then subjected to Kaplan-Meier survival
analysis to screen for genes associated with the OS of patients with
LUAD. Our analyses revealed 14 junctional genes, namely CDH15,
CDH17, CDH24, CLDN6, CLDN12, CLDN18, CTNND2, DSG2,
ITGA2, ITGA8, ITGA11, ITGAL, ITGB4, and PKP3, whose
expression was significantly associated with OS (Figures 3A–N),
indicating that they were valuable prognostic predictors.
Additionally, we used four external databases and the samples
from our local hospital to confirm the mRNA and protein
expression of these 14 junctional genes. Among the four GSE
validation cohorts, GSE31210 cohort contains the mRNA
expression information of both LUAD tissues and normal lung
tissues, so we compared the mRNA expression levels of
14 junctional genes in LUAD tissues with normal lung tissues.
As shown in Supplementary Figure S2, the RNA expression
changes of 14 junctional genes all coincided well with these in
the TCGA cohort. Then, the clinical Proteomic Tumor Analysis
Consortium (CPTAC) database was used to explore protein
expression levels in LUAD tissues. The results showed that the
protein expression levels of CDH15, DSG2, ITGA11, and
PKP3 were significantly upregulated, whereas these of CLDN18,
ITGA8, and ITGAL were significantly downregulated in LUAD
tissues compared with these in normal lung tissues. The protein
expression changes of the above seven junctional genes in LUAD
tissues coincided well with their mRNA expression changes in the
TCGA and GSE31210 cohorts. There were no significant protein
expression changes of CDH17, CTNND2, ITGA2, and ITGB4 and
no data of CDH24, CLDN6, and CLDN12 protein expression in
the CPTAC database (Supplementary Figure S3). Furthermore, we
compared the mRNA expression levels of 14 junctional genes in
normal lung epithelial cells-ciliated cells with these in the lung
cancer cells, using the data from The Human Protein Atlas
database (HPA, www.proteinatlas.org). LUAD originates mainly
from the epithelium of the bronchi, and ciliated cells are the
predominate epithelial cells in the respiratory tract (Li et al., 2021).
We used the average expression data of a total of 232 lung cancer
cell lines available on the website. It was found that except for
CTNND2 and ITGA2, the mRNA expression changes of the rest
12 junctional genes all coincided well with their changes in TCGA
and GSE31210 cohorts in that the mRNA expression levels of
CDH15, CDH17, CDH24, CLDN6, CLDN12, DSG2, ITGA11,
ITGB4, and PKP3 were increased and the mRNA expression
levels of CLDN18, ITGA8, and ITGAL were decreased in
232 lung cancer cell lines compared with these in ciliated cells
(Supplementary Figure S4).

We also collected 9 pairs of LUAD tumor samples and their
corresponding adjacent normal tissues from the affiliated hospital of
Hangzhou Normal University with subjects’ informed consent and
tested the mRNA expression levels of the 14 junctional genes
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(primers used were provided in Supplementary Table S4). As
depicted in Supplementary Figure S5, consistent with the TCGA
and GSE31210 cohorts, the mRNA expression levels of CLDN12 and
ITGA11 were significantly increased and the mRNA expression
levels of CLDN18, CTNND2, ITGA8, and ITGAL were
significantly decreased in LUAD tissues compared with these in
normal lung tissues. For CDH15, CDH17, CLDN6, DSG2, ITGA2,
and ITGB4, although their mRNA expression changes did not reach
to significant differences, the trends of changes were consistent with
these in the TCGA and GSE31210 cohorts. It maybe because the
number of our patient samples were not enough, and increasing the
sample size may improve the results.

3.3 Development of the JGRS and its
association with clinical characteristics

The prognostic risk score was computed as follows:

JGRS � ∑Coefi × Exp i

Multivariate Cox regression analysis incorporating the
14 screened junctional genes was used to generate regression
coefficients. The final risk model was: JGRS = −0.39599 ×
CDH15 + 0.44858 × CDH17 + 0.20612 × CDH24 + 0.58748 ×
CLDN6 − 0.05628 × CLDN18 − 0.46681 × CTNND2 + 0.22880 ×

FIGURE 1
A flowchart of the study. (A) Screening of differentially expressed junctional genes between normal lung and LUAD tissues. (B) Development of a
JGRS incorporating junctional genes with prognostic value. (C) Establishment, evaluation, and validation of the nomogram. (D) Functional analysis of the
mechanisms behind the different JGRS.
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DSG2 + 0.55548 × ITGA2 − 0.51734 × ITGA8 − 0.34780 × ITGAL +
0.20949 × ITGB4 + 0.32971 × CLDN12 + 0.14356 × PKP3 +
0.40963 × ITGA11. Patients were separated into low- and high-

expression groups based on the cutoff value for each of the 14 genes,
and hazard ratios (HRs) were calculated. ITGAL, ITGA8, CTNND2,
CLDN18, and CDH15 were protective factors for LUAD survival,

FIGURE 3
Kaplan-Meier survival curves for patients with LUAD grouped based on low and high expression levels of CDH15 (A), CDH17 (B), CDH24 (C), CLDN6
(D), CLDN12 (E), CLDN18 (F), CTNND2 (G), DSG2 (H), ITGA2 (I), ITGA8 (J), ITGA11 (K), ITGAL (L), ITGB4 (M), and PKP3 (N) in the TCGA cohort.

FIGURE 2
Identification of DEGs of TCGA datasets. adj. p <0.05 and |log2FC| > 1were used as the cut off criteria. (A)A volcanomap of DEGs, which are denoted
in red. (B) A heat map of themRNA expression of 105 junctional genes between normal lung and LUAD tissues. Genes whose expression was upregulated
are shown in red; the expression levels increase as the color darkens. Genes whose expression was downregulated are shown in green; the expression
levels decrease as the color darkens. (C) A heat map of the mRNA expression of 24 differentially expressed junctional genes.
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with HRs < 1. In contrast, ITGA11, PKP3, CLDN12, ITGB4, ITGA2,
DSG2, CLDN6, CDH24, and CDH17 were risk factors, with HRs >1.
The JGRS had the higher HR than the individual genes (Figure 4A).
We investigated the correlation between the JGRS and sex, age,
TNM stage, and p-stage in patients with LUAD (Figure 4B). The
JGRS was not correlated with sex but was significantly correlated
with age. Patients with LUAD older than 65 years had significantly
higher JGRS than younger patients. In addition, a higher JGRS score
was significantly associated with higher T, N, and p-stage in patients
with LUAD. From p-stages I to III, the JGRS increased with

advancements in stage. The JGRS was significantly higher in the
p-stage IV group than in the stage I group. However, there was no
significant difference between the p-stage IV and II groups or
between the p-stage IV and III groups. Similar results were
observed in the T stage. The JGRSs of the T2/3/4 groups were all
significantly higher than those of the T1 stage group. However, there
were no significant differences between each pair of the T2/3/4 stage
groups. These results can be attributed to preserved cell-cell and cell-
matrix contacts at the early T stage, with these contacts lost when the
tumor progressed to an advanced stage. For the N stage, the N1 stage

FIGURE 4
The JGRS can distinguish different clinicopathological features of LUAD. (A) A forest plot of the univariate Cox regression analysis of JGRS and
14 genes that were chosen for establishing a prognosis signature. (B)Different analyses of JGRS distribution based on sex, age, p-stage, as well as T, N, and
M stages in TCGA cohort. (C)Distribution of immune and stromal scores between low- and high-JGRS groups in TCGA cohort. (D) Kaplan-Meier survival
curves based on the JGRS in TCGA and four GEO cohorts. (E) JGRS distribution in TCGA and four GEO cohorts.
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group had significantly higher JGRS than the N0 stage group. In
contrast, there was no significant difference in JGRS between the
M0 and M1 groups in the M stage. This may be because any T or N

stage was considered anM0 stage if it did not metastasize to a distant
location. However, the loss of junctional genes occurs as the tumor
grows from an early T or N stage to advanced stages.

FIGURE 5
Establishment and assessment of the nomogram. (A) The nomogram plot was constructed based on sex, age, p-stage, and JGRS. ROC curves (B),
calibration curves (C), and DCA (D) of the nomogram for 1-, 2-, and 3-year OS based on TCGA and four GEO cohorts. (E) Time-dependent AUC values in
TCGA and four GEO cohorts. (F) C-indices of the p-stage, JGRS, and combined p-stage and JGRS in TCGA and four GEO cohorts.
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In addition to the tumor cell-cell and cell-matrix interactions,
stromal and immune cells can crosstalk with tumor cells and
influence cancer growth and development. Therefore, we
investigated whether the change in JGRS affects the immune and
stromal scores. In this study, a higher JGRS score corresponded with
a lower immune score. This negative correlation was statistically
significant, whereas the stromal score was not significantly
associated with JGRS (Figure 4C). We then stratified the patients
in TCGA-LUAD, GSE17538, GSE31210, GSE37745, and
GSE72094 cohorts into low- and high-JGRS groups based on the
cutoff point in each cohort. Kaplan–Meier curves showed that
patients in the low-JGRS group had significantly better OS rates
than those in the high-JGRS group (Figure 4D). Figure 4E shows
each of the patients on the x-axis from left to right based on their
JGRS values and denotes the low-JGRS patients in blue and high-
JGRS patients in yellow, analyzed by ggrisk (version 1.3). A higher
percentage of deaths was observed in the high-JGRS group than in
the low-JGRS group. These results indicate an association between
JGRS and LUAD progression and OS in patients with LUAD.

3.4 Establishment and assessment of a
prognostic nomogram for the OS of patients
with LUAD

According to the DEG analysis results and Kaplan-Meier
plots, a nomogram was constructed to predict the 1-, 2-, and 3-
year OS probabilities for patients with LUAD based on the JGRS
of 14 junctional genes. As sex, age, and p-stage of the cancer
considerably affect the OS of patients, we included these three
factors in the nomogram (Figure 5A). The general performance
of this nomogram was assessed using four common evaluation
methods: ROC curves, calibration curves, DCA curves, and the
C-index. The ROC curve depicts both the sensitivity and
specificity of the regression model. The AUC of the ROC
curve is an effective method for assessing the overall
diagnostic accuracy of a test. As shown in Figure 5B, the
AUCs for 1-, 2-, and 3-year OS in the TCGA cohort were
0.774, 0.742, and 0.769, respectively. We further validated this
nomogram using four GEO cohorts: GSE17538, GSE31210,
GSE37745, and GSE72094. The AUCs for 1-, 2-, and 3-year
OS in the GSE17538 cohort were 0.901, 0.891, and 0.838,
respectively; those in the GSE37745 cohort were 0.723, 0.755,
and 0.780, respectively; those in the GSE31210 cohort were 0.874,
0.889, and 0.881, respectively; and those in the GSE72094 cohort
were 0.786, 0.792, and 0.803, respectively. These results indicate
that the nomogram is both sensitive and specific for predicting
OS in patients with LUAD. The calibration curve shows a
consensus between the predicted value of the model and the
observed value. The calibration curves had good consensus in the
TCGA cohort and four GEO cohorts (Figure 5C), confirming the
practicality of this nomogram in predicting patient OS
(Figure 5C). The DCA is a statistical method used to evaluate
the clinical consequences of models and tests. The DCA for this
nomogram accurately predicted the 1-, 2-, and 3-year OS rates of
patients with LUAD in TCGA and four GEO cohorts (Figure 5D).
Furthermore, time-dependent AUC suggested that the
nomogram accurately predicted the OS of patients with

LUAD, with almost all AUC values above 0.7 overtime in all
five cohorts (Figure 5E). Finally, the C-index reflects the
predictive ability of a model. As demonstrated in Figure 5F,
p-stage alone produced C-indices of 0.67, 0.755, 0.724, 0.609, and
0.639 in TCGA and the four GEO cohorts, respectively. The JGRS
had significantly higher C-indices than the p-stage in all cohorts
except GSE17538, with values of 0.702, 0.733, 0.823, 0.719, and
0.717. Furthermore, C-indices of the JGRS and p-stage combined
were 0.737, 0.799, 0.852, 0.699, and 0.982. This significantly
promoted C-indices in TCGA and the GSE17538, GSE31210,
and GSE72094 GEO datasets. The C-index of the combined JGRS
and p-stage was lower than that of JGRS alone in the
GSE37745 cohort. However, the C-index of JGRS remained
significantly higher than that of the p-stage, which verified the
predictive value of JGRS.

3.5 JGRS-related biological pathways
and genes

To explore the potential mechanisms underlying the
differential OS outcomes of the JGRS determination, we
performed GSEA. The top 10 differentially expressed gene
ontology (GO) (Figure 6A) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (Figure 6B) associated with the
JGRS signature were identified at p < 0.05. Most GO and KEGG
pathways enriched in the high-JGRS group were associated with
cell replication (inner cell mass cell proliferation), mitotic
processes (mitotic DNA replication/mitotic spindle midzone/
protein localization to kinetochore/regulation of attachment of
spindle microtubules to the kinetochore), and biosynthesis
(aminoacyl-tRNA biosynthesis/biosynthesis of nucleotide
sugars). Junctional genes primarily bind or unbind
intercellular cells. Contact inhibition of proliferation occurs
between cells under normal conditions, and unbinding of the
cells is the precursor step of uncontrolled cell proliferation, which
leads to precancerous cell development. Altered expression of
junctional genes contributes to cell proliferation. For instance,
high CLDN1 expression and low E-cadherin expression promote
cell proliferation and escape from their original sites (Bremnes
et al., 2002; Wang D. W. et al., 2022). This explains the
enrichment of cell proliferation and biosynthetic pathways in
the high JGRS group. In addition, the top 10 GO terms for
biological processes, such as immune receptor activity, B cell
receptor signaling pathway, immunoglobulin-mediated immune
response, and B cell-mediated immunity, were enriched in the
high JGRS group (Figure 6C). KEGG enrichment analysis also
revealed that immune- and cell proliferation-related categories,
such as DNA replication, cell cycle, and IgA production, were
enriched in the high-JGRS group (Figure 6D). This also
confirmed the correlation between the immune score and
JGRS (Figure 4C). In summary, the results obtained using
either the GO or KEGG databases all pointed to the
conclusion that the JGRS correlates with cell proliferation and
immune-related processes, which may be the mechanism leading
to the differences in the OS of patients with LUAD.

An xCell analysis that included 64 different types of immune
and stromal cells was conducted to further elucidate the regulatory
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immune cells involved in the tumor immune microenvironment
(TIME). The abundance of infiltrating immune cells was determined
based on the expression of marker genes. The correlations between
each immune cell and the 14 JGRS signature genes are displayed as a
heatmap in Supplementary Figure S6. Genes that were risk factors
for OS, such as CDH24 and PKP3, were negatively correlated with
most immune cells, and vice versa. In contrast, genes that were
protective factors for OS, such as CLDN18, ITGA8, and ITGAL, were
positively correlated with most immune cells. Because the GO terms
for biological processes were mainly enriched in B cell-related
immunity, we investigated the infiltration of B cells into the
TIME. CIBERSORT and TIMER methods were used to analyze
the infiltration of different immune cell components into low- and
high-JGRS tissues. As expected, both CIBERSORT (Figure 7A) and
TIMER (Figure 7B) data showed a significantly higher infiltration of
B cells in the low-JGRS group than in the high-JGRS group,
suggesting that the poor OS rates of high-JGRS patients may be
related to the reduced infiltration of B cells into the TIME. In
addition to B cells, the CIBERSORT results showed a higher
infiltration of dendritic cells and CD4+T cells in the low-JGRS
group. Furthermore, the high-JGRS group was associated with
cell replication, mitotic processes (Figures 6A, B), and immune
regulatory features. Therefore, we analyzed the mRNA expression of
cell cycle control genes. Cyclins and cyclin-dependent kinases
(CDKs) are important regulators that drive cell cycle progression
(Basu et al., 2022). Figure 7C shows elevated levels of cyclins A

(CCNA2), B (CCNB1), D (CCND1), and E (CCNE1), as well as those
of CDK1, 2, 4, 6, and Cdc25A in the high-JGRS group. These results
explain the expedited cell cycle in high-JGRS patients and are
consistent with the results shown in Figure 6.

3.6 Analysis of mutation status between the
low- and the high-JGRS groups

We analyzed the somatic mutations of patients in the TCGA
cohort to further investigate the genetic mechanisms underlying the
differential OS outcomes between the low- and high-JGRS groups.
The 30 most frequently mutated genes in the low- and high-JGRS
groups are shown in Figure 8A. The frequency of somatic mutations
in the low-JGRS group was 90.23%, whereas that in the high-JGRS
group was 97.07%. Further statistical analyses showed that the
frequencies of total mutation counts, as well as non-synonymous
and synonymous mutations, were significantly higher in the high-
JGRS group than in the low-JGRS group (Figure 8B). Additionally,
JGRS was significantly positively correlated with somatic, non-
synonymous, and synonymous mutation counts (p < 0.01;
Figure 8C). Comparison of the mutational frequencies of each
gene revealed that 17 genes were significantly more frequently
mutated in the high-JGRS group than in the low-JGRS group
(p < 0.01), namely USH2A, SORCS1, CPS1, APOB, DNAH8,
LRP1B, TP53, COL6A3, AHNAK, TPTE, PCDH10, FAT4,

FIGURE 6
GSEA function enrichment analysis for JGRS. Curve graphs of the top 10 enriched pathways based on the GO (A) and KEGG (B) pathway databases,
respectively. A dot plot of the top 10 enriched GO (C) and KEGG (D) terms, respectively.
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LAMA1, NLRP3, RYR3, FBN2, and COL11A1 (Figure 8D). These
genes were subjected to co-occurrence mutation analysis using
maftools, and co-mutations were found among the
17 genes (Figure 8E).

3.7 Verification of prognostic DEGs using
clinical tissue samples

To verify the reliability of the DEGs with prognostic values, we
detected the protein expression of 14 genes in normal and LUAD tissues
from the HPA website. Antibody-staining images except for
CDH24 and CLDN6 were available on the HPA website. Of the rest
12 proteins, CDH15, CTNND2, and ITGA8, were all negatively
expressed in both the normal and LUAD tissues. The expression of
CDH17, CLDN12, DSG2, ITGB4, PKP3, ITGA11, and ITGA2 was all
upregulated whereas the expression of ITGAL was downregulated in
LUAD tissues compared to the normal lung tissues (Figure 9). These
results coincide well with the JGRS formula in that CDH17, CLDN12,
DSG2, ITGB4, PKP3, ITGA11, and ITGA2 were risky factors whereas
ITGAL was a protective factor for patient survival.

4 Discussion

Prediction of the prognosis in patients with cancer has garnered
substantial research interest. Many researchers have screened for useful
prognostic biomarkers using the genetic information of patients from
TCGA and GEO databases or data from local hospitals combined with
clinical properties to construct a nomogram that predicts patient OS.
The ultimate goal was to develop an accurate and effective model. Some
studies have focused on genome-wide screening by comparing cancer
tissues with normal tissues, whereas others have focused on a specific
gene group that targets common physiological processes or factors, such
as apoptosis, cancer stem cells, tumor microenvironment, DNA
methylation, gene mutation, and oxidative stress (Supplementary
Table S1). In the present study, we first screened for differentially
expressed junctional genes by comparing LUAD tissues with normal
lung tissues. Of the 105 junctional genes identified, the expression of
28 was upregulated or downregulated in LUAD tissues.We constructed
a Kaplan-Meier plot to select the genes that contributed to the OS of
patients with LUAD. Fourteen of the 28 genes were selected to generate
the JGRS, which was used to construct the nomogram. To the best of
our knowledge, this is the first study to reveal the potential prognostic
value of a panel of junctional genes.

The regulation of tumorigenesis is complex. Lung cancer often
detected in the middle or late stages (Zhao et al., 2022).
Approximately 40% of patients with lung cancer die from
metastasis (Simonaggio et al., 2020). Migratory cells can escape
from the primary site, invade normal tissues, travel through the
lymphatic system or bloodstream, and spread to distant locations.
Loss of cell connections is one of the initial hallmarks of epithelial
cell migration (Prudkin et al., 2009). Junctional proteins mediate
cell-cell and cell-matrix connections. Thus, we evaluated their role in
OS prediction. Among the 14 junctional genes screened, CLDN6,
CLDN12, and CLDN18 belong to the tight junction family. In total,
27 claudins have been discovered to date (Osanai et al., 2017), with a
high or low abundance of claudins described in diverse neoplastic

tissues. For example, claudin-1 was decreased in pancreatic and
ovarian cancers, as well as in LUAD (Osanai et al., 2017). Claudin-7
was reduced in LUAD (Lu et al., 2011), whereas claudin-3 and
claudin-4 were increased in esophageal cancer (Osanai et al., 2017).
Consistent with previous studies on the contributions of CLDN6,
CLDN12, and CLDN18 to LUAD, increased RNA expression of
CLDN6 and CLDN12 in patients with LUAD increased the risk score
and lowered the survival probability, whereas increased RNA
expression of CLDN18 had the opposite effect in the present

FIGURE 7
Infiltration of immune cells and the expression of cell cycle-
related genes in the low- and high-JGRS groups of patients.
Conditions of immune cell infiltration into the TIME based on the
CIBERSORT (A) and TIMER (B) methods. (C) Expression of cell
cycle-related genes in the low- and high-JGRS groups of patients.
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FIGURE 8
JGRS was related to tumor mutation status. (A) The top 30 most frequently mutated genes in the low- (left) and high-JGRS (right) groups. (B) The
distribution of all, synonymous, and non-synonymous counts in the low- and high-JGRS groups. (C) Association between JGRS and all, non-
synonymous, and synonymous mutation counts. (D) A forest plot of differentially mutated genes in the low- and high-JGRS groups, *: p < 0.05, **: p <
0.01, ***: p < 0.001. (E) Interaction effects between differentially mutated genes in the low-and the high-JGRS groups.
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study. Claudin-6 was significantly more frequent and most
abundantly positive in adenocarcinoma (AC) than in squamous
cell carcinoma (SCC), and was associated with poor prognosis in
164 patients with NSCLC from the University Hospital of Kuopio
(Oini et al., 2022). This result was also confirmed in 196 patients
with NSCLC at Uppsala University Hospital. These studies revealed
distinct membrane-positive CLDN6 proteins in LUAD, with high
CLDN6 expression associated with a worse prognosis (Micke et al.,
2014). In addition, Kuner et al. conducted a global gene expression
analysis of NSCLC subtypes and identified a striking presence of cell
adhesion genes that were deregulated between SCC and AC
subtypes. Among these, the expression of CLDN12 was
upregulated in AC tissues compared to that in normal tissues
(Kuner et al., 2009). Kuner et al. further detected the increased
expression of other junctional genes, such as DSG3, CLDN1, DSC2,
CLDN3, CLDN7, CDH1, and CDH2 in the AC. However, these genes
were not included in the nomogram developed in the present study.

First, the genetic background of the patient tissues from their cohort
(German Cancer Research Center) was, to some extent, different
from that retrieved from TCGA. Second, although these genes were
differentially expressed, they did not correlate with the OS of the
patients; thus, they were not included in the nomogram. In addition,
loss of CLDN18 resulted in increased type 2 alveolar epithelial (AT2)
cell proliferation and an increased frequency of LUAD in mice.
Human LUAD, which originates from AT2 cells, also displayed
reduced CLDN18 (Kotton, 2018). These findings indicate that
CLDN6, CLDN12, and CLDN18 markedly contribute to the
prediction of OS in patients with LUAD.

Another large gene family that was incorporated into the
nomogram was the integrin family. Of the selected 14 genes, five
belonged to the integrin family. Integrins connect cells to the
extracellular matrix. They comprise 18 α and 8 β subunits,
different combinations of which can assemble into 24 complexes
(Tvaroska et al., 2023). Smythe et al. discovered the downregulated

FIGURE 9
Immunohistochemical analysis of genes with prognostic values. (A) CDH15, (B) CDH17, (C) CLDN12, (D) CLDN18, (E) CTNND2, (F) DSG2, (G) ITGA2,
(H) ITGA8, (I) ITGA11, (J) ITGAL, (K) ITGB4, and (L) PKP3.
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expression of the subunits α2, α3, α6, and β4 and the upregulated
expression of the β6 subunit in NSCLC (Smythe et al., 1995).
Integrins are expressed in a histological and type-specific
manner. For example, α3 was strongly expressed in AC but was
infrequent in SCLC.α4 was solely expressed in bronchioloalveolar
carcinoma (Guo et al., 2009). Furthermore, αvβ3 was associated with
tumorigenesis and metastasis steps, leading to poor survival in
patients with LUAD (Kariya et al., 2021). Integrin α6 expression
was significantly higher in LUAD tissues and positively correlated
with the grade and T stage of LUAD, leading to poorer patient
survival rates (Shen et al., 2019). In addition, Navab et al. revealed
significantly impeded growth and metastasis of lung cancer cells in
integrin α11-deficient severe combined immunodeficient (SCID)
mice compared to wild-type SCID mice. This demonstrated the
ability of integrin α11 to promote the growth and metastasis of
NSCLC. Our results were consistent with this finding, as increased
RNA expression of integrin α11 in patients with LUAD increased
the JGRS and decreased survival probability. Four other integrin
subunits, namely, integrins α2, α8, αL, and β4, were identified as
prognostic-related biomarkers in the present study. Integrins α2 and
β4 were positively correlated with the JGRS and negatively
correlated with patient OS, whereas α8 and αL were the opposite.
As integrins play crucial roles, effective inhibitors targeting integrin
subunits have been discovered and are widely used clinically,
including in the fields of cardiovascular and inflammatory bowel
diseases. However, the clinical development of integrin inhibitors in
cancer remains considerably challenging (Slack et al., 2022).

In addition to the claudin and integrin families, other
junctional genes such as cadherins, δ-catenin (CTNND2),
DSG2, and PKP3 were correlated with the prognosis of
patients with LUAD. As these junctional genes play pivotal
roles in lung tumorigenesis, the JGRS based on the selected
14 genes can be an independent prognostic marker that best
reflects the prognostic status of patients with LUAD. To some
extent, previous studies have provided evidence of the
mechanisms by which these genes affect lung tumorigenesis,
such as cell proliferation, migration, and metastasis. Our
GSEA also showed that high JGRS levels were mainly
associated with cell proliferation and immune regulatory
pathways. Further analysis showed more abundant infiltration
of B cells and upregulated expression of cell cycle-related genes,
such as cyclins and CDKs in the high-JGRS group (Figure 7).

Oncogenes and tumor suppressor genes are important
“players” in cancer formation, and their mutations or
expression changes can lead to neoplastic transformation in
normal cells. In the present study, patients were separated into
high- and low-JGRS groups, and their mutational status was
analyzed. Seventeen genes were mutated significantly more
frequently in the high-JGRS group than in the low-JGRS
group. Of these, COL6A3, AHNAK, CPS1, TPTE, and DNAH8
had twice as many mutations in the high-JGRS group than in the
low-JGRS group. The involvement of these genes in tumorigenesis
has been reported. COL6A3 produces the alpha (α) 3 (VI) chain of
type VI collagen, a component of the extracellular matrix.
Dysregulated expression of COL6A3 has been observed in
several cancers, including cervical cancer and pancreatic
adenocarcinoma (Annapurna et al., 2021; Wang H. L. et al.,
2022). AHNAK, which encodes the giant protein desmoyokin,

was originally identified as a nucleoprotein in neuroblastoma
cells (Sundararaj et al., 2021). It was later identified as a tumor
suppressor that can negatively regulate cell growth through TGFβ
signaling (Lee et al., 2014). Carbamoyl phosphate synthetase 1
(CPS1) is a tumor promoter that either supports pyrimidine
synthesis or prevents the buildup of intratumoral ammonia
(Yao et al., 2020). Transmembrane phosphatase with tensin
homology (TPTE) shares significant homology with the tumor
suppressor protein PTEN. DNAH8 is a member of the dynein
axonemal heavy chains (DNAHs), and its variants have been
associated with heavy smoking (Wain et al., 2016). Failure to
clear the toxins in the respiratory tract due to a variant change in
DNAH8 may cause lung cancer. However, there are limited studies
on the subject, and this hypothesis requires further validation.
Owing to their association with various cancers, these mutated
genes may directly or indirectly affect the prognosis of
patients with LUAD.

The performance evaluation of a predictive model is crucial
following its construction. The effectiveness of a model can be
evaluated through the C-index, which is often used to measure
how well a biomarker predicts the time to an event. It can also be
determined through AUCs, which plot the rate of true positives
against false positives. A calibration plot can also be used to assess
the agreement between predicted and observed values. However, a
calibration plot lacks an assessed value. Thus, effectiveness can only
be determined by looking at the closeness between the prediction
and diagonal lines. In addition, DCA is a statistical method that
evaluates models and tests their clinical consequences. Papers
predicting the prognosis of patients with LUAD published in the
recent 5 years are summarized in Supplementary Table S1. In total,
47 studies were included.We have listed the predictive parameters of
these studies, as well as the AUC and C-indices of the training and
validation cohorts. Overall, the predictive values of the models were
compromised. Some studies lacked external validation or were only
validated in one or two cohorts (Peng et al., 2024). Others only
focused on a subgroup of patients with LUAD, such as patients with
early-stage LUADor those withmetastasis, which is not applicable to all
patients with LUAD. The model with the highest C-index value (0.89)
was constructed by Huang et al. However, this study neither provided
AUC values nor externally validated the model (Huang et al., 2021). A
prognostic model with DNA methylation profiling showed promising
AUC values of 0.846, 0.900, and 0.909 for 1-, 3-, and 5-year predictions,
respectively. However, it was only validated in one GSE cohort (Ma
et al., 2020). Our nomogram has the advantage of robust performance,
as it was validated using four GEO datasets. The AUCs for TCGA and
the four validation GEO cohorts were all >0.72. For two GEO cohorts,
GSE17538 and GSE72094, the values were >0.78. AUCs for the 1-, 2-,
and 3-year OS rates were the highest in the GSE17538 cohort, reaching
0.901, 0.891, and 0.838, respectively. These results indicate that our
nomogram is both sensitive and specific for predicting OS in patients
with LUAD. The C-indices of JGRS and p-stage combined were all
above 0.73 except for one cohort, GSE37745. The values in the
GSE31210 and GSE72094 cohorts were high, reaching 0.852 and
0.982, respectively. This validated the predictive ability of the model.
Furthermore, the calibration curves in all four GEO cohorts showed
favorable consensus (Figure 5C), and DCA showed good clinical
practicability of the model (Figure 5D). Hence, our results represent
a small breakthrough compared to those of previous studies.
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5 Conclusion

This study demonstrated a significant correlation between
altered expression of junctional genes and the OS of patients with
LUAD. Here, we constructed a junctional gene-related
nomogram model to predict the OS of patients with LUAD.
Although our model was multidimensionally validated, it has
some limitations. The prognosis of LUAD depends on various
factors, such as patient psychology, smoking status, surgical
performance, and response to radiotherapy or chemotherapy.
These factors were not taken into consideration in this study
because of partial records. Additionally, although we evaluated
the JGRSs in patients with different TNM stages and mutation
characteristics of patients in the TCGA cohort, we did not
perform them in the four GEO cohorts, owing to the lack of
TNM stage information and mutation data. Moreover, future
studies are required to explore the underlying molecular
mechanisms and subsequently advance potential clinical
applications, as these cell junctional genes may be valuable
therapeutic targets.
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