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Exosomes are small lipid nanovesicles with a diameter of 30–150 nm. They are
present in all body fluids and are actively secreted by themajority of cells through
the process of exocytosis. Exosomes play an essential role in intercellular
communication and act as significant molecular carriers in regulating various
physiological and pathological processes, such as the emergence of drug
resistance in tumors. Tumor-associated exosomes transfer drug resistance to
other tumor cells by releasing substances such as multidrug resistance proteins
and miRNAs through exosomes. These substances change the cell phenotype,
making it resistant to drugs. Tumor-associated exosomes also play a role in
impacting drug resistance in other cells, like immune cells and stromal cells.
Exosomes alter the behavior and function of these cells to help tumor cells evade
immune surveillance and form a tumor niche. In addition, exosomes also export
substances such as tumoricidal drugs and neutralizing antibody drugs to help
tumor cells resist drug therapy. In this review, we summarize the mechanisms of
exosomes in promoting drug resistance by delivering cargo in the context of the
tumor microenvironment (TME).
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1 Introduction

All structures that the cell releases into the external environment are known as
extracellular vesicles (EVs) (Jia et al., 2022; Vergani et al., 2022; Jeppesen et al., 2023).
Exosomes, the smallest subgroup of EVs, were originally thought to be the pathway by
which cells excrete waste (Johnstone et al., 1991; Clancy and D’Souza-Schorey, 2023).
Tumor-associated exosomes can transport their cargo to destination cells and cause
associated phenotypic changes when released into the environment (Krylova and Feng,
2023). The generation of drug resistance in tumors involves many complicated processes,
such as epigenetic modifications, changes in cell signal transduction pathways, drug
metabolism, and excretion. Exosomes have the function of promoting drug resistance
through material transfer (Antonarakis et al., 2014). For instance, exosomes carry drug-
resistant genes and transfer them from resistant tumor cells to sensitive cells. Some
molecules in exosomes (such as miRNA and lncRNA) protect drug-resistant tumor
cells from treatment-induced cytotoxicity by inhibiting the apoptosis pathway,
increasing tumor tolerance to chemotherapeutic drugs. Multiple exosomes were found
to be upregulated in the plasma of patients with drug-resistant tumors, which suggests that
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different elements of exosomes influence tumor invasion and
progression (Antonarakis et al., 2014). In this review, we focus
on exosomes in tumor drug resistance research.

2 Exosomes mediate drug resistance
transmission

Through horizontal transfer of genetic material, drug-resistant
tumor cells can act as paracrine regulators and are abundant sources
of exosomes. Exosomes can mediate the drug resistance of tumor
cells by delivering a variety of cargoes like RNA (Antonarakis et al.,
2014), DNA (Sansone et al., 2017), multidrug resistance (MDR)-
associated proteins, and molecular metabolites such as
prostaglandin E2 (PGE2) and TGF-β (Xiang et al., 2009).
Exosomes play a role in transferring these cargoes with well-
defined resistance phenotypes into sensitive cancer cells to alter
cell growth and induce anti-preapoptotic pathways (Milman et al.,
2019; Li et al., 2020a).

2.1 Transfer of the transmembrane protein

Chloride intracellular channel 1 (CLIC1) is an ion channel that
is significantly related to drug resistance in gastric cancer cells (Ma
et al., 2012). By isolating exosomes from the supernatant, Zhao et al.
(2019) found that CLIC1 expression was higher in vincristine-
resistant cell lines than in common GC cell lines. This proves
that exosome-mediated transfer of CLIC1 can induce the
development of vincristine resistance.

P-glycoprotein (P-gp) is a drug efflux pump reliant on energy
regulated by the human ABCB1 gene and genes such as MDR1 (Lv
et al., 2014). To make the drug effective, anti-tumor medications
must reach the cytoplasm or nucleus. Tumor cells are able to
encapsulate drugs as exosome cargo or secrete them out of the
cell using P-gp. Blocking P-gp with calcium ion blockers can
effectively prevent the efflux of anti-tumor drugs, thereby
increasing the concentration of intracellular tumor drugs (Luo
et al., 2013). Lv et al. (2014) found that the P-gp content of
drug-resistant MCF-7/DOC was significantly higher than that of
sensitive MCF-7/S, which indicated that tumor cells could induce
chemotherapy-sensitive tumor cells to tolerate drugs by
transferring P-gp.

2.2 Changing cytokines

LncARSR is an RNA activated in sunitinib-resistant renal cell
carcinoma (RCC). It induces the expression of c-MET and AXL in
RCC, which facilitates the resistance of Sunitinib by binding to miR-
34/miR-449 competitively. Sunitinib resistance can be propagated
by incorporating LncARSR into exosomes and delivering them to
sensitive cells. Targeted nucleic acid therapy of sunitinib-resistant
RCC against lncARSR or AXL/c-MET inhibitors restores the
sunitinib response (Sun et al., 2018). The exosome-mediated
circVMP1 delivery system has a similar effect. CircVMP1 targets
the miR-524-5p-METTL3/SOX2 axis to promote cisplatin resistance
in tumor cells, transmitting malignant features and cisplatin

resistance to cisplatin-sensitive non-small cell lung cancer
(NSCLC) (Xie et al., 2022). Analogously, microRNA-301b-3p
from mesenchymal stem cells (MSCs) is delivered to
chemotherapy-sensitive cells via exosomes to promote gastric
cancer (GC) resistance by targeting TXNIP (Zhu et al., 2023).
Wang et al. suggested that the knockout of the adipocyte-
associated exosome LOC606724 or SNHG1 in adipocytes
promotes the apoptotic effects of chemotherapy agents in
multiple myeloma (MM) cells. MM cells facilitate LncRNA
incorporation into adipocyte exosomes via methylation of
LncRNA m6A mediated by METTL7A, leading to further
resistance to MM (Wang et al., 2022a). In another experiment,
exosomes from oxaliplatin-resistant colorectal cancer (CRC) cells
delivered ciRS-122 to sensitive cells. Upregulation of miR-122
sponge and PKM2 promotes glycolysis and drug resistance.
Moreover, miR-122 can target pyruvate kinase, thereby reducing
the drug sensitivity of chemotherapy-sensitive cells (Wang et al.,
2020a). Similarly, exosomes associated with oral squamous cell
carcinoma (OSCC) induce drug resistance in tumor cells by
upregulating the expression of mir-155 (Kirave et al., 2020). Liver
cancer-related extracellular vesicles mediate drug efflux, thereby
increasing chemotherapy drug resistance in hepatocellular
carcinoma (HCC) by translocating Rab7402B (Li et al., 2020b).
By downregulating miR-579-3p, circpar3-loaded exosomes induce
resistance to cisplatin in the lateral population of nasopharyngeal
cancer cells (Ai et al., 2023).

Since exosomes from cancer cells express cancer-associated cell
surface proteins that sequester the substance away from the target
cell, they obstruct antibody and medication therapy. For example,
B-cell lymphoma cell-associated exosomes carry CD20, which binds
to therapeutic anti-CD20 antibodies to deplete complement. This
process protects lymphoma cells from antibody attack (Aung et al.,
2011). Additionally, tumor-reactive antibodies are bound and
sequestered by tumor exosomes to reduce their binding to breast
cancer cells (Battke et al., 2011; Bach et al., 2017) (Figure 1).

2.3 Mediating ferroptosis

The generation of harmful lipid peroxides in an iron-dependent
way is the cause of ferroptosis (Lei et al., 2022; Tong et al., 2022;
Zhao et al., 2022). Anti-tumor drugs such as erastin block the entry
of extracellular cystine into cells by inhibiting system Xc activity.
This process blocks the synthesis of glutathione (GSH) in cells,
weakens the oxidation resistance of cells, and eventually leads to
ferroptosis (Chen et al., 2021a). Exosomes derived fromNSCLC cells
transfer miR-4443 to susceptible cells, conferring cisplatin
resistance. Cisplatin-induced FSP1-mediated ferroptosis is
inhibited by the overexpression of miR-4443 (Song et al., 2021).
The researchers highlighted that the lung cancer-associated exosome
circRNA101093 (cir93) regulates arachidonic acid (AA) by
maintaining an increase in cir93 in lung adenocarcinoma
(LUAD) cells. cir93 interacts with and increases fatty acid-
binding protein 3 (FABP3). FABP3 transports AA and enhances
its response to taurine, leading to a reduction in AA and the
induction of chemotherapy drug tolerance (Zhang et al., 2022a).
Through Zhang et al.’s investigation, these tests revealed that
exosome miR-522 secreted by GC-related fibroblasts can lead to
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the inhibition of ALOX15. It might lessen the buildup of lipids in
tumor cells to prevent ferroptosis of tumor cells, finally leading to
reduced chemotherapy sensitivity (Zhang et al., 2020). Cancer-
associated fibroblasts (CAFs) were found to inhibit ferroptosis
and promote the chemoresistance of pancreatic ductal
adenocarcinoma (PDAC) cells after gemcitabine (GEM)
treatment by secreting exosomes miR-3173-5p (Qi et al., 2023).
Ferroptosis provides a new direction for antagonizing tumor drug
resistance. Du et al. (2021) constructed exosomes functionalized
with CD47. The researchers used ultrasound to effectively load
siderosis inducers into exosomes to accelerate HCC’s ferroptosis
process and provide anti-tumor effects (Du et al., 2021).

3 Mediating immune escape

Immune escape is a significant factor in tumor drug resistance.
The primary defense against cancer originates from innate immune
cells, which engage in interactions with adaptive immune cells and
exchange exosomes with one another (Neviani et al., 2019). Tumors
exert control over pathways such as differentiation, polarization,
cytokine recruitment, and others, thereby either promoting or
suppressing immune-associated exosomes.

The exosomes of the cerebrospinal fluid of gliomas contain an
exclusive protein called LGALS9 ligand. The ligand attaches itself to the
dendritic cells’TIM3 receptor in the cerebrospinal fluid, further interferes
with the identification of dendritic cells, inhibits antigen presentation, and
leads to the inactivation of cytotoxic T cell-mediated immune responses
against tumors (Wang et al., 2020b). NK cells contribute to the process of
immune surveillance and immune clearance of tumor cells. Lucia found

that NKG2D ligands were significantly upregulated in the supernatant of
exosomes derived from epithelial ovarian cancer cells. NKG2D ligands
can impair the cytotoxic function of NK cells by depleting NKG2D. This
suggests that exosomes containing NKG2D ligands can be released by
tumors to exert cytotoxic effects (Mincheva-Nilsson and Baranov, 2014;
Labani-Motlagh et al., 2016). The exosomes miR-21-5p and miR-155-5p
secreted by M2 macrophages regulate the migration, growth, and
invasion of glioma cells and the formation of new blood vessels (Guo
et al., 2023a). Other cell populations can regulate innate immune cells
through the endocrine and paracrine effects of exosomes. For instance,
exosomes of adipose-derived MSCs regulate the polarization of
M2 macrophages by upregulating M2 markers such as CD163, Arg1,
and CD206 and activating MafB and STAT6 (Heo et al., 2019). In
addition, EVs secreted by MSCs before hypoxia stimulation
downregulated PTEN through miR-21-5p delivery and induced
M2 polarization (Ren et al., 2019a). Wu et al. (2021a) found that
exosomes produced from M2 macrophages transferred CD11b/
CD18 to HCC cells. Matrix metalloproteinase-9 (MMP-9) is activated,
which greatly accelerates tumor drug resistance (Wu et al., 2021a).
Exosomes derived from GL261 cells significantly inhibited the amount
of CD8+ T cells in spleen cells by blocking the breakdown of IFN-γ and
granzyme B (Liu et al., 2013). Likewise, exosomes associated withNSCLC
cells can inhibit CD8+T cells from secreting IFN-γ, TNF-α, and other
immune cells. In addition, by binding miR-934 and upregulating the
expression of protein tyrosine phosphatase 2 (SHP2), which has the Src
homology 2 (SH2) domain, circUSP7 suppresses CD8+T cells (Chen
et al., 2021b). Tumor cells affect the production and migration of
corresponding immune cells through exosomes and reconstruct the
immune microenvironment to mediate the generation of drug
resistance (Table 1).

FIGURE 1
Cells form early endosomes through endocytosis. These early endosomes form the invagination of late endosomes through the plasmamembrane
and eventually become intracellular multi-vesticular bodies. The vesicles between 30 and 140 nm in diameter were identified as exosomes.
Chemotherapeutic drugs can be excreted from cells through exosomes, and miRNAs and MDR-associated proteins can be secreted by exosomes to
transfer drug resistance.

Frontiers in Molecular Biosciences frontiersin.org03

Ren et al. 10.3389/fmolb.2024.1379822

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1379822


4 Tumor microenvironment

Tumor-associated exosomes mediate TME changes through
endocrine effects (Attaran and Bissell, 2022), such as hypoxia (He
et al., 2022), starvation, and acidosis (Xia et al., 2021; Zhang et al.,
2021). These stressful environments further increase the release of
tumor-associated exosomes, forming a feedback loop and ultimately
promoting tumor drug resistance (Mashouri et al., 2019; Han
et al., 2022).

4.1 Hypoxia

One study showed that miR-182-5p was markedly upregulated in
the exosomes of glioblastoma in a hypoxic environment. VEGFR
accumulates as a result of direct inhibition of its target Kruppel-like
factors 2 and 4 by exosome miR-182-5p. It induces tumor
angiogenesis. The structure of the newly formed vessels is unstable,
and blood flow may be rapid, which makes it difficult for the drug to
effectively cross the tumor vascular network, thereby limiting the
drug’s reach to the tumor tissue and reducing its concentration within
the tumor (Li et al., 2020c). At the transcriptional level,
circPDK1 secreted by pancreatic cancer-associated exosome
packaging can be activated by HIF1A, and the BPTF/c-myc axis is
activated by miR-628-3p (Lin et al., 2022). Additionally, researchers
discovered that the stronger oncogenic proteins STAT3 and FAS are

present in exosomes of ovarian cancer cell lines grown in hypoxic
environments, which dramatically increases in vitro cell motility and
invasion as well as chemotherapy resistance (Dorayappan et al., 2018).
Similar responses have been shown in breast cancer (BC) (King et al.,
2012; Jung et al., 2018; Hannafon et al., 2019; Tian et al., 2021; Xi et al.,
2021), HCC (Matsuura et al., 2019; Yu et al., 2019; Wang et al., 2022b;
Yu et al., 2022; Jia et al., 2023), pancreatic cancer (Patton et al., 2020;
Chen et al., 2022; Lin et al., 2022), GC (Du et al., 2020; Xia et al., 2020),
CRC (Ren et al., 2019b; Li et al., 2021; Sun et al., 2021;Wu et al., 2023),
and prostate cancer (PC) (Deep et al., 2020).

Critical processes in the formation of exosomes, such as vesicle
budding and cargo sorting, are adversely impacted in an anoxic
environment (Bister et al., 2020; He et al., 2022). Furthermore,
hypoxia can affect ubiquitination proteins and ubiquitination-
related enzymes, affecting the sorting of exosomal proteins.
Ubiquitin proteins can accumulate through the ubiquitin-binding
domains of ESCRT-0 and ESCRT-II within the multi-vesicular
endosome microdomain. This process limits the number of
membranes available for exosome formation, which affects
exosome volume (van Niel et al., 2018; Jiang et al., 2022). In a
study of PC patients, plasma from tumor patients showed higher
levels of exosomes and lower volumes of exosomes. Smaller
exosomes are readily able to pass through physiological barriers
and enter more cells. Smaller exosomes may travel more readily
through the bloodstream to the site of metastasis with this variation,
which weakens the effect of drug therapy (Logozzi et al., 2021).

TABLE 1 Summary of exosome-mediated transmission of drug resistance.

Tumor type Signal path Resistance
mechanism

Drug Remark Reference

Renal cell carcinoma AXL/c-MET Delivery of RNA Sunitinib MiR-34; miR-449; ncARSR Jeppesen et al. (2023)

Non-small cell lung
cancer

METTL3/SOX2 Delivery of RNA Cis-platinum CircVMP1; miR-524-5p Jia et al. (2022)

Gastric cancer TXNIP Delivery of RNA Cis-platinum vincristine MicroRNA-301b-3p Vergani et al. (2022)

Multiple myeloma MEttL7A Delivery of RNA Chemotherapeutic drugs
for MM

LncRNA m6A Johnstone et al. (1991)

Colorectal cancer PKM2 Targeting pyruvate kinase Oxaliplatin MiR-122 Clancy and
D’Souza-Schorey (2023)

Oral squamous cell
cancer

Mir-155 Promotion of EMT Cis-platinum Mir-155 Li et al. (2020a)

Liver cancer — Drug efflux 5-fluorouracil Rab27B Ma et al. (2012)

Nasopharyngeal
cancer

SIRT1/SSRP1/
MiR-579-3p

Delivery of RNA Cis-platinum Ebv - mir - bart4; SIRT1 Zhao et al. (2019)

Malignant lymphoma — Combined with therapeutic
anti CD20 antibodies

Lymphoma humoral immune
therapy

CD20; ATP-binding cassette
(ABC) transporter A3 (ABCA3)

Lv et al. (2014)

Non-small cell lung
cancer

Fsp1 Inhibition of apoptosis Cis-platinum MiR-4443 Luo et al. (2013)

Gastric cancer USP7/hnRNPA1 Inhibition of apoptosis Cis-platinum; Taxol-
Phvaclitaxel TAX-PTX

ALOX15; mir −522 Sun et al. (2018)

Pancreatic cancer ACSL4/MiR-
3173-5p

Inhibition of apoptosis Gemcitabine MiR-3173-5p Xie et al. (2022)

Adenocarcinoma of
the lung

Cir93/FABP3 Inhibition of apoptosis Chemotherapeutic drugs Cir93 Zhu et al. (2023)
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Studies have shown that the sugar mixture on the surface of tumor-
associated exosomes is highly specific (Zheng et al., 2020; Zhang
et al., 2022b). The endocytosis mechanism of exosomes is sensitive
to hypoxia. More exosomes can be absorbed by hypoxic cells reliant
on proteoglycans (Cerezo-Magaña et al., 2021). In conclusion,
modifications to plasma membrane glycoproteins brought about
by hypoxia may enhance the drug resistance of tumor cells.

4.2 Epithelial mesenchymal transformation

Epithelial–mesenchymal transformation (EMT) of tumor
tissues promotes drug-resistant cell survival. Cancer cells’
enhanced plasticity enables non-genetic adaptation to drug

tolerance. Under tyrosine kinase inhibition (TKI), EMT is
connected to the survival of drug-resistant cells in EGFR-mutated
NSCLC (Remon et al., 2018). Exosome miR-663b secreted by
cervical cancer cells directly targets the 3′-untranslated region
(3′-UTR) of monoacylglycerol acyltransferase 3 (MGAT3) and
participates in the process of EMT transformation. Exosome
miR-663b-induced metastasis of ovarian cancer cells is inhibited
by MGAT3 overexpression. At the same time, exosome miR-663b
can be enucleated by cervical cancer cells, which affects the survival
of drug-resistant cells (You et al., 2021). The GC-associated exosome
circ133 acts on the miR-133a and RhoA axes. Circ133 promotes
cancer by disinhibiting its target SIX1. Interestingly, the target
SIX1 reduced the sensitivity to chemotherapy in BC cells by
increasing the TGFβ signaling pathway (Micalizzi et al., 2009).

FIGURE 2
The TME orchestrates cell–cell interactions, such as paracrine and near-paracrine interactions, through tumor-associated exosome networks. It is
composed of a variety of cells embedded in the extracellular matrix, including endothelial cells and tumor-associated fibroblasts. Tumor cells secrete
cytokines through exosomes to promote changes in the TME such as hypoxia, angiogenesis, and EMT. Tumor cells use the regulatory mechanisms of
microsystems to form a drug-resistant state.

TABLE 2 Key concepts of therapy methods using exosomes mediating drug effects.

Treatment strategy Mechanism Target

Reducing the drug resistance of tumors Blocking P-gp protein delivery and reducing the efflux of anti-tumor drugs Calcium antagonist

Improving the sensitivity of tumors to chemotherapeutic
drugs

Reversing the adverse effects of tumor metabolism and restoring drug sensitivity
to chemotherapy

ESCRT-0/1 HRS
STAM1 TSG101

Promoting the exogenous tumor cell killing A combination of inhibitors targeting metabolic enzymes and impairing the
immune escape of tumor cells

NKG2D

Other mechanisms that promote synergistic drug killing Promoting tumor autophagy ATG16L1/ATG5

DNA damage repair PD-L1

Antagonizing the changes in the TME, such as hypoxia,
angiogenesis, and EMT

Restoring the original state of the TME and reducing the resistance to drugs Mir-128-3p Mir-204-3P
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Moreover, GC-associated exosomes induce the transcription of
ZEB1 to regulate the differentiation of CRC cells and induce
drug resistance (Ono et al., 2012). CRC-associated exosomes
promote EMT and increase the intracellular accumulation of
oxaliplatin by delivering miR-128-3p. They have the potential to
improve drug sensitivity and reduce drug resistance, serving as novel
biomarkers (Liu et al., 2022a).

4.3 Proangiogenic effect

Exosomes promote tumor angiogenesis through various
mechanisms that have antagonistic effects on anti-angiogenic drugs
and eventually lead to drug resistance. Exosome miR-204-3p induces
vascular endothelial cells to form tubular forms via the ATXN1/
STAT3 pathway. TAK-981 has a function in inhibiting
SUMOylation. It prevents tumor growth and angiogenesis by
blocking miR-204-3p′s exosome sorting process. Glioma cells can
accelerate angiogenesis by upregulating SUMOylation and eliminating
the inhibitory factor miR-204-3p under hypoxia (Guo et al., 2023b).
OSCC cells have upregulated miRNA-210-3p to promote tumor growth
by increasing tumor grade and microvascular density. Ephrin
A3 expression is mechanically downregulated by the exosomal
miRNA-210-3p to activate the PI3K/Akt axis. The process increases
angiogenesis and advances OSCC (Wang et al., 2020c). Analogously, the
high migratory potential of nasopharyngeal carcinoma cells is associated
with angiogenesis. Exosome miRNA-23a inhibits the production of
TSGA10 by binding to its 3′-UTR. MiRNA-23a leads to angiogenesis
and increases metastasis in nasopharyngeal carcinoma (Bao et al., 2018).
Exosome lncRNA may also play an essential role in regulating
angiogenesis. For example, exosomal miRNA-29-3p downregulates
the expression of PTEN, and the inactivated PTEN signaling
pathway promotes the phosphorylation of PI3K/Akt, which promotes
angiogenesis in lung cancer (Cheng et al., 2019). Angiogenin-2
(ANGPT2) is believed to promote angiogenesis by disrupting
vascular stability. HCC cells can secrete exosomes containing
ANGPT2. These exosomes are introduced into umbilical vein
endothelial cells by intracellular action, and elevated expression of
ANGPT2 causes angiogenesis and encourages drug resistance (Xie
et al., 2020) (Figure 2).

4.4 CAF-related exosomes

Wu et al. measured RNA levels in lapatinib-resistant BC specimens
and then highlighted that exosomes may be a means of delivering Circ-
MMP11. The knockdown of circ-MMP11 promotes lapatinib
sensitivity by inhibiting cell survival and invasion while promoting
apoptosis in lapatinib-resistant BC cells (Wu et al., 2021b). In Liu’s
study, cancer-associated fibroblasts of LUAD secreted a long non-
coding RNA, LINC01614, by exosome packaging. This RNA directly
interacts with ANXA2 and p65 to promote NF-κB activation, with the
glutamine transporters SLC38A2 and SLC7A5 being overexpressed,
eventually enhancing glutamine influx in cancer cells. Alterations in
glutamine metabolism increase the antioxidant capacity of cells and
reduce their susceptibility to drug-induced apoptosis (Liu et al., 2022b).

In previous studies, researchers have suggested that cancer stem
cells (CSCs) are inherently resistant to chemotherapy-induced cell

death. After chemotherapy treatment, fibroblast-derived conditioned
medium (CM) promoted the proportion of CSCs (CD133+ and TOP-
GFP+) and tumor viability. Further studies have shown that exosomes
isolated from CM have similar effects described above (Ren et al., 2018;
Hu et al., 2019). Correspondingly, through the METTL3/miR-181d-5p
axis, METTL3 decreases the susceptibility of CRC cells to 5-fururacil (5-
FU) and enhances exosome miR-181b-5p in CAFs (Pan et al., 2022).

5 Therapeutic strategies

Because of their role in promoting drug resistance in tumor cells,
exosomes have great potential to be a therapeutic target for inhibiting
tumor drug resistance. Limiting the biogenesis and release of exosomes
or downregulating the uptake of exosomes by target cells has functions
in restoring the sensitivity of tumors to chemotherapeutic drugs. For
ESCFRT-dependent cells, downregulation of hepatocyte growth factor-
regulated tyrosine kinase substrate (HRS) and signal transducer adapter
molecule 1 (STAM1) can limit the secretion of exosomes and limit the
efflux of drugs from tumor cells (Colombo et al., 2013). In addition,
antagonizing drug efflux and changing the TME can indirectly
compensate for the drug resistance caused by exosomes to a certain
extent. For example, Diannexin can impair the angiogenesis of
A431 squamous carcinoma in SCID mice by downregulating
exosomes (Al-Nedawi et al., 2009). Exosomes can also induce drug
killing in other ways. Autophagy and exosomes can compensate for
each other in different environments to promote the export of signaling
molecules (Deng et al., 2019). The combined use of chemotherapeutic
drugs and autophagy inhibitors such as chloroquine or
hydroxychloroquine can significantly enhance the sensitivity of
chemotherapeutic drugs (Singh et al., 2018). RNAs from exosomes
could compete with PD-L1 to modulate DNA damage responses,
thereby enhancing chemotherapy sensitivity (Tu et al., 2019). Key
concepts of therapy methods using exosomes to mediate drug effects
are summarized in Table 2.

6 Conclusion

The diversity of exosomes confers significant advantages as
biomarkers, and their stable structure effectively transfers the genetic
information of the parent cells. Tumor-derived exosomes also
profoundly affect the process of drug resistance. In tumor patients,
exosomes generated from tumors transfer RNA and proteins tomediate
drug resistance. At the same time, tumor cells influence the TME
through exosomes, causing a series of changes, such as hypoxia, to
induce drug resistance. This means that the use of exosomes can reverse
the drug resistance of tumor cells and increase the effectiveness of drug
therapy. Since exosomes are multi-purpose carriers of communication
between multiple organs, restoring their normal secretion plays a
particularly important role in the treatment of patients with tumors
(Dixson et al., 2023). Specific components in exosomes, such as
miRNAs or proteins, may become biomarkers of tumor resistance.
By examining the expression levels of specific components in
extracellular vesicles secreted from patient samples, we can help
predict patient response to drug therapy and guide an individualized
treatment plans (Fitts et al., 2019; Hoshino et al., 2020). Targeting
specific signaling pathways or related molecules involved in the
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generation and release of extracellular vesicles could inhibit tumor drug
resistance (Pu and Ji, 2022). Exosomes are expected to be useful
indicators for tumor therapy as they regulate many aspects of
heterotypic cell-to-cell interactions in the TME. Plenty of exosomes
have been discovered and uploaded to the Vesiclepedia online
compendium. Researchers can review the identified RNA molecules
and proteins in exosomes (Kalra et al., 2012). A deeper understanding of
the biogenesis of tumor-associated exosomes is of great significance for
further exploration of the information exchange between tumor and
normal cells and for utilizing their properties to guide combined clinical
therapy (Debbi et al., 2022; Rezaie et al., 2022).
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