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Introduction: Discrimination between adenocarcinoma (ADC) and squamous
cell carcinoma (SCC) subtypes in non-small cell lung cancer (NSCLC) patients is a
significant challenge in oncology. Lipidomics analysis provides a promising
approach for this differentiation.

Methods: In an accompanying paper, we explored oxPCs levels in a cohort of
200 NSCLC patients. In this research, we utilized liquid chromatography coupled
with mass spectrometry (LC-MS) to analyze the lipidomics profile of matching
tissue and plasma samples from 25 NSCLC patients, comprising 11 ADC and
14 SCC cases. This study builds upon our previous findings, which highlighted the
elevation of oxidised phosphatidylcholines (oxPCs) in NSCLC patients.

Results:We identified eight lipid biomarkers that effectively differentiate between
ADC and SCC subtypes using an untargeted approach. Notably, we observed a
significant increase in plasma LPA 20:4, LPA 18:1, and LPA 18:2 levels in the ADC
group compared to the SCC group. Conversely, tumour PC 16:0/18:2, PC 16:0/4:
0; CHO, and plasma PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC 16:0/20:4; OOH
levels were significantly higher in the ADC group.
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Discussion: Our study is the first to report that plasma LPA levels can distinguish
between ADC and SCC patients in NSCLC, suggesting a potential role for LPAs in
NSCLC subtyping. This finding warrants further investigation into the mechanisms
underlying these differences and their clinical implications.

KEYWORDS

non-small cell lung cancer NSCLC, adenocarcioma ADC, squamous call carcinoma SCC,
oxidised glycerophosphatidylcholine oxPC, monoacylglycerophosphatidic acid LPA,
lipidomics, metabolomics

1 Introduction

Lung cancer is the most lethal cancer worldwide, causing
1.80 million deaths in 2020 (Bray et al., 2018). Two types of lung
cancer are distinguished: non-small cell lung cancer (NSCLC) (85%
cases) and small cell lung cancer. The most common histological
subtypes of NSCLC are adenocarcinoma (ADC), squamous cell
carcinoma (SCC), and large cell carcinoma (LCC). Within the
NSCLC subtypes, ADC and SCC are predominant (Wang et al.,
2020). ADC represents around 40% of NSCLC cases and is the most
frequent subtype of lung cancer in non-smokers (Subramanian and
Govindan, 2007; Kenfield et al., 2008; Schabath and Cote, 2019). In
this subtype, cancer progression starts from lung glandular cells that
produce mucin and surfactants. On the other hand, the SCC
subtype, representing around 25% of NSCLC cases, is closely
related to smoking and usually originates from the central areas
of the lung bronchi (Campbell et al., 2016). Despite sharing several
characteristics, they differ in clinical parameters and histopathology.
The importance of the precise determination of the NSCLC subtype
arises from the available treatment and its potential outcomes, which
in turn are related to the presence of particular mutations prevalent
in the majority of ADC and are rarely detected in SCC patients
(Chen et al., 2019). The presence of mutation facilitates the selection
of dedicated treatment, however, only around 60% of ADC and
50%–80% of SCC subjects have known oncogenic driver mutation
(Yuan et al., 2019). The presence of these abnormalities allowed to
propose several molecular targets for therapy, including vascular
endothelial growth factor (VEGF), platelet-derived growth factor
(PDGF), epidermal growth factor (EGF), insulin-like growth factor I
(IGF-I) or anaplastic lymphoma kinase (ALK) (Ray et al., 2010).
However, specific mutations were highly associated with ADC
subjects. Moreover, for some therapies, even 60% of patients
develop drug resistance (Yuan et al., 2019). As a result, despite
availability of new treatments and strategies, still for many NSCLC
patients’ classic histopathology-based therapies are the choice
(Niemira et al., 2019), thus proper NSCLC subtyping is crucial
(Ettinger et al., 2017).

Even though there are several findings describing differences
between ADC and SCC, non-invasive early diagnostic techniques
discriminating ADC and SCC are still not available. Recent
lipidomics and metabolomics findings revealed a significant
variation in lipids in NSCLC samples (Marien et al., 2015; Chen
et al., 2018; Zhang et al., 2019; Fan et al., 2020; You et al., 2020;
Jianyong et al., 2021; Kowalczyk et al., 2021).

Lipidomics emerged from metabolomics and can be defined as
“the large-scale study of lipid species and their related networks and
metabolic pathways that exist in cells or any other biologic system”

(Sethi and Brietzke, 2017). Thanks to the untargeted approach, a

very wide range of lipids can be analysed also in metabolomics
studies. The most frequently used separation technique employed
for determining lipid profiles is liquid chromatography (LC)
coupled with accurate mass spectrometry (MS) (Fan et al., 2020;
You et al., 2020).

In the work of our group, LC-MS-based untargeted
metabolomics was implemented to discriminate NSCLC subtypes
at different stages of the disease. This work covered patients with
chronic obstructive pulmonary disease (COPD) as controls as well
as ADC, SCC and LCC subjects in early and late stages. All analyses
were performed on plasma and tissue samples, covering tumour and
adjacent non-malignant lung tissue employing RP- and HILIC-LC/
MS. It is important to highlight that this was not a lipidomics but a
metabolomics study; however despite amino acids, most of the
identified metabolites were lipids, including fatty acids, carnitines,
lyso-glycerophospholipids (LPCs), glycerophospholipids,
plasmalogens, sphingomyelins (SMs), and glycerophospho
(N-acyl)ethanolamines (Kowalczyk et al., 2021). Fan et al.
performed RP-LC/MS analyses over the lung cancer tissue and
benign lung tissue, both paired with distal noncancerous tissue
from the same patient. They reported and described changes in the
lipid profile of lung cancer but also provided receiver operating
characteristic (ROC) curve analysis of combinational lipid markers
to assist in the disease diagnosis (Fan et al., 2020). A similar design
was used by You et al., who also analysed the lung cancer tissue and
benign lung tissue and paired distal and adjunct noncancerous
tissue. They employed RP-LC/MS to explore metabolic
reprogramming of lung cancer and to distinguish NSCLC
subtypes. They found changes among different metabolite
classes associated with the alterations in energy and purine
metabolism, biosynthesis of amino acids, membrane lipid
metabolism, and glutamine and cysteine and methionine
metabolism (You et al., 2020). Zhang et al. used MS imaging to
discriminate between post-operative NSCLC tumours and paired
normal tissues. This research covered also the recognition of
mutations of epidermal growth factor receptor (EGFR), which
is crucial from a diagnostic and therapeutic perspective.
Glycerophospholipids were found to differentiate between ADC
and SCC subtypes, but also between EGFR-mutated-positive and
EGFR-wild-type tissue (Zhang et al., 2019). Marien et al. used
direct infusion and 2D-imagingMS to profile glycerophospholipids in
malignant and non-malignant lung tissue of NSCLC patients. Their
results revealed decreased levels of sphingomyelins and
glycerophosphoserines (PSs) and elevated levels of
glycerophosphoinositols (PIs), glycerophosphoethanolamines (PEs)
and glycerophosphocholines (PCs) (Marien et al., 2015).

All these publications pointed to the alterations in the lipid
profile, including glycerophospholipids. Glycerophospholipids are
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susceptible to oxidation, and oxidative stress was reported as one of
the underlying processes accompanying NSCLC; therefore, in our
previous study, we decided to explore the profile of oxidised
glycerophosphocholines (oxPCs) in lung cancer patients (Godzien
et al., 2024). We proved, that these early oxidation products are
altered in the NSCLC patients in comparison to COPD controls. In
this companion paper, we decided to explore oxPCs changes deeper,
making direct comparison between NSCLC subtypes but also
combining information about oxPCs with lipid profiles of SCC
and ADC patients. Considering the high interconnectivity between
distinct lipid classes along with the fact that oxidised lipids originate
from the native, non-oxidised lipids, we believed that such a strategy
can benefit in data interpretation.

OxPCs are currently deeply investigated since their role went
beyond oxidation by-products, and nowadays, they are recognised
as important molecules with multiple functions. They were
associated with cardiovascular diseases (Paynter et al., 2018),
diabetes (Godzien et al., 2019), neurogenerative disorders
(Okuzumi et al., 2019) and cancer (López-López et al., 2020).
Oxidation of PCs can lead to the formation of different types of
epi-lipids, a subset of the natural lipidome formed by either
enzymatic or non-enzymatic modifications such as, e.g.,
oxidation, nitration, or sulfation with their own biological
functions. oxPCs cover mildly oxidised long-chain oxPCs (LCh-
oxPCs), truncated short-chain oxPCs (SCh-oxPCs), and cyclised
oxPCs. These molecules have different structures and, therefore,
different bio-activities: each group of oxPCs can have a distinct
function, or they might have contradictory effects. Moreover,
pleiotropic functions of oxPCs were also observed. Because of
this, exploration of the involvement of oxPCs in different
pathologies is so important.

As pointed above, NSCLC is the most lethal, and, therefore, one
of the most frequently studied cancer; however, despite all available
knowledge, new diagnostic tools are needed. To propose valid and
reliable methods for unequivocal subtypes discrimination, we need
to explore and understand metabolic alterations underlying the
ADC and SCC. In this study, we have focused on identification
of lipids, including oxPCs, in plasma and tissue samples that would
allow discrimination between the SCC and ADC subtypes.

2 Materials and methods

2.1 Chemical and reagents

Ultrapure water was used to prepare all the aqueous solutions
and was obtained “in-house” from a Milli-Q Integral three system
(Millipore, SAS, Molsheim, France). Zomepirac sodium salt, formic
acid, LC-MS-grade methanol and acetonitrile, and LC-grade ethanol
were purchased from Sigma-Aldrich Chemie GmbH
(Steinheim, Germany).

2.2 Cohort study

Samples were obtained from patients undergoing surgical
treatment for primary NSCLC at the Thoracic Surgery
Department of Medical University of Bialystok Clinical Hospital

in Poland. The study was approved by the Ethics Committee of the
Medical University of Bialystok (R-I-003/262/2004, R-I-002/296/
2018 and APK 002 5 2021) and performed in accordance with the
Declaration of Helsinki. Before collecting the samples, written
informed consent for specimen collection was obtained from all
participants.

In this project we included 122 tissue samples collected from
61 NSCLC patients. There were two tissue samples per patient:
tumour tissue and adjacent non-malignant control tissue. Among
these 61 patients, 25 were classified as ADC and 36 as SCC subjects.
Plasma analyses covered samples collected from 101 NSCLC
patients, among which 41 were diagnosed with ADC and 60 with

TABLE 1 Basic clinical parameters characterising three cohorts of patients
enrolled in the study.

Plasmametabolic fingerprinting whole cohort/subcohort

Patients’ characteristic NSCLC ADC SCC

Age [years] (median) 63.0/62.0 62.0/62.0 63.5/61.0

Q1 58.0/56.0 58.0/55.5 58.8/56.5

Q3 69.0/66.0 68.0/67.5 69.0/65.8

BMI (median) 25.47/24.69 25.99/25.00 25.4/24.07

Q1 23.62/23.50 24.17/23.9 23.4/23.3

Q3 27.76/26.00 28.09/25.7 27.23/25.9

Gender [F/M] [29/72]/
[5/20]

[15/26]/
[3/8]

[14/46]/
[2/12]

pTNM

IIA 24/6 8/4 16/2

IIB 33/13 9/5 24/8

IIIA 18/6 8/2 10/4

Tumour tissue metabolic fingerprinting whole cohort/
subcohort

Patients’ characteristic NSCLC ADC SCC

Age [years] (median) 63.0/63.0 62.0/62.0 63.5/63.5

Q1 56.0/56.0 55.0/55.5 57.5/59.3

Q3 69.0/69.0 69.0/67.5 69.0/68.3

BMI (median) 24.93/25.00 25.00/25.00 24.53/25.06

Q1 23.41/23.83 23.53/23.90 23.39/23.91

Q3 26.09/25.69 26.37/25.73 25.98/25.60

Gender [F/M] [13/48]/
[7/18]

[6/19]/
[3/8]

[7/29]/
[4/10]

pTNM

IIA 21/5 9/3 12/2

IIB 20/10 8/5 12/5

IIIA 20/10 8/3 12/7

pTNM, pathological tumour-nodemetastasis. For pTNM staging number of patients

assigned to given stage is provided for the whole cohort and subcohort.
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SCC. Analyses of clinical records revealed that 25 patients were
common between the plasma and tissue cohorts, covering 11 ADC
and 14 SCC subjects. In this study, we focused on these 25 subjects,
performing joined analyses of plasma and tissue lipids. Basic clinical
parameters describing the available cohort and selected sub-cohort
are summarised in Table 1.

Whole blood was collected in 9 mL vacuum system tubes with
K2EDTA as an anticoagulant. After gentle mixing, plasma was
separated by centrifugation at 1300 g for 20 min at room
temperature. Plasma fractions (0.5 mL each) were then collected
in Eppendorf tubes and stored at −80°C until analysis.

Collected tissue samples were histologically reviewed and
classified. After lung tumour resection, whole specimen was
examined macroscopically by the pathologist to determine the
exact tumour localization, presence or absence of macroscopic
residual tumour, presence or absence of macroscopic infiltration
of pulmonary pleura, macroscopic evaluation of possible presence of
necrosis in the tumour centre. The pathologist cut the exact tissue
samples that represent the tumour centre and tumour margin.
Moreover, the pathologist determined the possibility to collect
adjacent pulmonary tissue (referred as normal tissue): if the
distance from the tumour border was greater than 2 cm, the
pathologist cut the samples of adjacent tissue. Then, immediately
after resection, study nurses from the Biobank put the tissue samples
alternately into cryotubes for vapor phase of liquid nitrogen (fresh
frozen samples) and into tubes with 10% buffered formalin
(formalin-fixed samples). The exact time of resection start, vessel
ligation, resection end, and tissue sample preservation were recorded
and documented. The details of tissue samples collection in the
clinical setting–macroscopic evaluation resected specimens were
described previously (Ciereszko et al., 2022), together with the
biobanking conditions and Standard Operating Procedures
(Niklinski et al., 2017; Michalska-Falkowska et al., 2023). Cancer
stages were determined following pathological tumour-node-
metastasis (pTNM) staging. All tissue samples were frozen and
stored at −80°C until the day of analyses. Sample collection,
quenching and storage were performed following approved
biobanking standards (Niklinski et al., 2017).

2.3 Sample preparation

Plasma samples were prepared using the previously described
method (Daniluk et al., 2019). On the day of analysis, samples were
thawed on ice. For protein precipitation and metabolite extraction,
one plasma sample volume was mixed with three volumes of ice-
cold methanol/ethanol (1:1) containing 1 ppm of Zomepirac
(internal standard IS). After extraction, samples were stored on
ice for 10 min and centrifuged at 21,000 × g for 20 min at 4°C. The
supernatant was filtered into a glass HPLC-vial through a 0.22 μm
nylon filter (ThermoFisher Scientific, Waltham, Massachusetts,
United States of America).

Tissue samples were prepared following the previously described
method (Ciborowski et al., 2017). On the day of analysis, samples were
thawed on ice. Ten milligrams of lung tissue sample were placed in an
Eppendorf tube with two stainless steel beads (5mm) and 200 μL of ice-
cold 50%methanol. Samples were homogenised for 8 min at 30 Hz using
Tissue Lyser (LT; Qiagen Hilden, Germany). After homogenisation,

beads were removed and 200 μL of ice-cold acetonitrile containing
1 ppm of IS was added to the sample. Metabolites were extracted by
vortex-mixing the samples for 1 hour. After extraction, samples were
centrifuged at 21,000 × g for 20 min at 20°C. After centrifugation, the
supernatant was filtered through a 0.22 μm nylon filter (ThermoFisher
Scientific,Waltham,Massachusetts, United States of America). Extraction
blank was prepared following the same procedure as biological samples,
but without tissue, and was analysed together with biological samples.

Quality control (QCs) samples were prepared by mixing equal
volumes of all raw plasma samples and all extracts for tissue samples.
QCs were treated like the rest of the samples and injected at the
beginning of the batch (10 injections) to equilibrate the system and
every ten samples further to monitor the stability of the
measurement (Godzien et al., 2014).

2.4 Analytical set-up

Plasma analyses were performed using a 6546 iFunnel ESI-Q-
TOF (Agilent Technologies, Germany) coupled with a 1290 Infinity
UHPLC system (Agilent Technologies, Germany) with a degasser,
quaternary pump and thermostated autosampler.

Tissue analyses were performed using a 6545 iFunnel ESI-Q-
TOF (Agilent Technologies, Germany) coupled to a 1290 Infinity
UHPLC system (Agilent Technologies, Germany) with a degasser,
binary pump and thermostated autosampler.

Plasma and tissue samples were analysed in both polarity modes.
During all analyses, two reference compounds were used: m/z
121.0509 (protonated purine) and m/z 922.0098 (protonated
hexakis (1H,1H,3H-tetrafluoropropoxy)phosphazine (HP-921))
for positive ionisation mode and m/z 112.9856 (proton abstracted
trifluoroacetic acid anion) andm/z 966.0007 (formate adduct of HP-
921) for negative ionisation mode. These masses were continuously
infused into the system to allow internal constant mass correction
during data acquisition.

2.5 Metabolic profiling

2.5.1 Plasma analyses
Four microliters of each sample were injected into a

thermostated at 60°C Zorbax Extend C18 column (RRHT 2.1 ×
50 mm, 1.8 μm Agilent Technologies, Santa Clara, California,
United States of America). The flow rate was 0.6 mL/min with
solvent A (water with 0.1% formic acid) and solvent B (acetonitrile
with 0.1% formic acid). The chromatographic gradient started at
50% of phase B, then increased the amount of phase B to 80% (from
1 to 6 min) and 100% (from 6 to 8 min). Finally, the system was re-
equilibrated by reverting phase composition to initial conditions
(50% phase B) in 0.5 min, which was kept from 8.5 to 10 min. The
mass spectrometer was operated in full scan mode. Data were
acquired at m/z ranging from 50 to 1,000 at the scan rate of
1.0 scans per second. Nebulizer pressure was set at 52 psig,
nozzle voltage at 1,000 V, and capillary voltages at 3,000 and
4,000 V in the positive and negative ion mode, respectively.

All samples were analysed in scan mode in both polarity modes.
Then, a subset of 70 samples was analysed in negative ion mode using
iterative exclusion data-dependent analysis (IE-DDA). Precursor ions
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were fragmented using ramped collision energy, adjusted for each
molecule according to its m/z. The first injection was performed as a
conventional data-dependent MS/MS analysis, where the top three
most abundant precursors were selected for fragmentation,
considering active exclusion lists. In subsequent injection,
precursors selected for MS/MS fragmentation in the previous
injection were excluded on a rolling basis with 20 ppm mass error
tolerance and 0.5 min retention time tolerance. Five iterative-MS/MS
runs were set for each sample, resulting in 350 measurements.

2.5.2 Lung tissue analyses
One μL of the extracted sample was injected into a thermostated

at 60°C Zorbax Eclipse Plus C8 column (RRHD 2.1 × 150 mm,
1.8 μm Agilent Technologies, Santa Clara, California, United States
of America). The flow rate was 0.6 mL/min with solvent A (water
with 0.1% formic acid) and solvent B (acetonitrile with 0.1% formic
acid). The gradient started at 25% phase B and increased to reach
95% of phase B in 14 min. This proportion was kept for 1 min, and
after that, the gradient returned to starting conditions (25% phase B)
in 0.1 min and was maintained for 4.9 min to re-equilibrate the
system before the next injection. The mass spectrometer was
operated in full scan mode from m/z 50 to 1,000. The capillary
voltage was set to 3,000 V for ESI+, and 4,000 V for ESI- mode; the
drying gas flow rate was 12 L/min, temperature 250°C and gas
nebuliser 52 psig. Fragmentor voltage was 250 V for both ESI modes.

2.6 Determination of protein content in
lung tissue

The precipitated proteins were suspended in
radioimmunoprecipitation assay (RIPA) buffer and then
denatured at 60°C and sonicated for 30 min in a water bath. The
samples were then centrifuged for 15 min at 14,000 × g. Protein
concentration was measured with the Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific) according to the included protocol.

2.7 Data processing

2.7.1 Plasma metabolic profiling
Plasma data was reprocessed twice: searching for oxPCs and for

other lipids. MS1 data were reprocessed using a targeted approach and
searching solely for oxPCs (Godzien et al., 2019). Data from iterative
exclusion data-dependent analyses were used to confirm the annotation
of oxPCs. For this, we searched for known fragmentation patterns (Gil
de la Fuente et al., 2018). Moreover, all annotations were confirmed
using retention time (RT) to compare the elution order between different
oxPCs and their non-oxidised precursors. The list of 45 oxPCs was
defined, covering 13 LCh-oxPCs and 32 SCh-oxPCs (including iso-
forms). RT andmass data pairs were used as input criteria to find oxPCs.
Processing was performed using an algorithm “Find by Ion” in Mass
Hunter Profinder software (Agilent, B.10.00). The integration of all
extracted peaks was manually curated and corrected if necessary.

Data from IE-DDAs were reprocessed using the untargeted
approach in Lipid Annotator software (Agilent, B.01.00). For lipid
annotation, a fragmentation-based (MS/MS) library was used. The
resulting data comprise the m/z of all the precursors identified as

lipids, their corresponding RT, and their classification into lipid
categories and classes. During the reprocessing, allowed ions
covered [M-H]−, [M + HCOOH-H]−, and [M + Cl]−. The Q-Score
was set at ≥ 50, the mass deviation was established as ≤ 20 ppm, the
fragment score threshold was fixed as ≥ 30, and the total score was set
at ≥ 60. The list of annotated lipids was then used in Mass Hunter
Profinder software (Agilent, B.10.00) for the targeted search, where a
sophisticated algorithm searched selected ions across MS1 data. Data
were reprocessed considering ions [M + H]+, [M + Na]+, [M + K]+,
[CHNaO2]

+ and [C2H2Na2O4]
+ in positive ionisation mode and [M-

H]-, [M + HCOO]-, [M + Cl]-, [C2HF3O2], [C3H2F3NaO4] in negative
ionisation mode. Neutral loss of [C2H4O2] and [CH3] was used in
negative ion mode, while water loss was considered in both polarities.
The maximum permitted charge state was double. Alignment was
performed based on m/z and RT similarities within the samples.
Parameters applied were 0.5% and 0.20 min for the RT window and
20 ppm and 2 mDa for mass tolerance. These were selected based on
the assessment of raw data.

2.7.2 Tissue metabolic profiling
Raw data was reprocessed, searching for oxPCs implementing

the targeted approach (Godzien et al., 2019). The list of 45 oxPCs
was defined, covering 13 LCh-oxPCs and 32 SCh-oxPCs (including
iso-forms). Annotation of these oxPCs was done in previous projects
based on the data-independent analysis (DIA), and incorporated
into in-house built library. RT and mass data pairs of annotated
oxPCs were used as input criteria to search them in MS1 data.
Processing was performed using the same algorithm “Find by Ion”
in Mass Hunter Profinder software (Agilent, B.10.00) as described
above. The integration of all extracted peaks was manually curated
and corrected if necessary.

2.8 Data analysis

The acquired data underwent evaluation through a Quality
Assurance procedure. Lipids displaying a Relative Standard
Deviation (RSD) of signals in QC samples below 30% were
considered reliably measured and retained for subsequent
analyses. An additional filter was applied to keep signals detected
in at least 75% of samples in at least one sample group.

Before the statistical analyses, reprocessed data were normalised.
Data from plasma analyses were normalised solely to the internal
standard to minimise analytical drift. Data from tissue analyses were
normalised to the internal standard and the protein content to
minimise differences between different pieces of tissue.

Data analyses were done over each matrix, matching the patients,
plasma, and tissue samples. Statistics were computed by comparing
ADC and SCC subtypes. Differences between compared groups were
described with p-value and percentage of change, where a positive
value indicated an increase in ADC patients compared to the SCC
patients, while a negative value illustrated a decrease of the signal in
ADC patients compared to the SCC patients. Furthermore, we
calculated the median, Q1 and Q3 for the level of each oxPC for
each comparison (Table 2). Percentage of change, median, Q1 and
Q3 were computed using Excel (Microsoft). p-value was computed
employing a non-parametric Mann-Whitney test and then corrected
by applying Benjamini–Hochberg FDR using in-house-built Matlab
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scripts (version 2020a, Mathworks, Natick, MA, United States of
America). FDR was performed only for metabolites with the absolute
percentage of change equal or greater than 25%. Random Forest
analysis was performed using the in-house-written code in RStudio
software (version 2023.12 + 369, PBC, Boston, MA, United States of
America). Used Matblab scripts and R code are provided in the
Supplementary Material (Data Sheet 2). The ROC curve analysis was
used to test the discriminating metabolites as potential biomarkers
and to evaluate their performance. Areas under the curve (AUCs)
were calculated by implementing Random Forest in
MetaboAnalyst (version 5.0).

2.9 Pathway analysis

Pathway analysis was performed based on the LIPID MAPS®
reaction explorer. Different lipid species were linked based on the
reactions from various sources, including scientific literature, the
lipid research community, and other existing databases such as
Rhea, WikiPathways, KEGG, Ecocyc, and MetaCyc. In the analysis,
we included all detected and annotated lipids.

3 Results and discussion

3.1 General concerns

Baseline characteristics of ADC and SCC patients is summarised
in Table 1. Enrolled subjects were matched in basic anthropometric
measurements, and no between-group statistical differences were
observed. The only concern is with the lack of gender balance since
more men than women were enrolled. However, this corresponds to

a greater number of diagnosed men than women at the time of
sample collection.

All samples were analysed in both polarity modes. Metabolite
annotation was performed using information acquired in negative
ion mode since this polarity provides more details, such as the exact
composition of fatty acids. Statistical analysis was performed on the
data acquired in positive ion mode because more abundant and,
therefore, more reproducible signals for oxPCs were obtained in this
polarity mode (Godzien et al., 2024).

Analyses performed for 122 tissue samples collected from
61 NSCLC patients, covering two samples per patient: adjacent non-
cancerous lung tissue and lung tumour tissue, allowed measurement
and annotation of 16 oxPCs: 15 SCh-oxPCs and only 1 LCh-oxPCs.
Analyses performed for 101 plasma samples allowed measurement and
annotation of 13 oxPCs: 5 SCh-oxPCs and 8 LCh-oxPCs. Automatic
annotation based on IE-DDA provided information about 120 plasma
lipids, covering: 17 sphingolipids (2 ceramides (Cer) and 15 SMs),
54 monoacylglycerophospholipids (5 LPAs, 30 LPCs, 14 LPEs, 4 LPIs
and 1 LPGs), 31 diacylglycerophospholipids (17 PCs, 9 PEs, 4 PIs and
1 PSs), 11 ether-glycerophospholipids (4 ether PCs and seven ether PEs)
and seven fatty acids. Although the maximum allowed error for
annotation was set to 20 ppm, the greatest mass error was 1.3 Da,
with the average error for all 294 annotated lipids of 0.36 Da. The
obtained matrix contained 8% of missing values which were present
only in 12 out of 165 features.

3.2 Differences in the lipid profile between
ADC and SCC subjects

In recent years, lipidomics (especially the untargeted approach)
has emerged as a promising tool for medicine, allowing the selection

TABLE 2 Lipids discriminate significantly between plasma and tumor tissue samples from ADC and SCC patients.

Compound raw p-value
(corrected p-value)

Gini importance score % of change ADC SCC

Median (Q1-Q3)

tumour tissue

PC 16:0/4:0; CHO 0.0331 (0.1214) 0.1088 −59.3 0
(0–546)

497
(399–609)

PC 16:0/18:2 0.0231 (0.1214) 0.1245 +40.5 184,585
(172,541–226,863)

113,284
(91,216–162,270)

plasma

PC 16:0/20:4; OOH 0.0068 (0.0466) 0.0944 +25.1 182,738
(159,665–218,149)

136,157
(118,852–152,437)

PC 18:0/20:4; OH 0.0199 (0.0466) 0.0904 +74.7 260,157
(212,240–311,125)

188,303
(133,987–225,592)

PC 16:0/18:2; OH 0.0172 (0.0466) 0.1039 +95.4 244,459
(213,149–444,861)

157,436
(118,621–236,128)

LPA 18:1 0.0172 (0.0862) 0.0934 −59.3 15,060 (13,913–18,269) 23,460 (17,022–41,625)

LPA 18:2 0.0306 (0.0982) 0.0965 −37.5 15,713 (12,755–16,926) 23,896 (19,512–33,909)

LPA 20:4 0.0040 (0.0405) 0.1476 −88.7 15,689 (13,393–26,941) 87,239 (36,585–321,949)

+means an increase in ADC, group in comparison to SCC, group.

- means a decrease in ADC, group in comparison to SCC, group. % of change and median (Q1-Q3) are provided for the signal intensity for a given lipid.
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of potential biomarkers but also providing insight into the
mechanisms underlying different diseases. For this reason, we
decided to apply the LC-MS method to search for lipids
differentiating main NSCLC subtypes.

We analysed tissue and plasma samples collected from
patients diagnosed with ADC or SCC. Univariate Mann-Whitney
analysis, followed by Benjamini–Hochberg post-correction, allowed
the selection of eight discriminating variables, which are listed in
Table 2. We focused on lipids, for which the raw p-value was below
0.05. However, considering that the corrected p-value was not
significant for all of these lipids, we decided to support the
statistical evaluation of pre-selected variables by Random Forest
and ROC analysis. The given lipid was considered statistically
significant if it met three conditions: the p-value was below
0.05 and ranked in the top 20 variables according to the Gini

score (Table 2), and the AUC for ROC was above 0.75. Random
Forest analysis performed for 2000 trees resulted in the model with
an out-of-bag (OOB) error rate of 0.32. Among the top 20 most
important variables were all eight significant lipids: four of them
were in the top 10.

All statistically significant lipids belong to glycerophospholipids.
As far as plasma samples are concerned, we found differences in the
level of several oxPCs and LPAs. In non-malignant lung samples,
there were no discriminating lipids, while in tumour tissue samples,
the only lipids discriminating these two subtypes were PC 16:0/18:
2 and PC 16:0/4:0; CHO.

Before discussing discriminating lipids, we want to comment on
the lipid profile obtained for NSCLC patients. Averaged changes
observed for each lipid class are graphically represented in Figure 1.
Only three types of lipids, marked with the asterisk, were found to be
statistically different between the two lung cancer subtypes.
However, as can be noticed, some of the changes, despite their
magnitude, are not significant. Not all lipids belonging to a
particular class exhibited the same direction of change.

For this reason, we visualised the data and compared the number
of individual lipid species in each class that was increasing and
decreasing in the ADC compared to the SCC group. Results of this
visualisation are presented in Panel A of Figure 2. The first
observation leads to the conclusion that most noted changes
correspond to the decrease of the signal in ADC patients. It is
the case of SMs, plasma PCs, PI, PS, etherPCs and etherPEs, LPA
and LPG. An increased signal was observed for oxPCs in healthy
lung tissue; however, this change was insignificant for oxPCs in
plasma samples. Very different changes, corresponding almost
equally to both the increase and the decrease of the signal, were
observed mainly for FAs, LPEs, LPIs, PEs, and tumour tissue PCs.
Panel B of Figure 2 illustrates the average signal for lipids belonging
to a particular class for ADC patients (brown colour) and SCC
subjects (green colour). It is essential to highlight that this data can
be used to compare ADC and SCC subjects within a given lipid
group. A comparison of absolute values for lipids measured in tissue
and plasma cannot be performed. This data corresponds to the
measured signal and not the total quantitative value. Observed
averaged changes are in concordance with the direction of
change of lipids: SMs, plasma PCs, PI, PS, etherPCs and
etherPEs, LPA and LPG are reduced in ADC patients in
comparison to the SCC subjects, while in plasma oxPCs, PCs
detected in healthy lung tissue and Cer the signal is higher in
ADC patients.

A comparison of NSCLC patients showed that PC 16:0/18:2 was
increased in ADC group in comparison to SCC group, and PC 16:0/
4:0; CHO was decreased in ADC group compared to SCC
group (Figure 3).

Analysis of plasma samples showed a higher number of
significant metabolites as compared to tissue results. All
differentiating lipids belong to two classes of
glycerophospholipids, namely, LPAs and oxPCs. A comparison of
NSCLC patients showed that the levels of LPA 20:4, LPA 18:1, and
LPA 18:2 in ADC group were significantly decreased compared with
SCC, whereas the levels of PC 16:0/18:2; OH, PC 18:0/20:4; OH, PC
16:0/20:4; OOH were significantly increased (Figure 4).

To illustrate the connectivity of measured lipids, we performed
pathway analysis. Because lipids, especially complex, are poorly

FIGURE 1
The bar plot illustrates the percentage of averaged change
between the ADC and SCC patients across the different lipid classes.
Panel (A) portraits the changes observed in plasma samples, while
panel (B) shows the changes observed for tumour tissue samples
(TT) and healthy lung tissue (LT). A negative value means a decrease in
the ADC group compared to the SCC group (marked with bluish
colours), and a positive value reflects an increase in the ADC group
compared to the SCC group (marked with orangish colours). *
indicates the groups of lipids for which observed changes were
statistically significant.
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represented in “classic” pathways, we decided to use LIPID MAPS®
reaction explorer to connect detected lipids into a network. Lipids
were represented as a class instead of individual species. Figure 5
shows the results of this analysis. To build this network, we used all
measured lipids marked with grey dotted circles, while the
statistically significant lipids were annotated with red dotted
circles. All other lipids were kept to maintain the connectivity
between other lipid classes.

3.3 Implications of found lipid profile
differences between ADC and SCC subjects

In order to provide better differential diagnosis and
treatment methods, the discovery of molecular patterns of
different lung cancer subtypes is needed. Thus, analysis of
tissue samples seems to be a key to explore metabolic changes
occurring at the site of the action where tumour development
and growth occur. On the other hand, plasma samples must be
also included since they are minimally invasively collected and
routinely used in diagnostics.

In our study, we found the elevated level of PC 16:0/18:2 in tissue
samples in ADC compared to SCC patients. It is in line with our
previous research where tissue levels of PCs were increased in ADC
(compared to SCC) (Kowalczyk et al., 2021). Other researchers also
studied differences in lipidome of tumour samples between NSCLC
subtypes, and some of the findings are in line with our results. Fan
et al. observed elevated levels of PC 18:1_20:4, Cer d18:1/26:0, and
several PEs and diradylglycerols (DGs) in ADC compared to SCC
(Fan et al., 2020). Direct comparison of these results with our data is
impossible, because the method we applied did not allow detection
of either Cer or DG. Zhang et al. obtained similar results as they
found the increased intensity of PC 34:0 in ADC compared to SCC
(Zhang et al., 2019). Although PC 18:1_20:4 and PC 34:0 have
different compositions of fatty acids than PC 16:0/18:2 we detected,
all these molecules belong to the same lipid class and behave
similarly. In contrast, You et al. found a lower level of PC 38:
2 in ADC than in SCC samples. They also noted different tendencies
in lipidome alterations, depending on the lipid class: PCs (LPC 20:
1 and PC 38:2), free fatty acids (FAs) (FA 22:1 and FA 24:1) and
carnitines (CARs) (CAR 2:0 and CAR 3:0) exhibited higher levels,
while PEs (LPE 16:0 and PE 34:3), SM 35:2, and CAR 18:1 showed

FIGURE 2
Panel (A) The number of measured and identified lipids for each class, assigned as elevated (orange colour) and reduced (blue colour) in ADC
patients in comparison to the SCC subjects; Panel (B) The averaged signal for lipids belonging to each class measured for SCC patients (green colour) and
ADC patients (brown colour). The y-axes in the graph represent the abundance of metabolites. The whiskers show the standard deviation of the averaged
signal. * indicates the groups of lipids for which observed changes were statistically significant; LT: healthy lung tissue; TT: tumour tissue; P: plasma.
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lower levels in ADC than in SCC (You et al., 2020). Our dataset
contains six FAs, but none of them was found significantly different.
However, despite the lack of significance, we observed a decrease in

the signals of unsaturated FAs (FA 16:1, FA 18:1, FA 18:2, FA 18:3)
and a very slight increase in the signals of saturated FAs (FA 16:0 and
FA 18:0). Marien et al. discovered that eight phospholipids,

FIGURE 3
Levels of lipid discriminating between tumour tissue samples of ADC and SCC sam-ples. *p < 0.05. The y-axes in the graph represent the abundance
ofmetabolites. The whiskers show theminimum andmaximum values. The bottom and top of the box are the 25th and 75th percentiles, and the line inside
the box is the 50th percentile (median).

FIGURE 4
Levels of lipid discriminating between plasma samples of ADC and SCC samples. *p < 0.05; **p < 0.01. The y-axes in the graph represent the
abundance of metabolites. The whiskers show to the min and max values. The bottom and top of the box are the 25th and 75th percentiles, and the line
inside the box is the 50th percentile (median).
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including PC, (PC 40:2, PE 42:2, PE 44:5, PI 36:3, PI 36:4, PS 40:8, PS
42:9, SM 36:2) discriminated ADC and SCC, although the direction
of change was not mentioned; therefore, a more detailed comparison
of this results with our findings is not possible (Marien et al., 2015).

To the best of our knowledge, this study is the first to show
significant differences in the level of several plasma LPAs between
ADC and SCC patients. Patients suffering from ADC exhibited
significantly higher levels of LPA 18:1, LPA 18:2, and LPA 20:4 than
those diagnosed with SCC. LPAs originate from LPCs by the action
of extracellular autotaxin (ATX) (Xie and Meier, 2004). ATX was
found in many body fluids, e.g., plasma or malignant effusions
(Tokumura, 2002). So far, there have been seven LPA receptors
discovered (Gardell et al., 2006; Lin et al., 2010). LPAs act through
activating cell proliferation, differentiation and migration, playing
an important role in wound healing (van Corven et al., 1989; Willier
et al., 2013; Aiello and Casiraghi, 2021). To date, many findings have
shown overexpression of ATX in different pathological conditions,
especially in different types of cancer (Yang et al., 2002; Kehlen et al.,
2004; Wu et al., 2010). Elevated expression of ATX results in
increased LPAs levels which are associated with tumour severity.
Among patients with hepatocellular cancer, those with metastasis
were characterized with higher serum LPAs level in comparison to
those with no metastasis (Mazzocca et al., 2011). What is more,
higher serum LPAs level was associated with larger tumour size as
well as with poorer survival (Mazzocca et al., 2011). As for studies on
lung cancer, LPAs was found to be involved in tumour
microenvironment fibrosis. LPA-stimulated fibroblasts produced
larger amounts of collagen (type I and VI) and fibronectin
(Gudmann et al., 2019). Also, ATX-LPA axis was pointed to play
a significant role in inflammation and lung cancer through the
increase of proinflammatory cytokines (Valdés-Rives and González-
Arenas, 2017). In our study, we noted reduced levels of three
different LPAs in the serum of patients with ADC, compared to
SCC. Since SCC is considered as more severe and characterized with

poorer prognosis (Cooke et al., 2010; Fukui et al., 2015; Wang et al.,
2020), our results suggest one of possible explanations for that and
indicate the need for further investigation to better understand this
phenomenon.

It is worth to note that around 4%–9% of NSCLC tumours
contain mixed adenomatous and squamous pathologies within a
single lesion, named adenosquamous cell carcinoma (AD-SCC),
being the most lethal form of NSCLC with the worst prognosis
(Hou et al., 2017). This indicates a potential phenotypic transition
between ADC and SCC components in this pathologically mixed lung
cancer (Yao et al., 2018). Moreover, there is an evidence that oxidative
stress triggers ADC-to-SCC transdifferentiation, thus resistance to
therapy. Some studies pointed out the essential role of extracellular
matrix remodelling and metabolic reprogramming during this
phenotypic transition. As reported, lipoxygenase (LOX) inhibitors
and reactive oxygen species (ROS) significantly accelerate this
transition. Although more profound research is needed to explain
the exact mechanistic principles of this process, already our own
evidence suggests that LOX downregulation results in decreased
collagen deposition and extracellular matrix remodelling, leading to
the transdifferentiation (Li et al., 2015; Yao et al., 2018). These indicate
that balanced redox status is critical to control tumour plasticity and
therapeutic response in NSCLC (Arfin et al., 2021), pointing to the
need to explore changes in the oxPCs either in the transdifferentiation
process or in AD-SCC patients.

OxPCs differentiate NSCLC subtypes on the tissue and plasma
level. However, stronger differences were observed on plasma level.
Three LCh-oxPCs (PC 16:0/20:4; OOH, PC 18:0/20:4; OH and PC
16:0/18:2; OH) were elevated in plasma of ADC patients in
comparison to the SCC subjects, while:. in case of tissue samples
only one SCh-oxPCs (PC 16:0/4:0; CHO) was significantly reduced
in ADC subjects. Smaller differences in case of tumour tissue
samples might be related to tumour heterogeneity and presence
of different cellular and non-cellular components.

FIGURE 5
The visualization of lipid connectivity is based on the biochemical reactions and metabolic pathways involving lipids. Lipids were linked into a
network employing the LIPID MAPS

®
reaction explorer. To build this network, we used all measured lipids marked with grey dotted circles, while the

statistically significant lipids were annotated with red dotted circles. All other lipids were kept to maintain the connectivity between other lipid classes.
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These results are very important since the relevance of
glycerophospholipids, and oxidised phospholipids in lung
functioning were already reported. Karki et al. pointed out that
circulating and cell membrane oxPCs exhibit protective and
deleterious effects on lung endothelium (Karki and Birukov,
2020). LCh-oxPCs were indicated as those with protective
functions, while SCh-oxPCs as inducing harmful effects.
However, the majority of these reports refer rather to the local
activity of tissue oxPCs.

In our other work (Godzien et al., 2024), we found an elevation
of oxPCs in NSCLC patients in comparison to the control
group. Moreover, it has been reported that oxidative stress is
elevated in ADC patients in comparison to SCC subjects
(Gęgotek et al., 2016; Zalewska-Ziob et al., 2019), what stays in
line with the changes observed in this study. The escalation of
oxidative stress and impairment of the antioxidative defence system
is greater in ADC patients, which can explain higher plasma levels of
oxPCs in these subjects. However, in tumour tissue, we observed a
reduced level of PC 16:0/4:0; CHO in ADC subjects. This might be
due to already mentioned heterogeneity of tumour tissue or the fact
that different oxidation products might exhibit different behaviour
under a given condition. This concerns early and end-oxidation
products, as well as different oxPCs fractions. Moreover, oxPCs may
exhibit different effects depending on the concentration (Karki and
Birukov, 2020). This clearly illustrates, that despite already available
evidence, there is a need to even further explore the role of oxPCs
and other oxidation products in NSCLC patients.

It is essential to mention that oxPCs were found to act as ligands
for VEGF receptors (Mohammad and Srivastava, 2012). VEGF
promotes tumour angiogenesis through its potent mitogenic effect
on vascular endothelial cells (ECs). This links oxPCs with
angiogenesis: it was demonstrated that oxPCs, precisely oxPAPC,
an LCh-oxPC, stimulate angiogenic reactions in endothelial cells
(Bochkov et al., 2017). This is particularly important, because

VEGF receptors are known molecular targets for NSCLC therapy
(Qu et al., 2018). Moreover, it was reported that hypoxia upregulates
the protein levels of VEGF-A in lung cancer cell lines; however, the
role of VEGF-A is distinct in ADC and SCC. VEGF-A protein levels
were found significantly associated with tumour size and lymph node
metastasis, and negatively correlated with the overall survival of ADC
subjects, but not SCC patients (Qin et al., 2020). This, together with
the differences in the profile of oxPCs between ADC and SCC patients
that we observe, suggests that oxPCs should be evaluated as potential
prognostic markers to monitor the effectiveness of the treatment and
stop or prevent tumour growth. Among all tested lipids, only LPAs
and oxPCs were found significantly altered. The linkage between these
two groups of phospholipids is inflammation (Figure 5). It was
reported that LPAs induce cytokines and interleukin 8 (IL-8)
production, promote nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) transcription and lymphocyte infiltration.
This promotes inflammation and further production of inflammatory
cells, white blood cells and interleukins. Inflammatory cells produce a
highly oxidative environment, leading to ROS generation. Lipids
subjected to the high concentration of ROS undergo oxidation,
causing the formation of oxidation products, including also oxPCs.
The elevated level of oxPCs (and other peroxidation products) results
in excessive ROS generation by ECs. Finally, this increases
inflammatory response even more.

Our data show elevated levels of LPAs in SCC patients. For this
cohort of patients previous study showed elevated levels of
inflammation factor NF-κB (Gęgotek et al., 2016). On the other
hand, we observed higher levels of oxPCs for ADC subjects, and
higher lipid peroxidation was reported for these patients (Gęgotek
et al., 2016). Oxidative stress and inflammation can lead to
cancerogenesis; however exact mechanisms underlying this
process are distinct. Our results, combined with previously
reported evidence, suggest that inflammation might be more
involved in SCC development, while oxidative stress underlies

FIGURE 6
The involvement of LPA and oxPCs in the cancerogenesis: LPAs were linked to the inflammation and oxPCs were connected to the oxidative stress.
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ADC development. However, this statement can be a preliminary
hypothesis that requires further examination in a larger group of
patients, performing quantitative measurements of discriminating
lipids together with determination of inflammatory and oxidative
stress markers.

These results provide new insight into the mechanism
underlying the development of both NSCLC subtypes. However,
the ultimate goal of lipidomics study prognostic, diagnostic,
predictive or therapeutic markers can be proposed (Carlomagno
et al., 2017). As diagnosis of NSCLC subtypes poses a challenge, we
decided to test discriminating LPAs and oxPCs as potential

diagnostic markers. For this purpose, we constructed ROC curves
for each discriminating lipid (Figure 7). Obtained AUCs were: 0.851,
0.786 and 0.773 for LPA 20:4, LPA 18:1 and LPA 18:2, respectively
(Figure 7, panels A–C). For plasma oxPCs computed AUCs were:
0.825, 0.786 and 0.786 for PC 16:0/20:4; OOH, PC 16:0/18:0; OH
and PC 18:0/20:4; OH respectively (Figure 6, panels D–F). For
tumour PCs calculated AUCs were: 0.773 and 0.766 for PC 16:0/18:
2 and PC 16:0/4:0; CHO, correspondingly (Figure 7, panels
G and H).

Moreover, we tested different combinations of these lipids to
create a biomarker model. The best results, with the highest AUC,

FIGURE 7
ROC curves obtained for each discriminating lipid in plasma (panels (A–F)) and tumour tissue panels (G, H). Panel (I) shows the ROC obtained for all
discriminating lipids simultaneously.
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were obtained for the combination of discriminating metabolites,
i.e., AUC raised up to 0.873 (Figure 6, panel I). Other researchers
used a similar strategy and tested the combined discrimination
performance of several metabolites. For five DGs and one Cer,
Fan et al. obtained AUC of 0.92 and 0.77 in the discovery and
validation set, respectively (Fan et al., 2020). You et al. received even
more robust results with AUC of 0.935 and 0.924 for discovery and
validation cohorts, respectively. They used a relatively large set of
metabolites, which included three carnitines, two free fatty acids,
several phospholipids and five polar metabolites such as guanosine,
creatinine and oxidised glutathione, among others (You et al., 2020).
Zhang et al. performed ROC curve analysis over succinic anhydride,
serine phosphorylcholine and PC 34:0, obtaining AUC of 0.827
(Zhang et al., 2019). Analysis of all these reported AUCs suggests
that stronger values are obtained either for larger sample sets or for
larger sets of discriminating metabolites. Therefore, the performance
of our potential markers might be improved by validating them on a
larger set of samples or by augmenting them with other metabolites,
also polar. All these results show a clear potential of oxPCs and LPAs
in the NSCLC subtypes diagnosis; however, they must be validated,
covering proper quantification of these molecular lipid species on a
larger cohort of patients. This should include a larger number of
participants, but also patients with LCC, which were not included in
this study due to low availability of the samples. Moreover,
diagnostic utility of these glycerophospholipids must be tested in
the context of presence of driver mutations such as, e.g.,
EGFRL858R, KRAS, ALK, among other.

4 Conclusion

Our results revealed differences in the profiles of oxPCs and
LPAs between ADC and SCC patients. We observed elevated LPAs
levels in SCC patients and increased levels of oxPCs in ADC subjects.
These results align with publications reporting altered oxidative
stress and inflammation markers in NSCLC subtypes. By combining
our results with literature reports, we linked the observed increased
level of LPAs with inflammation and noticed an increased level of
oxPC with oxidative stress. All this suggests that inflammation
might be more involved in the SCC development, while oxidative
stress seems to underly the development of ADC. However,
inflammation and oxidative stress are inherently connected;
therefore, their impact on cancer development permeates each
other. These results open a new line of research, pointing oxPCs
and LPAs as potential markers and/or therapeutic targets in
ADC and SCC.
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Glossary

4-HNE 4-hydroxynonenal

ADC adenocarcinoma

AD-SCC adenosquamous cell carcinoma

ALK anaplastic lymphoma kinase

ATX autotaxin

BMI body mass index

CAR carnitine

Cer ceramide

COPD chronic obstructive pulmonary disease

DG diradylglycerol

EC endothelial cell

EGF epidermal growth factor

EGFR epidermal growth factor receptor

FA free fatty acid

HILIC hydrophilic interactions chromatography

HPLC high performance liquid chromatography

IE-DDA iterative exclusion data-dependent analysis

IGF-I insulin-like growth factor I

IL-8 interleukin 8

LC liquid chromatography

LCC large-cell carcinoma

LCh-oxPC long-chain oxidised phosphocholine

LC-MS liquid chromatography mass spectrometry

LOX lipoxygenase

LPA lysophosphatidic acid

LPC lysophosphatidylcholine

LPE lysophosphatidylethanolamine

LPG lysophosphatidylglycerol

LPI lysophosphatidylinositol

MDA malondialdehyde

MS mass spectrometry

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NSCLC non-small cell lung cancer

oxPC oxidised phosphatidylcholine

PC phosphatidylcholine

PDFG platelet-derived growth factor

PE glycerophosphoethanolamine

PI glycerophosphoinositol

PS glycerophosphoserine

pTNM pathological tumour-node-metastasis staging

QC quality control

ROS reactive oxygen species

RP reversed-phase chromatography

RT retention time

SCC squamous cell carcinoma

SCh-oxPC short-chain oxidised phosphocholine

SM sphingomyelin

UHPLC ultra-high-performance liquid chromatography

VEGF vascular endothelial growth factor
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