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Identification of immune
microenvironment subtypes and
clinical risk biomarkers for
osteoarthritis based on a
machine learning model

Bao Li† , Yang Shen† , Songbo Liu, Hong Yuan, Ming Liu,
Haokun Li, Tonghe Zhang, Shuyuan Du and Xinwei Liu*

Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, China

Background: Osteoarthritis (OA) is a degenerative disease with a high
incidence worldwide. Most affected patients do not exhibit obvious
discomfort symptoms or imaging findings until OA progresses, leading
to irreversible destruction of articular cartilage and bone. Therefore,
developing new diagnostic biomarkers that can reflect articular cartilage
injury is crucial for the early diagnosis of OA. This study aims to explore
biomarkers related to the immune microenvironment of OA, providing a
new research direction for the early diagnosis and identification of risk
factors for OA.

Methods: We screened and downloaded relevant data from the Gene
Expression Omnibus (GEO) database, and the immune microenvironment-
related genes (Imr-DEGs) were identified using the ImmPort data set by
combining weighted coexpression analysis (WGCNA). Functional enrichment
of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) were
conducted to explore the correlation of Imr-DEGs. A random forest machine
learning model was constructed to analyze the characteristic genes of
OA, and the diagnostic significance was determined by the Receiver
Operating Characteristic Curve (ROC) curve, with external datasets used
to verify the diagnostic ability. Different immune subtypes of OA were
identified by unsupervised clustering, and the function of these subtypes was
analyzed by gene set enrichment analysis (GSVA). The Drug-Gene Interaction
Database was used to explore the relationship between characteristic
genes and drugs.

Results: Single sample gene set enrichment analysis (ssGSEA) revealed
that 16 of 28 immune cell subsets in the dataset significantly differed
between OA and normal groups. There were 26 Imr-DEGs identified by
WGCNA, showing that functional enrichment was related to immune
response. Using the random forest machine learning model algorithm,
nine characteristic genes were obtained: BLNK (AUC = 0.809), CCL18
(AUC = 0.692), CD74 (AUC = 0.794), CSF1R (AUC = 0.835), RAC2
(AUC = 0.792), INSR (AUC = 0.765), IL11 (AUC = 0.662), IL18 (AUC
= 0.699), and TLR7 (AUC = 0.807). A nomogram was constructed to
predict the occurrence and development of OA, and the calibration
curve confirmed the accuracy of these 9 genes in OA diagnosis.
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Conclusion: This study identified characteristic genes related to the immune
microenvironment in OA, providing new insight into the risk factors of OA.
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1 Introduction

Osteoarthritis (OA) is a degenerative disease with a high
incidence worldwide. Patients with OA often experience chronic
joint pain, swelling, deformity, and discomfort. In the late
stage, they may suffer from severe pain or joint stiffness,
sometimes leading to a loss of mobility (Allen et al., 2022). This
condition subsequently results in a severe economic burden
on families, the healthcare system, and society (Quicke et al.,
2022). However, the condition progresses and worsens in most
patients before joint discomfort or significant imaging changes
occur, leaving them in a subclinical stage for a long time.
Although there are no obvious manifestations of OA in the
subclinical stage, the pathological changes in articular cartilage
are irreversible, as the cartilage has a limited ability to repair
itself due to the lack of blood vessels, nerves, and lymphoid
tissue (Abramoff and Caldera, 2020). Current treatment strategies
for OA are limited to reducing symptoms and controlling
inflammation, while advanced patients often require joint
replacement surgery (Seed et al., 1995). Therefore, developing new
diagnostic biomarkers that can reflect articular cartilage injury is
crucial for early diagnosis.

In recent years, many scholars have focused on the role of the
immune microenvironment in OA development (Quicke et al.,
2022; Zhao F. et al., 2023; Nedunchezhiyan et al., 2022). A
significant presence of macrophages, neutrophils, and lymphocytes
has been identified in the synovial tissue of joints affected by
OA. These cells stimulate chondrocytes to produce matrix-
degrading enzymes by releasing large amounts of cytokines,
which accelerate cartilage destruction and aggravate the chronic
pathological process of OA to some extent (Wood et al., 2022;
Luo et al., 2023). In addition, various other immune cells,
including monocytes, B cells, T cells, NK cells, dendritic
cells, and others, interact to drive the pathological changes in
cartilage (Sebastian et al., 2022; Woodell May and Sommerfeld,
2020). Interestingly, immune cells also actively participate in
articular cartilage regeneration and repair. During cartilage
repair, immune cells secrete anti-inflammatory factors that can
inhibit inflammation and promote cartilage repair (Li M. et al.,
2022). Given the complex immune microenvironment and the
numerous immune cells involved in the pathological process of
OA, it is necessary to develop a systematic method to evaluate
the close relationship of the immune microenvironment in
pathogenesis, explore immune-related biomarkers, and predict the
risk of OA.

Some scholars have attempted to identify biomarkers
from cartilage or subchondral tissue samples of clinical
patients; however, these methods are invasive and may lead
to iatrogenic joint trauma and inevitable damage to patients

(Ge et al., 2021). In recent years, bioinformatics has been
widely used for the identification of biomarkers in various
diseases and the exploration of potential molecular mechanisms
(Bhattacharya et al., 2018). Using bioinformatics and machine
learning to analyze immune-related differentially expressed
genes (Imr-DEGs) and explore the characteristics of different
epidemic subtypes of diseases is a multidisciplinary approach
to studying the molecular mechanism of diseases (Orlov et al.,
2021). An increasing number of genes have been identified in
OA and are also used to study other types of diseases, such as
rheumatoid arthritis (Ge et al., 2021; Zhang et al., 2021). While
the infiltration of immune cells is essential for the development
of OA, only a few studies used various methods to explore the
relationship.

In this study, we analyzed multiple Gene Expression Omnibus
(GEO) datasets to identify DEGs in OA and normal tissues. We
evaluated the immunophenotyping model of OA using single-
sample gene set enrichment analysis (ssGSEA), the least absolute
shrinkage and selection operator (LASSO), and weighted gene
co-expression network analysis (WGCNA). Additionally, we
constructed a machine learningmodel and developed a nomogram-
based tool for predicting OA occurrence. Differences in immune
characteristics among various immune subtypeswere identified, and
we explored the relationship between feature genes and potential
drug interactions. This study stands out for its comprehensive
integration of Imr-DEGs with machine learning and bioinformatics
to develop a robust model for OA diagnosis. Unlike previous
research that focused on individual immune cells or pathways,
our approach systematically evaluates the complex immune
microenvironment in OA, identifies distinct immune subtypes,
and links these findings to potential therapeutic targets. This
methodology offers new biological insights and paves the way
for more precise diagnostic tools and personalized treatment
strategies for OA.

2 Methods

2.1 Public data download and processing

Transcriptome expression profile data were downloaded
from the Gene Expression Omnibus database (GEO, https://
www.ncbi.nlm.nih.gov/geo/). The GEO datasets were selected
based on the inclusion of only untreated samples with OA
and control groups. The selected datasets include GSE178557,
GSE169077, GSE117999, GSE206848, GSE55235, GSE55457,
GSE98918, GSE82107. Only OA and normal samples were
considered in the analysis, excluding rheumatoid arthritis
samples found in GSE206848, GSE55235, and GSE55457. For
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TABLE 1 Data sample size and sample type.

ID Sample type Sample size Log2 processing Dataset type

GSE178557 Osteoarthritis: Normal cartilage 4: 4 Validation

GSE169077 Osteoarthritis: Normal cartilage 5: 5 Yes Validation

GSE117999 Osteoarthritis: Normal cartilage 12: 12 Validation

GSE206848 Osteoarthritis: Normal synovium 7: 7 Yes Training

GSE55235 Osteoarthritis: Normal synovium 10: 10 Yes Training

GSE55457 Osteoarthritis: Normal synovium 10: 10 Yes Training

GSE98918 Osteoarthritis: Normal synovium 12: 12 Training

GSE82107 Osteoarthritis: Normal synovium 10: 7 Yes Training

Note: GSE206848, GSE55235, and GSE55457 also include some rheumatoid arthritis samples, and only osteoarthritis and normal samples are considered in the analysis. External data set
verification uses cartilage samples, and the results are consistent with synovial samples, which indicates that key genes can be used as markers for the diagnosis of osteoarthritis.

training purposes, we used synovium samples from GSE206848
(7 OA: 7 normal), GSE55235 (10 OA: 10 normal), GSE55457
(10 OA: 10 normal), GSE98918 (12 OA: 12 normal), and
GSE82107 (10 OA: 7 normal). Validation was performed
using cartilage samples from GSE178557 (4 OA: 4 normal),
GSE169077 (5 OA: 5 normal), and GSE117999 (12 OA: 12
normal). This approach ensures the robustness of the identified
OA biomarkers across different tissue types. The data sample
size, sample type, and log2 processing details are summarized
in Table 1.

During the initial data processing phase, we applied the
“NormalizeBetweenArrays” function from the “limma” package
within each dataset to correct for batch effects, aiming to
minimize non-biological variability caused by experimental
conditions. This normalization step, including log2 transformation
for datasets GSE169077, GSE206848, GSE55235, GSE55457,
and GSE82107, ensured that data from different batches were
comparable without altering relative expression differences
between samples.

To address the variation in probe numbers across platforms,
probes from each dataset were mapped to corresponding gene
symbols based on chip annotation information. For genes with
multiple corresponding probes, the median expression value
was used as the final gene expression level. This approach
allowed for consistent comparison of gene expression across
datasets. Only genes with corresponding symbols across all
datasets were retained to minimize the impact of differing
probe numbers.

After preprocessing and gene symbol alignment, the datasets
of GSE206848, GSE55235, GSE55457, GSE98918, and GSE82107
were merged. The “ComBat” function from the “sva” package was
then used to remove any remaining batch effects by modeling
them as random effects and adjusting the data accordingly.
Following this, we conducted principal component analysis
(PCA) to confirm that batch effects had been effectively
addressed, ensuring the data was ready for subsequent differential
analysis. After removing batch effects, the inherent biological

variations between the samples were preserved for accurate
differential analysis.

2.2 Immune infiltrating cells and immune
score evaluation

ssGSEA was used to evaluate the enrichment fraction of 28
immune cell subtypes (Jin et al., 2023). The “GSVA” package was
used to evaluate the enrichment of different cells across samples by
transforming the gene expression matrix into a gene set expression
matrix between samples. The Wilcox test was employed to evaluate
differences in immune cell abundance between the two groups.
The R package “estimate” was used to assess the level of immune
infiltration.

2.3 Identification of characteristic immune
cells

In this study, the R package “glmnet” was used to construct the
LASSO regression model. The optimal variables were determined
from the immune cells, with the data used as the merged dataset.
To avoid model instability, 10,000 iterations and 10-fold cross-
validation were employed. The minimum criterion was used to
determine the optimal penalty parameter. The immune cell subsets
with non-zero coefficientswere considered the optimal variables and
were applied to the following analysis.

2.4 WGCNA

The WGCNA network was constructed using the “WGCNA”
R package. The optimal immune cells identified earlier were
used as phenotypes to identify the gene modules related to
immune cell subtypes. Patient samples from the merged dataset
were selected, and the top 50% of the variance was screened
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as input data. The outliers were removed, and the optimal soft
thresholdwas determined based on the scale-free topology criterion.
The transformation between the weighted adjacency matrix and
the topological overlap matrix was performed. The hierarchical
clustering tree method was used to identify modules with more
than 30 genes, with the merging distance for similar modules set
to 0.25. Each module was displayed in a random color. Finally,
the corresponding genes of these modules, identified through
phenotypic correlation screening, were used for further analysis.

2.5 Evaluation of genes related to
differential immunity

The Immunology Database and Analysis Portal database
(ImmPort; https://www.immport.org/home) was used to download
the immune-related gene set, and the R package “limma” was used
to analyze the differences between disease and normal groups.
The screening criteria for differential genes were |log2FC| > 0.5
and a p-value <0.05. The genes from the three modules of
the selected immune gene set were intersected with differential
genes and ImmPort genes, and then combined to identify the
differential genes related to the immune microenvironment (Imr-
DEGs).

2.6 Protein interaction and functional
enrichment analysis

The STRING database (https://cn.string-db.org/) was used to
explore the interaction of the Imr-DEGs, and Cytoscape software
was used for visualization. The R package “clusterProfiler” was
employed to perform GO and KEGG functional enrichment of
these differential immune genes. The p-value was corrected using
the Benjamini–Hochberg method, and the correlation enrichment
results after correction are shown.

2.7 Machine learning model construction
and optimal model selection

According to the grouping information of cases and controls, the
merged dataset was randomly divided into training and verification
sets in a 7:3 ratio tomaximizemodel learningwhile ensuring reliable
performance evaluation (Jones et al., 2023). Based on the expression
profiles of the Imr-DEGs, random forest (RF), support vector
machine (SVM), and logical regression (LR) machine learning
models were constructed using the R package “randomForest,”
“e1071,” and “caret,” respectively. The accuracy of the model was
tested on both the training set and verification set and was
illustrated by the ROC curve. The optimal model was determined
based on the Area Under the Curve (AUC) value. The optimal
model then screened the characteristic genes, and we tested the
ability of these characteristic genes to distinguish between disease
and control.

2.8 Key feature verification and nomogram
construction

The diagnostic ability of the characteristic genes was
verified using external datasets GSE178557, GSE169077,
and GSE117999. The R package “rms” was used to fit
the characteristic genes to establish a nomogram, and the
“regplot” package was used to visualize the nomogram.
The accuracy of the nomogram was assessed using the
calibration curve.

2.9 Recognition of different immune
subtypes by unsupervised clustering

Based on the characteristic gene expression profiles of patients
with combined data, the R package “ConsensusClusterPlus” was
used to identify different immune subtypes.The clustering algorithm
used partitioning around medoid (PAM) with 500 iterations, using
80% of the samples each time. The Euclidean distance was selected
as the clustering method, with the corresponding parameters set as:
reps = 500, pItem = 0.8, ClusterAlg = “pam”, distance = “euclidean”.
The “Rtsne” package was used to visualize the distribution of
immune subtypes.

2.10 Analysis of the characteristics of
different immune subtypes

Functional enrichment of different immune subtypes
was assessed using the R package “GSVA”. The gene sets
“c2.cp.kegg.symbols” and “c5.go.symbols” were extracted
from the R package “msigdbr”. The Drug-Gene Interaction
Database (DGIdb, www.dgidb.org) was used to explore
the relationship between characteristic genes and drugs,
and the interaction network diagram was visualized by
Cytoscape software.

2.11 Statistical analysis

All statistical analyses were performed using R (v4. 0).
The R packages “FactoMineR” and “factoextra” were used for
PCA and visualization. The heat map was visualized using the
“pheatmap” package, the “VennDiagram” package was used
for Venn diagram visualization, and the “pROC” package was
used for ROC curve visualization. Unless otherwise noted,
results were visualized using the “ggplot2” or “plot” packages.
Pearson’s correlation method was used for correlation analysis.
The Wilcox test was used to compare differences between two
groups, and the ANOVA test was used to assess differences
among multiple groups. A p-value of <0.05 was considered
statistically significant. ∗represented p < 0.05, ∗∗represented p <
0.01, ∗∗∗represented p < 0.001, and “ns” indicated no statistical
significance.
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FIGURE 1
Removal of batch effect. (A, B) Expression box plot and principal component analysis (PCA) of different datasets before batch effect removal. (C, D)
Expression box plot and PCA of different datasets after batch effect removal.

3 Results

3.1 Immune infiltration in patients with OA

The disease and control samples from the GSE206848,
GSE55235, GSE55457, GSE98918, and GSE82107 datasets
were combined, yielding 49 patients with OA and 46 control
samples. Before removing the batch effect, the sample boxplot
of the different datasets was irregular, with an obvious
separation between the OA and control groups, showing
different clustering patterns (Figures 1A, B). After removing
the batch effect, the sample boxplot became uniform,
and the different datasets clustered into the same pattern
(Figures 1C, D).

To characterize the immune difference between patients with
OA and controls, the enrichment scores of 28 immune cell
subtypes in the combined datasets were compared. The results

showed significant differences in 16 immune cell subtypes between
the two groups (Figures 2A, B). In addition to Type 2 T helper
(Th2) cells, 15 significantly different immune cells infiltrated the
OA group. More information on the p-value of the immune
cell comparisons between groups in the combined dataset is
provided in Supplementary Table S1.

The LASSO regression algorithm further identified the
characteristic immune cells associated with OA. The LASSO
coefficient distribution map displayed the different coefficient
distributions of 16 genes (Figure 2C). Additionally, the ROC
curve showed that the model accuracy was higher (AUC = 0.87)
when the lambda was minimal (Figures 2D, E). The minimum
corresponding value of Lambda was 9, resulting in the final
determination of 9 variables with non-zero coefficients from the
16 immune cells, corresponding to the 9 characteristic cells of
OA immune infiltration. These 9 characteristic immune cells and
their regression coefficients are shown in Table 2. Among the 9
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FIGURE 2
Evaluation of immune cell infiltration in patients with OA and controls. (A, B) Heatmap and box plot of ssGSEA enrichment score for 28 types of
immune cells in the combined dataset. (C) Distribution of the LASSO coefficient of 16 immune cell subtypes. (D) Ten-fold cross-validation LASSO
regression analysis; the dotted line represents the model’s minimum lambda (λ) and optimal λ. (E) The model’s ROC curve based on different λ values.

TABLE 2 Screening characteristic immune cells and their coefficients by
the LASSO model.

Cell coef

Regulatory T cell 0.6036

T follicular helper cell 0.0583

Type 1 T helper cell 0.2832

Activated B cell 0.8148

Gamma delta T cell 0.1434

Effector memory CD4 T cell 0.3602

CD56bright natural killer cell 0.2234

Type 2 T helper cell −0.4255

CD56dim natural killer cell 0.5359

characteristic immune cells, regulatory T cells, T follicular helper
cells, Th1 cells, activated B cells, gamma delta T cells, effector
memory CD4 T cells, CD56 bright natural killer cells, and CD56
dim natural killer cells were significantly infiltrated in OA, except
for Th2 cells,

3.2 Identification of Imr-DGEs

Traditional DEG screening methods may overlook crucial
factors, particularly in complex diseases like OA. To address
this, we applied WGCNA to the combined dataset, focusing on
identifying core genemodules associatedwith the nine characteristic
immune cells identified in OA patients. During the clustering
process, two outlier samples (highlighted in red boxes in Figure 3A)
were excluded to ensure more accurate module detection. We
optimized the scale-free topological network by setting the soft
threshold to 4, as determined by the PickSoftThreshold function,
ensuring robust network connectivity (Figure 3B). The hierarchical
clustering algorithm then divided the dataset into 24 distinct gene
modules, each represented by a different color (Figures 3C, D).
Using the screening criteria for DEGs, we identified 471 DEGs
in the combined dataset, with 233 downregulated and 238
upregulated genes (Supplementary Table S2). To further refine our
analysis, we intersected these module genes with the ImmPort
database, focusing on immune-related genes. This intersection
revealed 26 Imr-genes across the turquoise, light yellow, and
blue modules (10, 3, and 13 genes, respectively; Figures 3E–G).
Further analysis revealed that in OA patients, the expression
levels of INSR, IL11, STC1, and ANGPTL7 were significantly
lower than in control samples, while the other 22 genes were
significantly upregulated (Figure 3H). Among these upregulated
genes, TLR7, PTGDS, CCL18, CCL19, BLNK, MARCO, IL18,
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FIGURE 3
Identifying genes related to the immune microenvironment between OA and the control group. (A) Sample clustering and removal of outlier samples.
(B) Soft threshold selection between OA and the control group. (C) A total of 471 DEGs in different co-expression modules. (D) Correlation heat map
between each module and characteristic immune cells. (E–G) Genes from the turquoise, blue, and light yellow modules were intersected with DEGs
and immune-related genes from the ImmPort database. (H, I) The bar chart and heat map display the differences in genes related to the differential
immune microenvironments between patients with OA and controls.

and VEGFC were particularly noteworthy due to their roles in
inflammation and immune response (Figure 3I). These genes are
integral to the formation and maintenance of the OA immune
microenvironment, highlighting their potential as biomarkers or
therapeutic targets in OA.

3.3 Correlation and functional enrichment
of Imr-DEGs

To understand the relationship between the 26 Imr-DEGs,
we explored their interactions using the STRING database
(Figure 4A). This analysis revealed a complex network of
interactions among the Imr-DEGs, indicating their potential
cooperative roles in the immune response within the OA
microenvironment. Further correlation analysis between Imr-DEGs
and 28 immune cell types highlighted significant associations, with
many of these genes showing strong correlations with specific

immune cells (Figure 4B). For example, genes such as TLR7,
CCL19, and IL18 were notably correlated with immune cells
involved in inflammation and immune regulation, underscoring
their roles in OA pathogenesis. GO functional enrichment
analysis (Supplementary Table S3) provided deeper insights into
the biological processes, cellular components, and molecular
functions associated with these Imr-DEGs (Figure 4C). The
most enriched biological processes included positive regulation
of cytokine production, myeloid leukocyte migration, and
cell chemotaxis, all of which are crucial for immune cell
recruitment and activation in the OA environment. The cellular
components mainly involved were the external side of the
plasma membrane, endocytic vesicles, and endocytic vesicle
membranes, which are key locations for immune signaling and
antigen processing. On the molecular function level, pattern
recognition receptor activity, receptor-ligand activity, and amyloid-
beta binding were significantly enriched, suggesting a role for these
genes in recognizing and responding to inflammatory signals.
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FIGURE 4
Imr-DEG interaction and functional enrichment. (A) A protein interaction network of 26 Imr-DEGs; each node represents a protein. If an interaction
exists between two proteins, they are connected by a line. The larger the node, the more genes interact with it. (B) The correlation between 26
Imr-DEGs and 28 immune cells. (C, D) GO and KEGG functional enrichment bubble diagrams.

KEGG pathway enrichment analysis (Supplementary Table S4)
further emphasized the involvement of these genes in critical
immune-related pathways, including cytokine-cytokine receptor
interaction, viral protein interactions with cytokine and cytokine
receptors, and the MAPK signaling pathway (Figure 4D). These
pathways are essential for mediating inflammatory responses
and could drive the chronic inflammation observed in OA.
The enrichment of these specific biological processes and
pathways in both GO and KEGG analyses suggests that the
Imr-DEGs play a significant role in orchestrating the immune
response in OA, making them potential targets for therapeutic
intervention.

3.4 Development and evaluation of
machine learning model

To identify the optimal machine learning model for predicting
OA, 95 samples from the combined datasets (49 OA and 46 controls)
were randomly divided into a training cohort (70%) and a test
cohort (30%). The training cohort consisted of 34 OA samples and
32 controls, while the test cohort included 15 OA samples and 14
controls. The expression profiles of 26 Imr-DEGs were selected as
input variables to establish three machine learning models: RF, SVM,
and LR. The AUC values for the RF, SVM, and LR models in the
training set were 0.904, 0.879, and 0.737, respectively (Figure 5A).
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FIGURE 5
Evaluation of machine learning model. (A, B) ROC curves of the machine learning model for training set and validation set. (C) Selecting of the optimal
number of binary tree variables (mtry value). (D) Selection of the optimal number of decision trees (ntree value). (E) Accuracy value and Gini value
of Imr-DEGs.

In the validation set, the AUC values were 0.886, 0.919, and 0.648,
respectively (Figure 5B). The SVM model achieved the highest AUC
in the test set, demonstrating strong predictive power. However, the
RF model exhibited consistently high performance across both the
training and test sets, making it the preferredmodel due to its balance
of accuracy and robustness.Theoptimal performance of theRFmodel
was achieved by combining the training and verification set results
(Supplementary Table S5). Therefore, the RF model was selected for
subsequent optimal feature screening. To optimize the RF model, the
error rate was minimized when the mtry value was set to 17, and the
model’s performance stabilized with an ntree value greater than 300
(Figures 5C, D). Finally, the RF model identified 9 genes with a Gini
coefficient greater than 1 as the most important features (Figure 5E),
including BLNK, CCL18, CD74, CSF1R, RAC2, INSR, IL11, IL18, and
TLR7. These genes were considered key hub genes within the OA
immunemicroenvironment, potentially serving as crucial biomarkers
for OA diagnosis and progression.

3.5 Selection and verification of
characteristic genes

Based on the 9 characteristic genes identified by the RF model,
ROC curve analysis was used to evaluate the diagnostic ability of
each gene in predicting OA. The performance was assessed using
the training dataset, the test dataset, and the combined dataset, as
shown in shown in Figures 6A–C. External dataset validation was
performed using GSE117999, GSE169077, and GSE178557, further
confirming the diagnostic accuracy of these genes (Figures 6D–F).
In addition to evaluating each gene individually, the 9 genes were

combinedtoconstructapredictivetool forOAdevelopment,presented
as anomogram.Thenomogramassigns a score to each feature variable
based on its expression level, with the total score corresponding to the
predicted riskofdevelopingOA.As showninFigure 6G, the total score
ranged from0 to 5, with the associated risk probability forOA ranging
from 0.558 to 0.992. This finding indicates that the nomogram can
provideahighly individualized riskassessment forOA,whichcouldbe
valuable in clinical decision-making. Furthermore, the accuracy of the
nomogram was validated using a calibration curve, which confirmed
the model’s predictive reliability (Figure 6H). The calibration curve
demonstrated that the predicted probabilities closely aligned with the
actual observed outcomes, underscoring the nomogram’s utility as a
diagnostic tool in clinical settings.

3.6 Identification of immune subtypes in
patients with OA

To clarify the expression pattern of OA and the immune
microenvironment, 49 OA patients in the combined dataset were
analyzed by consistent cluster analysis based on 9 characteristic
genes. According to the consistent clustering results, including the
Cumulative Distribution Function (CDF) diagram, area change of the
CDFcurve,andclusteringscore,k=3wasselectedas theoptimalvalue,
dividing the OA patients into three different subtypes: Cluster 1 (21
cases), Cluster 2 (17 cases), and Cluster 3 (11 cases) (Figures 7A–D).
The expression patterns of the characteristic genes varied among the
different subtypes. Except for INSR and IL11, the expression of the
other genes in Cluster 1 and Cluster 2 was significantly higher than
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FIGURE 6
Diagnostic efficacy of characteristic genes. (A–C) ROC curves of each characteristic gene in the training set, verification set, and merged dataset. (D–F)
ROC curves of characteristic genes in external datasets GSE117999, GSE169077, and GSE178557. (G) OA prediction nomogram based on the
characteristic gene. (H).

in Cluster 3 (Figures 7E). The distribution of consistently clustered
samples in the different clusters is shown in Figures 7F.

3.7 Different immune characteristics of
immune subtypes

Tobetterunderstandthebiologicalandimmunologicaldifferences
of these immune subtypes and their relationship, tSNE analysis
was conducted on the different subtypes, revealing greater overlap
between Cluster 1 and Cluster 2, while Cluster 3 remained relatively
independent (Figure 8A). In conjunction with the distribution of

ImmuneScore among the subtypes, Cluster 3 exhibited distinct
immune score characteristics compared to the other two groups,
indicating that Cluster 3 had a unique expression pattern (Figure 8B).

Among the 28 immune subtypes, 17 immune cells showed
significant differences. Some of these common immune cells, such
as activated B cells, activated CD8 T cells, macrophages, natural
killer cells, and regulatory T cells, play a significant role in the
inflammatory immune response. The proportion of these immune
cells with significant differences was higher in Cluster 1 and Cluster 2
than inCluster 3 (Figures 8C, D).The enrichment pathways inCluster
1 and Cluster 2 were consistent with the above results, with immune
microenvironment-related pathways activated in these two subtypes,
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FIGURE 7
Identification of immune subtypes. (A) C onsensus clustering matrix at k = 3. (B) Consensus CDF curve for k = 2–9. (C) Change in the delta area curve
of the CDF. (D) Consistency score for k = 2–9. (E, F) Heatmap and box plot of characteristic genes in different subtypes.

such as B-CELL-RECEPTOR-SIGNALING-PATHWAY and CELL-
CYCLE (Figure 8E). The significant enrichment results of GSVA GO
and KEGG are shown in Supplementary Tables S6, S7.

3.8 Relationship between characteristic
genes and drugs

To further explore the role of these characteristic genes, the
relationship between genes and drugs was investigated using the
DGIdb database. Six characteristic genes—CSF1R, INSR, TLR7,
IL11, IL18, and CCL18—were found to have drug interactions
(Figure 9; Supplementary Table S8).

4 Discussion

OA is the most common type of arthritis, leading to the
irreversible destruction of articular cartilage and bone, and is one
of the primary causes of physical disability. OA significantly impacts
human health, resulting in a substantial economic burden on society
(Katz et al., 2021). Although many scholars have extensively studied
OA, there is still no method for early and effective diagnosis of
the disease. The present study innovatively combined ssGSEA,
WGCNA, bioinformatics, and machine learning algorithms to
identify OA immune-related markers and assess the clinical risk of
OA. We identified 9 genes, including BLNK, CCL18, CD74, CSF1R,
RAC2, INSR, IL11, IL18, and TLR7, as characteristic biomarkers
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FIGURE 8
Immune characteristics of immune subtypes. (A) t-SNE analysis of different subtypes. (B) Comparison of immune scores across different subtypes. (C,
D) Distribution of 28 types of immune cells in different subtypes. (E) GSVA pathway enrichment in different subtypes.

associated with OA immune infiltration. The differential expression
of these genes in OA compared to normal controls in the merged
dataset is shown in Figure 10A. IL11 and INSR were significantly
downregulated in OA, while the remaining genes were significantly
upregulated. Furthermore, these genes were significantly correlated
with various immune cells (Figure 10B).These findings highlight the
crucial role of immune regulation in the pathogenesis of OA and
suggest potential therapeutic targets for intervention.

In this study, 9 characteristic cells with significant differences
were identified out of 28 immune cell subsets, most of which
belonged to the lymphocyte lineage. Rossshirt et al. found significant
immune cell infiltration, cell polarization, and increased expression
of various cytokines in the synovium and synovium of patients
with early OA(19). We hypothesized that regulatory T cells, T
follicular helper cells, Th1 cells, activated B cells, gamma delta
T cells, effector memory CD4 T cells, CD56 bright natural killer
cells, significant infiltration of CD56 dim natural killer cells, and

a reduction of Th2 cells may be related to the occurrence and
development of OA.

There is sufficient research evidence to support the above
conjectures. Li et al. found that an imbalance of regulatory T
cells in OA leads to an abnormal increase in IL-2, which in
turn causes the degeneration of articular cartilage (Li X. et al.,
2022). Previous studies have also shown that macrophages in the
synovium can promote the proliferation and differentiation of T
follicular helper cells in joint tissues through the OX40/OX40L
axis, thereby contributing to the pathogenesis of OA (Cai et al.,
2022). According to Kalaitzoglou et al., OA is associated with
abnormal innate immune inflammatory response, characterized by
significant infiltration of CD4 T cells, which eventually stimulates
the polarization of Th1 cells and exacerbates the release of
immune response cytokines (Kalaitzoglou et al., 2017; Zhao, 2021).
Additionally, scholars have found that end-stageOA is characterized
by characteristic CD1T cell infiltration, Th1 cell polarization, and
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FIGURE 9
Interaction between characteristic genes and therapeutic drugs. Drug-gene interaction analysis was conducted through the DGIdb database to identify
potential therapeutic targets for OA. Six characteristic genes—CSF1R, INSR, TLR7, IL11, IL18, and CCL18—showed interactions with various drugs,
indicating their roles in modulating immune responses, inflammation, and cellular signaling pathways. These interactions suggest that these genes
could be key targets for developing or repurposing drugs aimed at treating OA.

a large amount of release of various cytokines, which may be one
of the important reasons for the irreversible deterioration of OA
(Rosshirt et al., 2019; Platzer et al., 2022). Interestingly, some studies
have shown that TH1 and Th2 cells contribute simultaneously to
the progression of OA; however, this differs from the predicted
results of this study (Rosshirt et al., 2021; Nees et al., 2020). The
relevant research evidence is insufficient, partly because the two
types of T helper cells are in a constant state of dynamic changes,
and their proportions vary at different stages of OA development
(Burt et al., 2022). The expression of B cells in OA tissues also fully
illustrates their role. Xie et al. found that B cells in OA synovium
exhibit stronger proliferation and differentiation capabilities and can
continue to produce antibodies, leading to tissue damage (Xie et al.,
2023). The results of our analysis, combined with evidence from
the literature mentioned above, suggest that regulatory T cells, T
follicular helper cells, Th1 cells, activated B cells, gamma delta T
cells, and effector memory CD4 T cells play important roles in OA
and should be the focus of further research.However, gammadelta T
cells have so far been identified only in rheumatoid joints, where they
significantly promote disease progression (Mo et al., 2017). Further
experimental data are needed to investigate the role of CD56 bright
natural killer cells and CD56 dim natural killer cells in OA. From an
immune response perspective, evaluating the diversity of cells and

gene expression in the OA immune microenvironment is of great
value in revealing the mechanism of OA and predicting the risk of
its occurrence.

Using the ImmPort database, we found that among the
identified Imr-DEGs, the expression levels of 22 genes were
significantly higher in OA than in controls. Among these
genes, TLR7, PTGDS, CCL, BLNK, MARCO, IL18, and VEGFC
are involved in the immune-inflammatory response of OA,
promoting its development (Hoshikawa et al., 2020; Tu et al., 2023;
Liao et al., 2022; Cheng et al., 2021). KEGG analysis revealed
that Imr-DEGs were enriched in important pathways related
to immunity and inflammation, such as the cytokine-cytokine
receptor interaction and the MAPK signaling pathway. The MAPK
signaling pathway is closely related to inflammatory cartilage
destruction and imbalances in cartilage extracellular matrix
metabolism (Jiang et al., 2023; Zhao C. et al., 2023; Ni et al., 2023).
The cytokine-cytokine receptor interaction is readily triggered in
the late stages of injury and is significantly enriched in models
leading to chondrocyte inflammation via tumor necrosis factor-
alpha stimulation (Wang et al., 2020). GO enrichment analysis also
detected biological processes related to these Imr-DEGs, including
immune responses such as the positive regulation of cytokine
production, cell chemotaxis, and myeloid leukocyte migration. OA

Frontiers in Molecular Biosciences 13 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1376793
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Li et al. 10.3389/fmolb.2024.1376793

FIGURE 10
Differential expression and immune cell correlation of characteristic genes in the merged dataset. (A) Boxplots displaying the differential expression of
the 9 characteristic genes (BLNK, CCL18, CD74, CSF1R, RAC2, INSR, IL11, IL18, and TLR7) between OA and normal control samples in the merged
dataset. ∗∗p < 0.01, ∗∗∗∗p < 0.0001 (B) The correlation analysis between the 9 genes and immune cells, extracted from Figure 4B, shows significant
positive and negative correlations (p < 0.05), with stronger associations represented by darker red (positive) and darker blue (negative) lines.

is a chronic inflammatory disease closely related to immune cell
infiltration. Immune cells in theOA synovium synthesize and release
various cytokines and chemokines, which play an important role in
cartilage matrix degradation (Bernardini et al., 2017). Furthermore,
cytokine and chemokine action are among the most important
factors in the pathogenesis of rheumatoid arthritis and OA, two
inflammatory joint diseases.The results of this study confirmed that
immune-related reactions are an important factor in the occurrence

and progression of OA. Future studies should further explore the
different immune subtypes and immune characteristics of OA.

To better identify the different immune subtypes and
characteristics of OA in the data set, we screened 9 characteristic
genes (BLNK, CCL18, CD74, CSF1R, RAC2, INSR, IL11, IL18, and
TLR7) using the optimalmachine learning algorithm.Currently, 7 of
these 9 genes have been extensively studied. According to previous
research, BLNK promotes inflammation and plays a role in the
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progression of OA (Cheng et al., 2021; Li et al., 2020). CCL18, a
member of the chemokine family, mainly targets lymphocytes and
immature dendritic cells and is involved in maintaining immune
system homeostasis under physiological conditions (Cardoso et al.,
2021). CCL18 has also been identified by Mertens and others as a
biomarker of localized scleroderma disease activity. In this study,
CCL18 was studied as a characteristic gene of OA for the first
time (Mertens et al., 2019). CD74 (MHC class II invariant chain,
Ii) is a non-polymorphic type II transmembrane glycoprotein that
acts as both an MHC II chaperone and a receptor of macrophage
migration inhibitory factor, regulating the development and
movement of T and B cells (Schröder, 2016). CD74 also plays
a significant role in many inflammatory diseases, suggesting a
potential relationship with OA (Su et al., 2017). Colony-stimulating
factor-1 receptor (CSF-1R) regulates the proliferation, migration,
and activation of monocytes. By analyzing synovial samples from
OA and control groups, Myew-Ling showed that the expression
of CSF-1R was significantly increased in the OA group. Blocking
CSF-1R expression can reduce cartilage injury, bone erosion, and
systemic bone loss (Toh et al., 2014). IL11 and IL18 are cytokines
involved in hematopoiesis, cancer metastasis, and inflammation.
Their expression has been confirmed to be significantly increased in
OA tissues, consistent with the findings of our study (Lisignoli et al.,
2000; Paolucci et al., 2023). Toll-like receptor 7 (TLR7) is another
gene associated with the risk of OA (Xi et al., 2022). Although
research onRAC2 and INSR genes inOA is still limited, we evaluated
their diagnostic potential for OA using ROC curves. However,
further research is needed to establish a theoretical basis for these
findings. Based on the 9 characteristic genes, we also constructed
an OA prediction tool (nomogram), and the correction curve
confirmed its effectiveness in risk prediction.

The present study combines multiple advanced methodologies,
including ssGSEA, WGCNA, bioinformatics, and machine learning
algorithms, to explore the immune microenvironment in OA.
While these approaches have significantly contributed to identifying
potential biomarkers and understanding OA pathogenesis, they
also highlight the need for more integrative and comprehensive
studies in the future. Current approaches often face challenges
due to the complexity of OA, including its heterogeneity and the
dynamic nature of immune responses. Future research should focus
on validating these findings in larger, more diverse cohorts, and
on developing translational tools that can bridge the gap between
molecular discoveries and clinical applications. Additionally,
emerging techniques like single-cell RNA sequencing and spatial
transcriptomics could provide even deeper insights into the cellular
interactions within the OA microenvironment, potentially leading
to the development of more targeted therapies.

There are still some limitations in the present study. First, due to
the complexity and diversity of OA diseases, the samples selected
in this study come from multiple GEO data sets, so they cannot
fully represent all types of OA. Additionally, the clinical parameters
such as stage, age, and sex of the patients studied were not available,
which are crucial factors given the multifactorial nature of OA,
and it is unclear if the datasets belong to the same stage of OA,
which may necessitate reanalysis with stage-specific OA in mind.
Furthermore, This study only investigated the correlation between
OA and the immune microenvironment and the occurrence of risk
prediction based on markers, while the mechanism has not been

further studied. Lastly, wet lab experiments need to be conducted to
validate the expression of the identified biomarkers, and including
more OA datasets in future studies will help refine the findings and
support their translation into clinical applications.

5 Conclusion

The study found significant differences in immune cell
infiltration between OA patients and controls, identifying distinct
immune subtypes. It also highlighted key immune-related genes
strongly associated with OA. These genes and immune cells
could be valuable for assessing disease progression or treatment
effectiveness. Furthermore, machine learning models, especially
the RF model, showed high accuracy in predicting OA. These
biomarkers could be integrated into clinical tools for OA
diagnosis and prognosis, supporting more personalized treatment.
However, due to the lack of prospective clinical studies, further
validation is needed before these biomarkers can be routinely used
in practice.
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