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Breast cancer is still the largest cause of cancer death in women, and around 70%
of primary breast cancer patients are estrogen receptor (ER)-positive, which is the
most frequent kind of breast cancer. The lemur tyrosine kinase-3 (LMTK3)
receptor has been linked to estrogen responsiveness in breast cancer.
However, the function of LMTK3 in reaction to cytotoxic chemotherapy has
yet to be studied. Breast cancer therapy research remains tricky due to a paucity
of structural investigations on LMTK3. We performed structural investigations on
LMTK3 using molecular docking andmolecular dynamics (MD) simulations of the
LMTK3 receptor in complex with the top three inhibitor molecules along with a
control inhibitor. Analysis revealed the top three compounds show the best
binding affinities during docking simulations. Interactive analysis of hydrogen
bonds inferred hotspot residues Tyr163, Asn138, Asp133, Tyr56, Glu52, Ser132,
Asp313, and Asp151. Some other residues in the 5-Å region determined strong
alkyl bonds and conventional hydrogen bond linkages. Furthermore, protein
dynamics analysis revealed significant modifications among the top complexes
and the control system. There was a transition from a loop to a-helix
conformation in the protein–top1 complex, and in contrast, in complexes
top2 and top3, the formation of a stabilizing sheet in the C chain was
observed, which limited significant mobility and increased complex stability.
Significant structural alterations were observed in the protein–top complexes,
including a shorter helix region and the creation of some loop regions in
comparison to the control system. Interestingly, binding free energies,
including MMGB/PBSA WaterSwap analysis estimation, reveals that the
top1 complex system was more stable than other systems, especially in
comparison to the control inhibitor complex system. These results suggest a
the plausible mode of action for the novel inhibitors. Therefore, the current
investigation contributes to understanding the mechanism of action, serving as a
basis for future experimental studies.
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1 Introduction

Breast cancer is a prevalent malignant illness that primarily
affects women and eventually leads to death (Albrand and Terret,
2008). Breast cancer has the second highest fatality rate after lung
cancer. Breast cancer is more common in North America and
Northern Europe and less common in Asia and Africa (Richie
and Swanson, 2003). The female hormone estrogen is essential
for the development and progression of breast cancer (Labrie
et al., 1999). The proportion of estrogen receptor-a (ERa)
expressed in tumor cells is two-thirds of that expressed in
normal breast tissues in breast cancer (Chen et al., 2008).
ERa-positive breast cancer was frequent in metastatic illness
among the breast cancer types. For ERa-positive breast
tumors, the estrogen signaling pathway is a primary target
(Stebbing et al., 2011). Tamoxifen (antiestrogen), aromatase
inhibitors (estrogen withdrawal), and fulvestrant (direct
targeting on the ERa receptor) are now used to treat ERa-
positive breast cancer. The main challenge in treating breast
cancer is endocrine hormone resistance (Ali and
Coombes, 2002).

The phosphorylation of ERa is primarily engaged in endocrine
resistance via regulating transcription activity and altering stability.
Endocrine resistance is more common in breast cancer patients, and
it results in higher levels of Era (Rani et al., 2019). Based on SiRNA
screening of multiple genes and an in vivo mouse model, protein
kinase enzymes were discovered to be critical targets for ERa-
positive cancer. Protein kinase inhibitors might be effective
treatments for ERa-positive breast cancer. Serine/threonine
kinases and tyrosine kinases are the two categories of protein
kinase enzymes based on sequence and structural homology
(Torres-Ayuso and Brognard, 2019).

Protein kinase domains are divided into 11 conserved sub-
domains that fold into a tiny N-terminal lobe and a larger
C-terminal lobe. The glycine-rich loop (P-loop) in the
N-terminal lobe favors ATP binding, and the activation loop
(T-loop) in the C-terminal lobe regulates phosphorylation
activity (Robinson et al., 2000). Lemur tyrosine kinase-3
(LMTK3) is a class of serine–threonine–tyrosine kinase (Shi
et al., 2014). The LMTK3 protein may have a role in the
b-catenin pathway (Shi et al., 2014) and leukemic cell survival.
Exon changes in human LMTK3 are responsible for its specific
vulnerability to ERa-positive breast cancer (Stebbing et al., 2012).
There is no exact close LMTK3 homolog in humans; however, it
shows some degree of homology to the epidermal growth factor
receptor (EGFR). Nevertheless, both proteins differ in detail in terms
of the mechanisms by which they achieve an inactive state and
prevent ATP binding. Different variants of LMTK3 are reported
(VAR_057116 and VAR_028943) (Ditsiou et al., 2020). Positive
selection of genes identifies LMTK3 as a novel potential biomarker
for ERa-positive breast cancer (Anbarasu and Jayanthi, 2018).

In breast cancer cells, LMTK3 regulates ERa via
phosphorylation activity and is directly implicated in the
modulation of endocrine resistance. Furthermore,
LMTK3 protects ERa from proteasomal degradation. The
amount of LMTK3 is overexpressed in aggressive breast
cancer and closely correlates with survival and responsiveness
to hormonal therapy. Ki6713, a tumor proliferation marker,

correlates with LMTK3 expression (Zhao et al., 2013). ERa is
highly expressed in breast cancer, and LMTK3 phosphorylation
of ERa promotes breast cancer cell proliferation, angiogenesis,
migration, and progression (Xu et al., 2014).

LMTK3 inhibition in breast tumors affected ERa at two levels:
mRNA production and protein stability. Targeting LMTK3 in ERa-
positive breast tumors is thought to be more successful than
downregulating ERa mRNA expression in cancer cells (Johnson
and O’Malley, 2011). Lemur tyrosine kinase-3 (LMTK3; also known
as LMR3, TYKLM3, and KIAA 1883) is a predicted dual-specificity
protein kinase whose expression levels have been implicated in
cancer cell invasion, endocrine resistance, poor prognosis, and
overall tumor progression in different types of malignancies
(Giamas et al., 2011; Zhao et al., 2013).

Computational methods have paved a new way for different
approaches to finding suitable anticancer targets (Katsila et al.,
2016). These approaches provide the basis for computer-aided
drug design and allow having an insight into the dynamics of a
suitable target (Barabási et al., 2011). Results generated from
binding underwent further screening in which only a set of non-
anticancer drugs were chosen. This will also enable
experimentalists to directly experimentally validate the
resulting compounds without requiring further validation
assays. Molecular dynamics simulation was performed to
verify the time-dependent behavior of the finally selected
complexes and their pattern matching with the control
inhibitor. This has become a widely used discipline by
computational scientists and provides new insights into the
time-bound behavior of biomolecules and creates measurably
different simulation times, allowing to differentiate signals from
different parts of a molecule (Leach, 2007) and using the
MM(GB/PB)SA method to calculate binding free energies of a
complex (Miller et al., 2012). This will save the cost of applying all
experimental assays in repetitions and will strengthen the fact
that such approaches can be applied in the future for identifying
other therapeutic agents. Thus, the finding observed from the
current work is a way forward in deciding the rational
development of adjuvant molecules suppressing tumor
formation and, in turn, addressing the curse of breast cancer.

2 Methodology

The methodology depicted in Figure 1 provides a concise
summary of the process for prioritizing potential drug targets.
These steps enabled us to select the current target for computer-
aided drug design (CADD) analysis.

2.1 Retrieval of ligand library

Herein, we use an anticancer library. The library was
imported to PyRx 0.8 software (Dallakyan and Olson, 2015),
where the library was filtered using the Lipinski rule of five.
Afterward, the library was energy-minimized using an
MM2 force field using ChemDraw 3D (Cousins, 2011). The
energy-minimized structures were then converted into the
pdbqt format to make them ready for docking.
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2.2 Ligand preparation

The anticancer library was explored to identify potential target
inhibitors. In the process of structure-based virtual screening, the
library, which included inhibitors derived from natural sources, was
utilized https://www.selleckchem.com/screening/fda-approved-
anticancer-drug-library.html. Natural compounds, renowned for
their diverse chemical scaffolds, offer a promising avenue for the
discovery of novel anticancer agents with potentially reduced
adverse effects. The choice to concentrate on natural inhibitors
was made to harness the inherent diversity of natural products,
aligning with the specific objectives of our investigation.
Approximately 5,000 compounds were retrieved and were filtered
against drug- and lead-likeness. Prior to that, the library was
screened for drug-like inhibitors first and then lead-like
inhibitors. This was accomplished using Ligand Scout 4.1’s
(Wolber and Langer, 2005) drug-like and lead-like rules, which
included the following drug-like rules: the five rules of Lipinski
(MW ≤ 500, HBA ≤10, MLogP ≤4.15, HBD ≤5, and TPSA 40–130
Å2) (Lipinski, 2004), Veber filter (rotatable bonds ≤10, TPSA ≤140)
(Veber et al., 2002), Ghose filter (LogP ≥0.4–≤ 5.6, MW ≥ 160–≤

480, Atoms ≥20–≤ 70, and MR ≥ 40–≤ 130) (Ghose et al., 1999),
Egan rule (WLogP ≤5.88 and TPSA ≤131.6) (Egan et al., 2000), and
Muegge rule (TPSA ≤150, numbers of ring ≤7, numbers of
carbon >4, number of heteratoms >1, HBA ≤10, MW ≥ 200–≤
600, number of rotatable bonds ≤15, HBD ≤5, and XLogP ≥ −2–≤ 5).
Filters for lead-likeness (250 MW 350, XLOGP 3.5, and rotatable
bonds 7) were used to further examine drug-like compounds, as
shown in Tables 1, 2. The protocol outlined in this section adheres to
a widely accepted and standardized approach utilized in the
screening and filtering of lead-like inhibitors against the specific
protein target. This approach follows established practices in the
field, ensuring consistency and comparability with other studies in
the domain of lead compound discovery (Oprea, 2002).

2.3 Drug target selection

Drug targets were selected based on their mechanism of function
and involvement in cancer, especially in breast cancer. The best
targets from the Protein Data Bank were retrieved with PDB ID:
6seq. In this study, only the available LMTK3 kinase domain was

FIGURE 1
Flow chart of the current study.
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used in the structure-based virtual screening and biophysics
analysis. The chosen target protein models were subjected to
energy reduction to improve their quality. Herein, we did not
explicitly consider post-translational modifications or delve into
the broader aspects of LMTK3’s interactions with other proteins.
Our study is driven by the specific research goals of identifying and
characterizing potent LMTK3 inhibitors. The crystallographic
experiment showed that the LMTK3 structure derived from the
database exists in a monomeric form under certain circumstances.
Our investigation focused on the monomeric form of LMTK3 as
shown in the crystal structure, despite previous literature indicating
possible dimerization under certain circumstances. Furthermore,
the visualization tool UCSF Chimera (Chen et al., 2014) was used to
carry out this procedure, and the structures were minimized using
Gasteiger charges. Structural restrictions were removed using
1,500 rounds of minimization runs, with 750 steps using the
steepest descent approach and 750 steps using the conjugate
gradient method (Ahmad and Azam, 2020b). The ff03.rl force
field was applied with a step size of 0.02. The minimized proteins
were then submitted to a validation process to determine their

quality before being used in docking investigations. The adjustments
made to the cut-off values were not arbitrary or based on ad hoc
thumb rules; rather, they are all adjusted by a comprehensive review
of literature rules and further refined through optimization (Bashir
et al., 2024).

2.4 Molecular docking

We performed virtual screening, a computer method used to
identify possible lead compounds at an early stage. This technique
included swiftly evaluating a large collection of anticancer drugs via
computer-based algorithms and simulations. Virtual screening of
the ligand library against LMTK3 was performed using PyRx
(Dallakyan and Olson, 2015). To account for protein flexibility,
especially in regions with disorder, we leveraged various sources of
structural information. Experimental crystal structures, obtained
from reliable databases https://www.rcsb.org/structure/6SEQ,
played a pivotal role in providing insights into the potential
conformations of the protein, encompassing both ordered and

TABLE 1 Physicochemical properties of the top complexes along with the control inhibitor.

Molecule MW Heavy
atoms

Aromatic heavy
atoms

Fraction
Csp3

Rotatable
bonds

H-bond
acceptors

H-bond
donors

TPSA

Top1 438.51 32 12 0.35 6 6 3 96.22

Top2 464.55 34 14 0.32 6 6 4 111.13

Top3 340.37 25 12 0.25 3 5 3 86.99

Top4 440.49 32 12 0.32 6 7 5 127.45

Top5 476.6 35 12 0.37 7 5 3 86.99

Top6 389.46 29 10 0.28 4 4 2 70.67

Top7 442.5 32 14 0.4 7 7 5 131.36

Top8 390.47 29 12 0.24 4 4 2 66.76

Control 1 356.3 26 12 0.11 3 7 0 49.85

TABLE 2 ADMET properties of the selected small drug-like molecules by SwissADME.

Molecule Water GI absorption BBB CYP2D6 inhibitor Bioavailability score Pains

Solubility

Molecule 1 Moderately soluble High No No 0.55 0

Molecule 2 Poorly soluble Low No No 0.55 1

Molecule 3 Moderately soluble High No Yes 0.55 0

Molecule 4 Moderately soluble High No No 0.55 1

Molecule 5 Poorly soluble Low No No 0.55 0

Molecule 6 Moderately soluble High No No 0.55 0

Molecule 7 Poorly soluble Low No No 0.55 1

Molecule 8 Poorly soluble High No No 0.55 0

Control 1 Poorly soluble High Yes No 0.55 0
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TABLE 3 Docked score of the top complexes along with the control inhibitor against the target protein.

Compounds IUPAC names 2D structure Binding affinities
(kcal/mol)

Top1 (R)-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,8-bis(3-methylbut-
2-en-1-yl)chroman-4-one

−9.8

Top2 1-Hydroxy-3,6,7-trimethoxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-
xanthen-9-one

−9.5

Top3 (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6-(2-methyl-3-buten-2-yl)-2,3-
dihydro-4H-chromen-4-one

−8.8

Top4 (Z)-2,6-dimethoxy-7-(4-methylpent-3-en-1-yl)-9-(4-methylpent-3-en-1-
ylidene)-9H-xanthene-3,8-diol

−8.7

Top5 (2S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(2-hydroxy-3-methyl-3-
buten-1-yl)-8-[(1E)-3-methyl-1-buten-1-yl]-2,3-dihydro-4H-chromen-
4-one

−8.32

Top6 (2S)-5,7-dihydroxy-2-[4-hydroxy-3,5-bis(3-methyl-2-buten-1-yl)phenyl]-
8-(3-methyl-2-buten-1-yl)-2,3-dihydro-4H-chromen-4-one

−8.30

Top7 11-Hydroxy-1-isomangostin −8.24

Top8 7-Hydroxy-3-[4-hydroxy-3-(3-methyl-2-buten-1-yl)phenyl]-8-(3-
methyl-2-buten-1-yl)-4H-chromen-4-one

−8.23

Control 6-(4-Pyridinyl)-3-[3-(trifluoromethoxy)phenyl]imidazo [1,2-b]pyridazine −8.23
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disordered regions (Stebbing et al., 2018). This approach allowed us
to consider the inherent flexibility of the protein and enhance the
realism of our docking simulations. The docking coordinates set
depend on the active site information obtained from the active site
prediction phase. The coordinates of an active site residue
Asn313 x = −19.236 y = 23.590 and z = −56.880F were applied
during the docking study for each compound. The number of
iterations carried out is 100. Each docking conformation was
assigned with a binding energy score in kcal/mol. The one with
the lowest energy score was considered the best binder and
complexed with the enzyme for further investigation. The
visualization of the best docked complexes was carried out using
UCSF Chimera v1.15 and Discovery Studio v.2020 (Biovia, 2017).

2.5 Molecular dynamics simulations

The starting conformation for the molecular dynamics (MD)
simulations was based on the coordinates from the Protein Data
Bank (PDB) and was prepared for simulation using the
AMBER16 simulation program (Case et al., 2016). The initial
parameterization was carried out using the antechamber program
of AMBER. The force field that was used is FF14SB (Case et al., 2014)
for the enzyme, while for ligands, GAFF was used (Sprenger et al.,
2015). The simulation was performed in the following order: energy
minimization of the complexes, heating, equilibrium, and
production run of at least 300 ns. Temperature control was
achieved via Langevin dynamics. SHAKE algorithm was applied
for constraining hydrogen bonds (Kräutler et al., 2001). Simulation
trajectories were evaluated through the CPPTRAJ program (Roe
et al., 2013). The coordinates of alpha carbon (C) are commonly
thought to indicate an amino acid’s location in three-dimensional
space. RMSD is a metric that allows comparing the relative locations
of protein C atoms by computing their averaged distance over a
period. It is written mathematically as

RMSD �
�������
1
N

∑
i
d2i

√
, (2.1)

where N is the number of compared atoms and di is the distance
between the ith pair of atoms.

Another key metric of structural changes is the RMSF. It is used
to determine the backbone atoms of the docked target (N, C, and C).
It is the root mean square of the averaged distance between an atom
and its average geometric location in a particular set of dynamics,
and it may be read as the set of atom positions recorded over a
specific time scale. The RMSF is calculated using the
following equation:

RMSF �
�����������������∑Tt k Xi tk( ) − X( )/T

√
, (2.2)

where T represents the time interval, xi represents the position of an
atom at a particular time, and x represents the averaged position
of the atom.

The radius of gyration is used to assess the overall packing
quality and density of a structure. It is a physical characteristic
that may be estimated experimentally, most commonly via
small-angle X-ray scattering (SAXA). The following equation

was used to quantify the compactness of a
macromolecular system:

Rg � ƩiN � 1mi ri − rcm( )2/ƩiN � 1mi, (2.3)
where N is the total number of atoms, mi denotes the mass of atom I,
ri denotes the position vector of atom I, and rcm denotes the
molecule’s center of mass.

2.6 Solvent-accessible surface area analysis

The amount of solvent-accessible surface area (SASA) is critical
in determining the conformation and functionalities of biological
macromolecules. Typically, the amino acid residues on a protein’s
surface operate as active sites and/or interact with other molecules
and ligands. This allows researchers to obtain a better understanding
of the molecule’s behavior in a solvent environment, distinguishing
between its hydrophilic and hydrophobic properties and revealing
the components involved in protein–ligand interactions (Gromiha
and Ahmad, 2005).

2.7 Binding free energy estimation

The AmberTools 16 software’s MMPBSA.py module was
utilized to calculate various binding free energies for the system
[31]. The main objective of this study was to assess the differences in
free energy between the complex in two different phases: solvated
and gas phases. The total binding free energy was determined using
the following approach:

ΔGbinding free energy � ΔGbind, vaccum

+ ΔG solv, complex – ΔG solv, ligand(
+ ΔG solv, receptor). (2.4)

Molecular mechanics generalized Born surface area (MMGBSA)
and molecular mechanics Poisson–Boltzmann surface area
(MMPBSA) were used to choose 100 frames from simulated
trajectories. To investigate the function of key amino acids in
inhibitor interactions, delta free energy was deconstructed into
protein residues.

2.8 WaterSwap analysis

WaterSwap was carried out to calculate the binding energies of
the complex along with solvated systems inside the cavity.
WaterSwap samples conformational space using MC simulations
[using the Sire program (Woods et al., 2014)]. To begin the MC
computation, a starting configuration is necessary, which is
commonly obtained via MD simulations of the protein–ligand
complex (Ahmad and Azam, 2020a). WaterSwap computations
were used to construct the most representative structures from
the ensemble obtained by the MD simulations. The free energy
was then calculated for all three complex systems along with the
control system using the free energy perturbation (FEP) (Zwanzig,
2004), thermodynamic integration (TI) (Oostenbrink et al., 2000),
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and Bennett acceptance ratio (BAR) (Bennett, 1976) methods. Three
approaches were chosen to calculate free energy because the
similarity of the energy values obtained from these methods
indicates the dependability and convergence of the results.

3 Results

3.1 Physicochemical characteristics

The top compounds from the library were screened and further
tested for ADMET characteristics. All the compounds in each library
had already been subjected to Lipinski’s rule of five and ADMET
descriptions prior to docking. If the medicine meets the
physiochemical property requirements of Lipinski’s rule of five, it
will be declared optimum. This test assesses if a chemical compound
is drug-like, defined as having biological action that may be
administered orally. A drug-like chemical molecule should
contain hydrogen bond donors (HBDs) > 5, molecular weight
(MW) 500 g/mol, and hydrogen bond acceptors (HBAs)
sites >10, and log p-value 5 reflects hydrophobicity of a
compound, according to the rule of thumb (RO5). Furthermore,
two new factors were added: rotatable bonds 10 and a polar surface
area (PSA) 140 A, both of which are concurrent with drug flexibility
and permeability. SwissADME (Daina et al., 2017) was used to
determine ADMET descriptors to compute absorption, distribution,

metabolism, elimination, and toxicity (ADMET). The ADMET
blood–brain barrier was used in this study. The ADMET plasma
protein binding descriptor was used to determine if a medication
molecule will form a strong link with the blood carrier protein. The
ADMET CYP2D6 binding model was used to evaluate cytochrome
P450 2D6 enzyme inhibition using a compound’s 2D chemical
structure. ADMET hepatotoxicity assesses the likelihood of
hepatotoxicity proliferation in humans caused by a wide range of
structurally varied substances. Compounds should correspond with
the needs of AlogP98 5 and PSA 140 2 for good cell permeability.
Tables 1, 2 provide the Lipinski and ADMET descriptions of the top
eight complexes along with the control molecule.

3.2 Molecular docking

The selected ligand molecules were docked into the active site
of the target lemur tyrosine kinase-3 (LMTK3) using PyRx.
Around 4,000 compounds were utilized in the docking study.
The active site of the target was supported by the literature where
the coordinates x = −19.236, y = 23.590, and y = −56.880 of the
Asp313 were applied. After docking, the top inhibitor molecules
were selected based on their binding affinities (Table 3). The
top1 compound (R)-5,7-dihydroxy-2-(4-hydroxy-3-
methoxyphenyl)-6,8-bis(3-methylbut-2-en-1-yl)chroman-4-one
results in a high binding affinity of −9.8 kcal/mol. The

FIGURE 2
Docked poses of the top complexes along with the control inhibitor against the target protein.

Frontiers in Molecular Biosciences frontiersin.org07

Alrumaihi 10.3389/fmolb.2024.1366763

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1366763


top2 compound 1,3,6,7-tetrahydroxy-2,5,8-tris(3-methylbut-2-
en-1-yl)-9H-xanthen-9-one has a binding affinity of −9.5 kcal/
mol, and the top3 compound (R)-5,7-dihydroxy-2-(4-
hydroxyphenyl)-6-(2-methylbut-3-en-2-yl)chroman-4-one has
a binding affinity of −8.8 kcal/mol, whereas the control
inhibitor molecule 6-(4-pyridinyl)-3-[3-(trifluoromethoxy)
phenyl]imidazo [1,2-b]pyridazine results in a −8.23 kcal/mol
binding affinity. Detailed visualization analysis carried out
through UCSF Chimera and the preferred orientation of the
ligand binding, as shown in Figure 2. The 2D interactions of the
complexes were found via the Discovery Studio visualizer, which
results in hydrogen bonding and other interactive linkages, as
shown in Figure 3. The docked poses show the active residues of
the protein-binding site. These hotspot residues, which are the
active site domain residues, include Tyr163, Asn138, Asp133,
Tyr56, Glu52, Ser132, Asp313, and Asp151, making strong
hydrogen bonds during the docking simulation. Furthermore,
validation of the hotspot residues has been investigated through
molecular dynamics simulation.

3.3 Molecular dynamics simulations

Structural convergence words include RMSD, RMSF, and Rg.
The examination of RMSD with backbone atoms demonstrated
early equilibration up to 5 ns, and after 6 ns, the structure began
to converge and achieved the stable state, generating
configuration with an RMSD of 4.5 MD simulation. The
RMSD plot demonstrated that LMTK3 was in a stable
conformation with minimal deviation from its original
structure. The Cα atom changes were discovered by examining
the RMSF data in connection to the LMTK3 residues. The RMSF
proved that certain variations occurred in the protein’s loop
regions with one exception which is flexible throughout the
simulation time intervals. The root mean square deviation
(RMSD) analysis was used to evaluate the docked protein’s
backbone dynamics and Cα atom motions throughout a 200 ns
simulation time interval. Some variations were noticed within the
first 15 ns of the simulation, but the subsequent portion of the
simulation indicated general stability. As illustrated in Figure 4A,

FIGURE 3
Depicting the top complexes along with the control inhibitor against the target protein.
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the average RMSD value for the Top1 docked protein was
estimated to be 4.4 Å, with a maximum peak at 5.85 Å.
According to the full RMSD graph, no substantial domain
alterations occurred within the physical setting of the
protein–ligand combination during the top1 complex
simulated system. We also investigated the top2 complex
system, which remains more stable than top1 at the start of
the simulation but remains a bit fluctuated during the mid-time
intervals, as shown in the black line in Figure 4A. The average
RMSD was recorded as 3.8 Å with a maximum value of 4.3 Å at
145 ns but remained stable till the end of the simulation. The
third complex shows stability in protein at 4.5 Å, and the ligand
became stable at 48 ns. The ligand shows different contacts with
different residues at the start of the simulation and then it
remains static in its binding cavity with some angular
displacement at the end of the simulation. Rg values, which
are inversely linked to protein compactness, were critical in
determining ligand stability. Stable protein folding is
characterized by little variation in Rg values, indicating static
ligand behavior within the cavity. The rGyr values of compound
top1 within the binding pocket varied from 36.8 Å to 4.0 from
0 to 200 ns and then fluctuated between 40.1 Å and 38.5 Å for all
the top complexes throughout 200 ns (Figure 4B). Compound

2 had rGyr values ranging from 35.6 Å to 39Å and stabilized at
39.2 Å (Figure 4B). Compound 3, on the other hand, exhibited
considerable oscillations, with rGyr values ranging from 37.7 Å
to 38.6 Å throughout the simulation, indicating stable behavior
(Figure 4B). On other hand, the control inhibitor shows
considerable fluctuation throughout the simulation time
intervals, inferring an average rGyr value of 45.6 Å with a
maximum value of 49.3 Å. Considering these complexes in
comparison with the control inhibitor, it has been inferred
that our selected top complexes are more stable during the
simulation time intervals. As shown in the figures, the control
inhibitor shows more fluctuation, and the ligand inside the cavity
moves inside the binding cavity with more structural changes, as
seen in the RMSF graph.

The proteins’ local changes were analyzed using RMSF, which
shows an average RMSF of 1.81 Å, 2.38 Å, and 2.35 Å for complex-
1, complex-2, and complex-3 for 200 ns, respectively (Figure 4C),
whereas high variations were found in the N-terminal and
C-terminal areas, as well as in the loop regions. The interacting
binding site residues at the loop region at the C-terminus fluctuate,
resulting in an open binding pocket conformation. The assessment
of all the complexes at different ns revealed that complex-1
deviates by 1.4 Å from the docked complex while preserving the

FIGURE 4
Depiction of the stability of the bound complexes, i.e., top1, top2, and top3 LMTK3 proteins in terms of (A) root mean square deviation (RMSD), (B)
radius of gyration (C), and root mean square fluctuation (RMSF). (D) SASA analysis. The structural analysis of MD simulations was performed using
trajectory files, including time series values.
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ligand in its binding pocket. Complexes 2 and 3 have deviations of
2.1 Å and 2.2 Å, respectively; however, this deviation and opening
of the binding pocket did not allow the ligand to be retained
outside the surface. However, this change has been observed in the
control inhibitor, which deviates more as compared to the top
complexes; herein, the control shows more deviation with a
maximum RMSF value of 5 Å, and the ligand moves around the
surface of protein-binding site residues, as shown in Figure 4C.
Furthermore, as shown in Figure 4, the ligand remained well
positioned inside the binding site throughout the simulation
and did not cause any protein destabilization among all the
top complexes.

3.4 SASA analysis

A SASA analysis was performed to investigate the behavior of
LMTK3’s hydrophilic and hydrophobic SASA. SASA findings of
5,000–5,500 nm indicated that accessibility was maintained with few
modifications during the simulation and validated that the residues
had been thoroughly exposed to the solvent (see Figure 4D). The
findings revealed that in loop1, during the simulations, the area
(182–202 residues) demonstrated less flexibility, with modest
differences in a-helix and turn occurrence. The loop2 area
(212–232 residues) showed more adaptability during all the
complexes, but these structural modifications have been observed
more fluctuated during the control complex system with a SASA
value of more than 12,500 nm.

3.5 Binding free energy calculations

Binding energy analysis provides insight into individual residue
contributions, which aids in the exploration of the protein–ligand
complex’s composition. Binding energies for top1, top2, top3, and
control complexes estimated by MM-GBSA are −33.74 kcal/
mol, −44.07 kcal/mol, - 42.35 kcal/mol and - 26.95 kcal/mol,
respectively, whereas the MM-PBSA approach projected binding
energies of −33.47 kcal/mol for the top1 complex, −44.98 kcal/mol
for the top2 complex, −43.09 kcal/mol for the top3 complex,
and −27.41 for the control inhibitor complex, respectively.
According to MM-GBSA, the van der Waals score observed
(−33.63 kcal/mol) and electrostatic interactions (−12.14 kcal/mol)
contribute the most to the binding energy in the top1 complex. High
binding scores for the other top complexes were also investigated
along the control inhibitor complex. Furthermore, gas phase and
solvation phase interactions have contributed to the binding energy
of all the complexes, according to MM-GB/PBSA (Table 4).

TABLE 4 Binding energy calculation for the top complexes along the
control inhibitor after simulation time intervals of 200 ns.

Parameter Control Top1 Top2 Top3

MM-GBSA

Energy van der Waals −28.10 −33.63 −41.98 −43.17

Energy electrostatic −10.48 −12.14 −13.97 −13.29

Total gas phase energy −38.58 −45.77 −55.95 −56.46

Total solvation energy 11.63 12.03 11.85 14.11

Net energy −26.95 −33.74 −44.07 −42.35

MM-PBSA

Energy van der Waals −28.10 −33.63 −41.98 −43.17

Energy electrostatic −10.48 −12.14 −13.97 −13.29

Total gas phase energy −38.58 −45.77 −55.95 −56.46

Total solvation energy 11.17 12.30 10.97 13.37

Net energy −27.41 −33.47 −44.98 −43.09

FIGURE 5
WaterSwap analysis of the simulated complex systems along with the control system.
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3.6 WaterSwap analysis

WaterSwap analysis was used to determine the absolute binding free
energy of each complex, including the control inhibitor molecule. The
computed binding free energy values were shown in the WaterSwap
analysis (in kcal/mol) for top inhibitors in relation to critical hotspot
residues in the complex system. The computations were carried out for
1000 iterations with the cluster cut-off size set to 1 and a maximum of
25 members allowed in each cluster. A total of 1.6 109MCmotions were
conducted in order to calculate the Bennett value, thermodynamic
integration (TI), free energy perturbation (FEP), and TI quadrature,
which are some of the approaches used. Figure 5 depicts the calculated
free energy values for each complex. When the preceding procedures
converge with a difference of 1 kcal/mol, the final value obtained was
regarded as excellent. The drug complexes, including top1, top2, top3, and
control, have an FEP value of−47.1 kcal/mol,−48.53 kcal/mol,−51.8 kcal/
mol, and −27.14 kcal/mol, respectively, whereas a Ti value of −47.59 kcal/
mol for top1,−48.53 kcal/mol for top2,−51.36 for top3, and−26.85 for the
control system was recorded. Another approach used to find out the
binding energies calculation was a BAR value for all the complexes;
herein, −46.87 kcal/mol for top1, −49.68 kcal/mol for top2, −51 kcal/mol
for top3, and −27.55 kcal/mol for the control system were calculated.
Hence, these investigations suggest that all the top inhibitor molecules
show the best binding free energies in terms of the control inhibitor
system. These results further evidence and predict the scale of the potency
of inhibitors for the experimental studies in a real-time system.

4 Discussion

Human lemur tyrosine kinase-3 (LMTK3) is a dual-specificity
kinase with a well-established oncogenic involvement in several
tumor types, indicating its potential as a therapeutic target. In
several breast cancer cohorts, LMTK3 expression is markedly higher
in high-grade breast tumors and is linked with poor survival rates
(Giamas et al., 2011; Stebbing et al., 2012). Given its function in
endocrine resistance, more research into its potential usefulness as a
therapeutic target is necessary. In breast cancer, neoadjuvant and
adjuvant chemotherapy has enhanced overall survival (Gianni et al.,
2014; Hatzis et al., 2016). Resistance to cytotoxic chemotherapy, on the
other hand, is the leading cause of treatment failure and mortality in
women with breast cancer (Yu et al., 2013; von Minckwitz et al., 2016).
An abundance of LMTK3 in human cancer was related to disease-free
survival and suggested a good response to endocrine treatment. The
findings also suggested that targeting LMTK3 might be useful in the
treatment of drug-resistant malignancies. Kinases are phosphorylation-
catalyzing enzymes that play an important part in cell activity. Kinomes
are now the focus of large-scale genomics andRNA interference (RNAi)
screening in drug discovery efforts, particularly in the quest for
anticancer medicines (Collins and Workman, 2006).

LMTK3 deletion resulted in an 80% decrease in ERa protein in
MCF-7 cells. ERa breakdown is proteasome-dependent, and inhibiting
its degradation raises ERa protein levels. LMTK3 deletion decreases ERa
half-life and promotes ubiquitination. LMTK overexpression, on the
other hand, phosphorylates ERa, protecting it from proteasomal
destruction and, therefore, stabilizing the ERa protein.
LMTK3 knockdown decreased estrogen receptor 1 (ESR1) mRNA
expression (Cilibrasi et al., 2021). We have used in silico drug design

strategies to discover new inhibitors against the LMTK3 target to stop the
mechanistic behavior in the cancer pathway. This is carried out via a
molecular docking strategy, where we obtained top complexes with high
binding affinities with strong hydrogen bond interactions. In addition, a
control inhibitor was also docked against the protein LMTK3, showing
strong interactions. These results were then further validated via
molecular dynamics simulation studies which inferred the complexity
of the top complexes, with mechanistic time interval behavior.

The comprehensive investigation of complex-1, complex-2, and
complex-3 found that complex-2 is more stable because it mimics the
natural secondary structural elements (SSEs). The SSE composition
for each trajectory frame across the simulation duration demonstrates
that all three top complexes are structurally stable.

The mean RMSD for the top1 was 4.4 Å, with a maximum value of
5.85 Å. We also looked at top2 complex systems, which are more stable
than top1 at the start of the simulation but are more fluctuated over the
mid-time intervals, as shown by the black line in Figure 4A. The average
RMSD was 3.8, with a maximum of 4.3 at 145 ns, although it remained
constant until the end of the experiment. The third compound
demonstrates protein stability at 4.5 and ligand stability at 48 ns. The
ligand makes distinct interactions with different residues at the start of
the simulation and then remains static in its binding cavity with some
angular movement at the conclusion. Rg values were crucial in assessing
ligand stability since they are inversely related to protein compactness.
The RMSF value also determined the thermal flexibility of the system
during the simulation time intervals, which inferred that the
top1 complex was more stable as compared to the control system.
The other systems were also stable during simulations with a bit of
fluctuation at some time intervals but remained static at the end of the
simulation. Following the trajectory analysis, the top two compounds
were subjected to atom contact parallel to SASA to determine non-
native atom contacts as well as ligand–solvent interactions.
Furthermore, a unique and more advanced WaterSwap approach
was employed to cross-verify the MMGB/PBSA results. WaterSwap
agrees on the inhibitor affinity for the receiver domain, as evidenced by
the minimal convergence of the Bennett, TI, and FEP algorithms.

These investigations further open a way toward pilot-scale
experimental analysis for further validation of compounds against
cancer therapies.

5 Conclusion

In the current study, a potential drug candidate lemur tyrosine
kinase-3 (LMTK3) revealed a small drug inhibitor molecule. The aim of
this study was to identify potential therapeutic candidates by molecular
docking. The molecular docking protocol was used to search for
inhibitors targeting the therapeutic target. Functional residues
(Tyr163, Asn138, Asp133, Tyr56, Glu52, Ser132, Asp313, and
Asp151) from the active pocket of the enzyme were shown to
contribute to strong hydrogen bonds with the compound. The
computational predictions of hotspot residues with their behavior in
dynamic simulations increase the reliability of our results. The detected
hotspot residues continuously maintained their binding behavior
throughout the simulation, indicating a strong and persistent
interaction interface. Furthermore, molecular dynamics simulation
illustrated the formation of stable complex with no observed global
conformational changes. Binding free energy estimation highlighted key
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contributions from van der Waals and less from solvation energy.
Additionally, a major change in the binding energies of the
mentioned functional residues was found compared to the control
inhibitor during simulation time intervals. We expect that the
findings of this study are promising and may contribute to the
identification of biological active leads. The results of the MD
simulations exhibited all the top complexes with the highest potential
as an inhibitor against LMTK3. Additionally, the top1 complex
displayed strong binding affinities. Furthermore, this investigation
will lead our experimentalist toward in vivo and in vitro studies,
which will further enhance the drug substance toward a drug product.
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