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Introduction: Newcastle disease is a highly infectious disease caused by the
Newcastle Disease Virus (NDV) and has a devastating financial impact on the
global chicken industry. It was previously established that Leghorn and Fayoumi
breeds of chicken exhibit variable resistance against NDV infection. The harderian
gland is the less studied tissue of the chicken, known to play an essential role in
the immune response.

Methods: Our previous study, we reported differential gene expression and long
noncoding RNAs (lncRNAs) between challenged and non-challenged chickens in
the Harderian gland transcriptomic data. Now, we report the analysis of the same
data studying the differential expression patterns between Leghorn and Fayoumi
and between different timepoints during disease. First, the pipeline FHSpipe was
used for identification of lncRNAs, followed by differential expression analysis by
edgeR (GLM), functional annotation by OmicsBox, co-expression analysis using
WGCNA and finally validation of selected lncRNAs and co-expressing genes using
qRT-PCR.

Results: Here, we observed that Leghorn showed a higher number of
upregulated immune-related genes than Fayoumi in timepoint-based analysis,
especially during the initial stages. Surprisingly, Fayoumi, being comparatively
resistant, showed little difference between challenged and non-challenged
conditions and different time points of the challenge. The breed-based
analysis, which compared Leghorn with Fayoumi in both challenged and non-
challenged conditions separately, identified several immune-related genes and
positive co-expressing cis lncRNAs to be upregulated in Fayoumi when
compared to Leghorn in both challenged and non-challenged conditions.

Discussion: The current study shows that Leghorn, being comparatively more
susceptible to NDV than Fayoumi, showed several immune-related genes and
positive co-expressing cis lncRNAs upregulated in challenged Leghorn when
compared to non-challenged Leghorn and also in different timepoints during
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challenge. While, breed-based analysis showed that there were more upregulated
immune genes and positive cis-lncRNAs in Fayoumi than Leghorn. This result
clearly shows that the differences in the expression of genes annotated with
immune-related GO terms and pathways, i.e., immune-related genes and the
co-expressing cis-lncRNAs between Leghorn and Fayoumi, and their role in the
presence of differences in the resistance of Leghorn and Fayoumi chicken
against NDV.

Conclusion: These immune-genes and cis-lncRNAs could play a role in Fayoumi
being comparatively more resistant to NDV than Leghorn. Our study elucidated the
importance of lncRNAs during the host defense against NDV infection, paving the
way for future research on the mechanisms governing the genetic improvement of
chicken breeds.

KEYWORDS

Newcastle disease, harderian gland, leghorn and fayoumi, differential resistance patterns,
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Introduction

Newcastle disease is a highly infectious disease that has a
devastating financial impact on the global chicken industry. It is
caused by the Newcastle Disease Virus (NDV) or Avian Ortho
avulavirus-1, which belongs to Kingdom Orthornavirae, Family
Paramyxoviridae and Genus Avian Orthoavulavirus (El-Hamid
et al., 2020). While vaccinations are widely available, Newcastle
Disease is known to cause fatal effects in poultry. Although the
immune response due to vaccination is vital, it is essential to study
the differences in the resistance to Newcastle Disease due to the
genetic variations among poultry breeds (Kapczynski et al., 2013).

In the previous study by M.S. Tarabany (Mahmoud S, 2019), the
authors evaluated the immune response against NDV live
attenuated and inactivated vaccines in purebred Leghorn,
Fayoumi, male Fayoumi × female Leghorn (FL crossbred) and
male Leghorn × female Fayoumi (LF reciprocal crossbred)
Chicken. This study concludes that the purebred Fayoumi
showed the highest antibody titer and lowest mortality rate,
followed by the crossbreeds. In contrast, purebred Leghorn
showed the lowest antibody titer and highest mortality rate. This
differential immune response in the different breeds of Gallus
(Chicken) laid the foundation for further research where the
genetic differences were studied.

The harderian gland is the less studied tissue of the chicken,
present behind the eye. Although its functions have not been studied
well, it is known to play an essential role in immune response. The
comparative analysis of the harderian gland to other crucial immune
system organs showed that the harderian gland plays a key role in
immune response (Vanamamalai et al., 2021). A study on the
harderian gland of Leghorn and Fayoumi breed Chicken during
Newcastle Disease showed the role of genes differentially expressing
between the two breeds. This study shows that the Fayoumi breed,
being comparatively more resistant to NDV than Leghorn,
expressed more immune system-related genes than Leghorn
during normal and Newcastle Disease Virus challenge conditions
(Deist et al., 2018).

Long noncoding RNAs (lncRNAs) are transcripts with a length
greater than 200 nucleotides and do not code for a functional
protein. They are synthesised by RNA Polymerase - II and

possess a 5′cap. Several lncRNAs, known as poly-adenylated
lncRNAs, possess a 3′poly-A tail, while some non-polyadenylated
lncRNAs are known to contain a triple helix (Wilusz et al., 2012).
Although there is a debate regarding the functionality of lncRNAs,
the growing number of lncRNA research shows the importance of
lncRNAs. They can fold into complex structures, which enables
them to interact with different molecules like DNA, other types of
RNAs and even specific proteins (Anna et al., 2018). The primary
function of lncRNAs is gene regulation at multiple levels, including
DNA, RNA, and protein. The lncRNAs are involved in various
biological activities, including gene activation and inactivation by
modulating the chromatin, interacting with DNA and histone
proteins, modulation of the transcriptional activity by interacting
with mRNAs and transcriptional machinery including transcription
factors, post-transcriptional regulation by sequestering the proteins
to form lncRNA-protein complexes which modulate splicing and
turnover of mRNAs and translational regulation by modulating
translation assembly and binding directly with other types of RNAs.
The lncRNAs are also involved in regulating miRNAs by blocking
the miRNAs through miRNA sponging. The lncRNAs can also
regulate proteins by binding through RNA-protein interactions.
This gene regulation of lncRNAs, in turn, regulates various
physiological activities of cells, including cell differentiation, cell
growth and responses to various stimuli. The lncRNAs also play vital
roles in muscular, nervous, cardiovascular and immune systems
(Statello et al., 2021). In immune system-related processes, lncRNAs
play significant roles in haematopoietic development, myeloid
differentiation, CD4+ t-cell differentiation, inflammation
activation and restriction through lncRNA-DNA, lncRNA-RNA
and lncRNA-protein interactions (Chen et al., 2017).

In our recent study on trachea transcriptome (Vanamamalai
et al., 2023), we have identified lncRNAs and performed differential
expression analysis in three different types–challenge-based
analysis, i.e., between non-challenged and challenged samples,
breed-based analysis, i.e., between Leghorn and Fayoumi, and
timepoint based analysis, i.e., between different timepoints–2, 6,
10 days post-challenge (DPC). However, in our previous study on
the transcriptomic data of the harderian gland (Vanamamalai et al.,
2021), we have identified the genes and long noncoding RNAs
differentially expressing between normal samples and NDV-
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challenged samples of Leghorn and Fayoumi breeds separately,
i.e., challenge-based analysis only, which made us understand the
role of genes and lncRNAs during the infection stages in both
breeds. In continuation to that, in this work, we analysed the same
data to identify the genes and lncRNAs that were differentially
expressed between Leghorn and Fayoumi samples at both normal
and NDV-challenged conditions at three different timepoints,
i.e., Breed based analysis and between different timepoints, when
challenged with NDV, i.e., timepoint based analysis. We predict that
this helps us to understand the role of genes and long noncoding
RNAs, which could be involved in the Fayoumi breed becoming
comparatively more resistant to NDV than the Leghorn
breed chicken.

Methods

Transcriptome sequencing data

The transcriptomic data of the harderian gland of Leghorn
and Fayoumi chicken was downloaded from the publicly
available database EBI-ENA, with project ID PRJEB22672
(Deist et al., 2018). The dataset comprises 94 samples:
46 normal samples and 48 NDV-challenged samples. The
details of the sample dataset are shown in Supplementary
Table S1. The computational pipeline FHS pipe, as explained
in our previous work (Vanamamalai et al., 2023).

Identification of long noncoding RNAs
using FHSpipe

The pipeline includes various steps – Quality filtering using
Fastp (Shifu et al., 2018), mapping using HISAT2 v2.2.1 tool (Kim
et al., 2019) and the latest reference genome of Chicken (GRCg7b),
assembly using Stringtie v2.1.4 tool (Pertea et al., 2015). The
assembled transcripts were then annotated with different class
codes using the tool GFFCompare v0.11.2 (Pertea and Pertea,
2020). The sequences of class codes “I,” “U,” and “X” were
selected and extracted using the Bedtools v2.28.0 (Quinlan and
Hall, 2010). The extracted sequences were subjected to various
filters–length filter (minimum 200 nucleotides), ORF filter
(maximum 300 nucleotides/100 amino acids), Pfam filter (no
hits) using RPSBlast v2.11.0+ (Christiam et al., 2009) against the
Pfam database (Mistry et al., 2021) with an e-value 1e-3 and coding
potential filter using Coding potential calculator 2 (CPC2) (Kang
et al., 2017). The sequences with noncoding tags were filtered and
subjected to BlastN v2.11.0+ (Christiam et al., 2009) with 100%
query coverage and 100% identity against other noncoding RNA
databases like eukaryotic transfer RNA database (Chan and Lowe,
2009), Silva ribosomal RNA database (Christian et al., 2013) and
miRbase (Kozomara et al., 2019) as final potential long noncoding
RNAs. These are searched against NONCODE database version 6
(Zhao et al., 2021) using BlastN (Christiam et al., 2009) with 100%
query coverage and 100% identity to identify the known and novel
lncRNAs. The identified lncRNAs were plotted across the
Chromosomes according to their locus positions using
Phenogram (Wolfe et al., 2013). Previously (Vanamamalai et al.,

2021), the lncRNAs were extracted separately at each timepoint,
which generated many duplicates between each timepoint. So, now
lncRNAs are identified from the entire dataset at once, which gives a
non-redundant list of lncRNAs.

Differential expression analysis of genes

FHSpipe generates read counts for the genes and the long
noncoding RNAs, which were further used to perform
differential expression analysis using edgeR v3.34.0 with
Generalised linear model (GLM) (Robinson et al., 2010).
Contrasts were written to identify the genes differentially
expressed between Leghorn and Fayoumi at both conditions
(Breed-based analysis) at three timepoints and between different
timepoints of challenged samples (Timepoint-based analysis). The
genes and lncRNAs with an FDR value below 0.05 were filtered as
significant differentially expressed genes (DEGs) and significant
differentially expressed lncRNAs (DElncRNAs). Using the tool
Circos v0.69.8 (Krzywinski et al., 2009), the chromosomal
localisation of differentially expressed genes and differentially
expressed lncRNAs was plotted.

Gene ontology, pathway analysis and GSEA

As described earlier (Vanamamalai et al., 2023), GO functional
annotation of the identified DEGs was performed using a
standalone tool, OmicsBox v2.1.14 (BioBam Bioinformatics,
2019), which includes several steps: BLAST (Altschul et al.,
1990), Interpro scan (Philip et al., 2014), Gene ontology
mapping and annotation (Gotz et al., 2008), eggNOG mapping
(Huerta-Cepas et al., 2019), and combined pathway analysis
against Reactome (Fabregat et al., 2018) and KEGG (Kanehisa
and Goto, 2000) databases.

GO functional enrichment analysis was performed separately
of all the conditions using the GSEA (Gene Set Enrichment
Analysis) module in OmicsBox (Subramanian et al., 2005) to
detect the significantly different Gene Ontologies and pathways
in challenge-based, breed-based and timepoint-based analysis.
Various options, including the number of gene set
permutations, weighted enrichment statistic and cutoffs (p <
0.05, FDR<0.25, |NES|>1), were used as mentioned previously
(Vanamamalai et al., 2023).

Co-expression analysis

WGCNA (Weighted Gene Correlation Network Analysis)
v1.70.3 (Langfelder and Horvath, 2008) was used to perform the
co-expression analysis of DElncRNAs with the DEGs, which is
further used for functional annotation of the DElncRNAs. Co-
expression analysis was conducted individually for each condition
for all the DEGs and DElncRNAs. The interactions between DEGs
and DElncRNAs, involved in the Immune system processes and
with a minimum weight cutoff of 0.01, were chosen and visualised
using Cytoscape v3.9.1 (Shannon et al., 2003) in the form
of networks.
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Cis–trans and functional analysis of lncRNAs

Based on chromosomal localisation, the DEGs and DElncRNAs
co-expression interactions can be cis and trans interactions. The co-
expressing DEG and DElncRNA were found on the same
chromosome in cis, whereas they were found on separate
chromosomes in trans interactions (Guttman and Rinn, 2012;
Zhao et al., 2020). The type of interaction between the DEGs and
the co-expressing DElncRNAs was determined through their
chromosomal positions. The functions of DElncRNAs were
predicted using the functions of the DEGs co-expressing with
these DElncRNAs. The pathways for each gene obtained from
Gene-ontology analysis were taken and assigned to the respective
co-expressing lncRNA.

Gene–transcription factor
interaction analysis

The gene-transcription factor interaction was determined using
the standalone tool MEME-suite v5.3.2 (Bailey et al., 2009). As
mentioned in our previous studies (Vanamamalai et al., 2021;
Vanamamalai et al., 2023), the 5′UTR of 5 KB size of all the
DEGs were extracted and analysed for the motifs using the
MEME tool under MEME-suite. Using the Tomtom tool of
MEME-suite, the obtained motifs were then compared to the
JASPER2022 Vertebrates database to identify the potential
transcription factors binding to these motifs (genes). These were
scanned against the Animal transcription factor database v4.0 (Shen
et al., 2023) to obtain the transcription factors of chicken. This data
was used to plot a gene-TF network using Cytoscape v3.9.1
(Shannon et al., 2003).

Gene–miRNA interaction analysis

The microRNAs interacting with DEGs were obtained
using miRNet v2.0 (Chang et al., 2020), an online platform
for miRNA target prediction. This tool uses the miRNA
target gene data collected from well-annotated databases -
miRTarBase v8.0, TarBase v8.0 and miRecords. This tool takes
a list of either official gene symbols Entrez IDs or Ensembl IDs as
input to predict gene-miRNA interaction. The output was in
the CSV file format, which contains the details of miRNA ID
and accession, target gene symbol and ID, Predicted miRanda
Score, Literature ID and tissue type. This data is used to plot a
gene-miRNA network using Cytoscape v3.9.1 (Shannon
et al., 2003).

QTL analysis

The coordinates of each QTL (Quantitative Trait Locus)
were downloaded from the Animal QTL Database (Zhi-Liang
et al., 2019), DEGs and DElncRNAs were collected,
and QTLs were assigned to each of the DEGs using an in-
home built Python script based on the positions of the
QTL and DEGs.

Validation studies

A total of 7 lncRNAs, 5 lncRNAs with co-expressing genes and
2 lncRNAs without gene, were randomly selected for validation by
RT-PCR. Three pairs of co-expressing lncRNA-genes, namely,
TCONS_00565961 (Lnc 1)–PIGR (Gene 1), TCONS_00210774
(Lnc 2)–TF (Gene 2) and TCONS_00128750 (Lnc 3)–DOCK8
(Gene 3) were selected from 2 vs. 6-day data. Two pairs and one
lncRNA without a co-expressing gene, namely, TCONS_00176905
(Lnc 4)–BST1 (Gene 4), TCONS_00246845 (Lnc 5)–JCHAIN (Gene
5) and TCONS_00566193 (Lnc 6) were selected from 2 vs. 10-day
data. One lncRNA TCONS_00279966 (Lnc 7) without a co-
expressing gene was selected from 6 vs. 10-day data. Of these
genes, gene JCHAIN was annotated with GO Immune system
process (GO:0002376), the genes PIGR and LOC107051274 were
annotated with Immune system (Reactome) category pathways and
the genes BST1, TF were annotated with both immune GO and
pathways. While, the gene DOCK8 was annotated with Signal
transduction pathways.

The NCBI primer design tool (Ye et al., 2012) was used to
design the primers to be used in the RT-PCR and the
information was mentioned in Supplementary Table S2. The
experimental design and methodology for the lentogenic NDV
challenge were used as previously described in detail in our
previous work on trachea transcriptome analysis (Vanamamalai
et al., 2023). This work was performed adhering to the ethical
guidelines approved by the Institute Animal Ethics Committee
(IAEC/DPR/20/2). Briefly, chickens aged 21 days were grouped
into two groups of 30 each–one group was inoculated with
200 μL of EID 50 ≥ 106 per dose of NDV of LaSota strain,
with 50 μL inoculated into each eye and nostril. Similarly, the
other group was inoculated with 200 μL of phosphate-buffered
saline (PBS). Hemagglutination inhibition (HI) and indirect
ELISA determined the ND antibody levels as described earlier
(Vanamamalai et al., 2023). Harderian gland tissue was collected
from both the groups on 2, 6 and 10 DPC. Total RNA was
isolated from the tissue using the Viral RNA purification kit
(Himedia Pvt. LTD.) and reverse transcribed to cDNA using the
High-capacity cDNA Reverse transcription Kit (Applied
Biosystems, United States). Insta Q96™ real-time PCR
machine (Himedia, India) was used to perform real-time PCR
using Maxima SYBR Green/ROX qPCR Master Mix (2X) (MBI
Fermentas, United States). The 2−ΔΔCt method was used to
calculate relative expression between respective timepoints
with housekeeping gene β actin as the internal control.
GraphPad Prism (GraphPad Software, 2024) was used to
visualise the results as bar plots, including the standard error
of the mean (SEM) and the significance values obtained using
multiple unpaired t-tests.

Results

Identification of long noncoding
RNAs–FHSpipe

In quality filtering, an average of about 95.67% of the reads had
passed the quality filter in the 94 samples, ranging from a minimum
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of 73.05% to a maximum of 98.63% in different samples. The
average Q30 base content was found to be 95.25% across all the
samples, and the average GC content was found to be 47.49%. The

mapping percentage of all the samples was in the range of 71.05%–
96.28%. The average mapping percentage was 90.58%, with a
median quality of 92.47%. The number of assembled transcripts

FIGURE 1
Figure showing the (A) Pie chart of the classification of all the transcripts into 16 class codes, (B) Pie chart of the classification of the identified
lncRNAs into 3 different types—Intronic, Intergenic, and Anti-sense, (C) Chromosomal positions of all the identified long noncoding RNAs.

TABLE 1 Table showing the number of transcripts discarded in different steps in the lncRNAs identification pipeline.

Step Number of sequences eliminated Number of sequences retained

Total — 34,309

Length filter (<200) 0 34,309

ORF filter (>300) 2032 32,277

Pfam filter 1,116 31,161

CPC2 2,114 29,047

Final 5,262 29,047
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TABLE 2 Table showing the number of differentially expressed genes and lncRNAs at each condition. A: Breed-based analysis. B: Timepoint-based analysis.

A Non-challenged Challenged

2-day 6-day 10-day 2-day 6-day 10-day

DEGs 412 289 43 1,039 110 163

DelncRNAs 744 638 422 1,283 649 508

B Leghorn Fayoumi

2v6 2v10 6v10 2v6 2v10 6v10

DEGs 45 285 17 587 293 10

DelncRNAs 204 312 17 606 297 21

FIGURE 2
Figure showing the synteny plot of the chromosomal localisation of Differentially expressed genes (A, C) and differentially expressed lncRNAs (B, D)
obtained in breed-based analysis (A, B) and timepoint-based analysis (C, D).
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in the first run of the assembly was in the range of
38,547–49,406 transcripts. After reassembly using merged GTF,
the number of transcripts was found to be 28,788 in all the
samples. The quality and assembly details of each sample are
mentioned in Supplementary Table S3.

A total of 16 different class codes were identified, of which
34,309 sequences of class codes I, U and X were extracted initially.
Figure 1A shows the pie chart showing the proportions of the
16 class codes. After processing the data with length, ORF,
PFAM and coding potential filters, 29,047 sequences were

FIGURE 3
Figure showing the pie charts representing (A) the distribution of Level-2 Biological process GOs, (B) sequence distribution of Molecular function
GOs and (C) Cellular component GOs annotated to DEGs using OmicsBox.
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obtained. Out of the 29,047 final lncRNAs, about 13,261 sequences
belong to class code I, 13,445 to class code U, and 2,341 to class code
X, as shown in Figure 1B. The chromosomal localisation of the
identified lncRNAs plotted using the tool Phenogram were shown in
Figure 1C. With default blast parameters and no identity and
coverage filter, about 11 sequences showed hits against the
transfer RNA database of chicken and no hits against ribosomal
RNA and miRbase databases. While using 100% identity and
coverage filters, no sequences were similar to transfer RNA,
ribosomal RNA and miRbase databases. The BlastN against
NONCODE database version 6 showed that about
23,240 sequences showed no hits and 5,807 sequences showed
hits, of which 160 sequences showed hits with 100% query
coverage and 100% identity. These details are shown in Table 1
Detailed information on all the identified long noncoding RNAs is
mentioned in Supplementary Table S4.

Differential expression analysis

Several DEGs and DElncRNAs were obtained at each
timepoint, including upregulated and downregulated sequences,
as shown in Table 2A for breed-based analysis and Table 2B for
timepoint-based analysis. Supplementary Figure S1 shows the
heatmap of the read counts of the DEGs, and Supplementary
Figure S2 shows that of the DElncRNAs. Figure 2 shows the
chromosomal localisation of the DEGs (A, C) and DElncRNAs
(B, D) obtained in breed-based analysis (A, B) and timepoint-
based analysis (C, D). More DEGs and DElncRNAs were identified

in breed-based analysis than in timepoint-based analysis. The
highest number of DEGs and DElncRNAs were identified in
2DPC in challenged, followed by 2DPC non-challenged. These
results show that both breeds respond differently right from the
initial stage of infection. In timepoint-based analysis, Leghorn
showed the highest number of DEGs and DElncRNAs between
2 DPC and 6 DPC compared to Fayoumi. Although a similar
number of DEGs and DElncRNAs were identified between 2 DPC
and 10 DPC.

Gene ontology analysis

The functional annotation of the DEGs showed they were
involved in several pathways. Figure 3 shows the Level 2 Gene
ontology annotation in (A) Biological process, (B) Molecular
function and (C) Cellular component plotted using GraphPad
Prism (GraphPad Software, 2024). The Biological process
distribution shows that 19% of the sequences were annotated
with Cellular process (GO:0009987), followed by 15% with
metabolic process (GO:0008152) and 2% (78) of the DEGs with
Immune system process (GO:0002376). The molecular function
distribution shows that 60% of the sequences were annotated
with Binding (GO:0005488) and 40% with Catalytic activity (GO:
0003824). The cellular component distribution shows that 74% of
the sequences were annotated with Cellular anatomical entity (GO:
0110165) and 26% with protein-containing complex (GO:0032991).
Figure 4 shows the number of pathways per category annotated to
each of the DEGs using Reactome and KEGG databases plotted

FIGURE 4
Figure showing the bar chart distribution of the categories of KEGG and Reactome pathways annotated to DEGs annotated using OmicsBox.
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using GraphPad Prism (GraphPad Software, 2024). In KEGG
categories, 91 out of 247 pathways were found to be under the
“Metabolism” category, followed by the “Human diseases” category
with 63 pathways. The least number of pathways were found in the
“Genetic information processing” category, with only 8 pathways. In
the Reactome categories, 170 out of 968 pathways were found to be
under the “Signal transduction” category, followed by the
“Metabolism” category with 138 pathways. The least number of
pathways were found in “Digestion and absorption,” with only one
pathway. In addition, about 117 pathways were found in the
“Immune system” category. These 117 immune system pathways
were annotated to 240 DEGs. In addition, 28 DEGs were found to be
annotated with both Level 2 biological process GO Immune system
process (GO:0002376) and immune system (Reactome) category
pathways; out of these, five were novel genes with no known official
gene symbol. About 290 DEGs were found to be annotated with
either immune-related GO terms or immune system pathways. The
details, including Gene Ontologies (BP, MF, CC), EGGNOG
annotation, pathway name, pathway category, and expression
values (log2 fold change) of the DEGs identified in breed-based
analysis and timepoint-based analysis, were mentioned in
Supplementary Table S5.

GO functional enrichment analysis

Several enriched/over-represented Gene ontologies and
pathways were identified using functional enrichment analysis
after filtering the data with p < 0.05, FDR<0.25 and |NES|>1.
Based on the normalised enrichment score (NES), the enriched
GOs and pathways with positive NES were governed by
upregulated genes, and those with negative NES were governed
by downregulated genes. The highest number of enriched GOs
were found to be biological process GOs and the highest number of
enriched pathways were found to be Reactome pathways. In breed-
based analysis, the highest number of enriched GOs were identified
in challenge 2-day data, while there were no enriched GOs in
challenge 6-day data. In the case of pathways, the highest number
of enriched pathways were found in challenge 2-day data and the
least in non-challenged 10-day data. In challenge 2-day data, a
greater number of the enriched biological process GOs were
obtained under Cellular process level 2 GO, followed by the
metabolic process. Several developmental, regulatory GOs were
also observed, while very few enriched GOs were identified under
response to stimulus GO. Most of the enriched pathways were
found to be under Metabolism (KEGG), Human diseases (KEGG),
Metabolism (Reactome) and Disease (Reactome) categories. A few
enriched pathways were found under Environmental information
processing (KEGG), Organismal systems (KEGG), Signal
transduction (Reactome), Organelle biogenesis and maintenance
(Reactome), Transcription (Reactome), Cell cycle (Reactome),
Haemostasis (Reactome) and Immune system (Reactome)
categories. In challenge 6-day data, although no enriched GOs
were mentioned above, several enriched pathways were under the
Disease (Reactome) and Signal transduction (Reactome)
categories. A few enriched pathways were found under
Metabolism (Reactome), Metabolism (KEGG), Environmental
Information Processing (KEGG) and Human Diseases (KEGG)

categories. In the 10-day challenge data, the highest enriched GOs
were identified in Localization Level 2 GO, followed by Metabolic
process, and only 1 GO in Cellular process GO. Most of the
enriched pathways were found under the Disease (Reactome)
category, and only 1 enriched pathway was found under each of
the Signal Transduction (Reactome) and Human diseases (KEGG)
categories. In non-challenged 2-day data, all the enriched GOs
were under Cellular process GO. Most of the enriched pathways
were found to be under the Metabolism (KEGG) and Disease
(Reactome) categories. One enriched pathway was found under the
Signal Transduction (Reactome), Organelle biogenesis and
maintenance (Reactome), and Immune System (Reactome)
categories. In non-challenged 6-day data, 2 enriched GOs were
found under Metabolic process GO and 1 each under Cellular
process and Localisation GO. Most of the enriched pathways were
found under the Disease (Reactome) category, and few enriched
pathways were found under Metabolism (Reactome),
Transcription (Reactome), Organelle biogenesis and maintenance
(Reactome), Haemostasis (Reactome), Metabolism (KEGG),
Human diseases (KEGG) and Organismal systems (KEGG)
categories. In non-challenged 10-day data, 2 enriched GOs under
Cellular process GO and 1 each under response to stimulus,
Metabolic process and Localization GOs were found. Only
1 enriched pathway was found in this data under the
Metabolism (KEGG) category. In timepoint-based analysis, in
Fayoumi, there were no enriched GOs in 2 vs. 6-day data, and
1 each enriched pathway was found under Human diseases
(KEGG), Vesicle-mediated transport (Reactome), Cellular
responses to stimuli (Reactome) and transport of small
molecules (Reactome). In 2 vs. 10-day data, more enriched GOs
were identified under Cellular process GO, followed by
developmental process and biological regulation GOs. Several
enriched pathways were found under the Disease (Reactome)
category, and a few enriched pathways were also found under
Metabolism of RNA (KEGG), Signal transduction (Reactome) and
Cellular responses to stimuli (Reactome). There were no enriched
GOs and pathways in 6 vs. 10-day data. However, in Leghorn, in
2 vs. 6-day data, the highest number of enriched GOs were
obtained under cellular process and developmental process
GOs. Several metabolic, developmental, and regulatory GOs
were also observed; only 1 enriched GO was identified under
the response to stimulus GO. The most enriched pathways were
found under the Disease (Reactome) category. A few enriched
pathways were also found under Metabolism (KEGG), Human
Diseases (KEGG), Metabolism (Reactome), Cellular responses to
stimuli (Reactome), Transcription (Reactome), Muscle
contraction (Reactome), Chromatin organisation (Reactome),
Developmental biology (Reactome) and Haemostasis
(Reactome). In 2 vs. 10-day data, only 2 enriched GOs were
obtained, one each under response to stimulus and metabolic
process GOs. The most enriched pathways were found under
the Disease (Reactome) category. A few enriched pathways were
also found under Metabolism (KEGG), Immune system
(Reactome), Vesicle-mediated transport (Reactome), Metabolism of
proteins (Reactome) andHaemostasis (Reactome). Finally, in 6 vs. 10-
day data, only 2 enriched GOs were obtained, one each under
biological regulation and metabolic process GOs. However, there
were no enriched pathways. The number of the total and enriched
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Gene Ontologies (BP, MF, CC) and Pathways (KEGG, Reactome) are
shown in Table 3. Detailed information on enriched Gene ontologies
was mentioned in Supplementary Table S6, and enriched pathways
were mentioned in Supplementary Table S7.

Co-expression analysis

In both breed-based and timepoint-based analysis, several co-
expression modules were identified between DEGs and
DElncRNAs. Supplementary Table S8 shows the statistics of the
co-expression analysis of all the datasets. There were no outliers in
all the datasets. Scale-free topology model, fit index cutoff, was set
to 0.8, and soft power was chosen according to the index. In a few
cases where the index was below the cutoff, a soft power of 9 was
chosen, as mentioned in the user manual. The minimum module
size was 15 for Breed-based analysis and 9 for timepoint-based
analysis. In breed-based analysis, the highest number of modules

were identified in challenged 2-day and 6-day samples. In
timepoint-based analysis, most modules were identified in
Leghorn 2 vs. 6-day samples.

Functional analysis of lncRNAs

Most of the interactions were found to be trans-regulatory
interactions, as shown in Table 4. About 93% were trans
interactions, and 7% were found to be cis interactions. The
lncRNAs were found to be downstream of the co-expressing gene
in about 49.11% of cis interactions, upstream of the co-expressing
gene in about 48.16% interactions, within the co-expressing gene in
about 2.28% interactions, lncRNAs were spanning the 5′end in about
0.06% interactions and 3′end in about 0.38% interactions. The
lncRNAs involved in cis interactions were functionally annotated
from the functional annotation of the DEGs co-expressing with this
lncRNA at all the different conditions. The results are mentioned in

TABLE 3 Table showing the number of Total and Enriched Gene Ontologies, i.e., Biological Process (BP), Molecular Function (MF) and Cellular Component
(CC), Pathways, i.e., KEGG and Reactome identified in all the conditions in (A) Breed based and (B) Timepoint based analysis.

A Non-Challenged Challenged

2-day 6-day 10-day 2-day 6-day 10-day

BP Total 2,314 1773 704 3,093 1,483 1,366

Enriched 5 4 5 106 0 15

MF Total 433 403 145 633 260 265

Enriched 0 1 0 14 0 1

CC Total 314 288 133 446 221 229

Enriched 3 1 0 31 0 0

KEGG Total 188 147 34 280 76 75

Enriched 7 4 1 33 3 1

REACTOME Total 470 311 87 863 170 185

Enriched 16 14 0 23 14 12

B Leghorn Fayoumi

2 v/s 6 2 v/s 10 6 v/s 10 2 v/s 6 2 v/s 10 6 v/s 10

BP Total 2,799 2026 347 758 1770 407

Enriched 51 2 2 0 18 0

MF Total 529 415 57 161 359 87

Enriched 2 0 0 0 1 0

CC Total 399 308 46 131 278 63

Enriched 22 0 0 0 1 0

KEGG Total 193 115 8 44 87 0

Enriched 3 4 0 1 0 0

REACTOME Total 547 347 15 57 382 35

Enriched 22 16 0 3 14 0
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TABLE 4 Table showing the number of cis and trans pairs of co-expressing genes and lncRNAs identified in (A) Breed-based and (B) Timepoint-based
analysis.

A Non-challenged Challenged

Timepoint 2-day 6-day 10-day 2-day 6-day 10-day

Total interactions 41,046 30,804 3,153 184,065 4,052 7,991

Trans 38,245 28,734 2,907 171,927 3,722 7,247

Cis Total 2,801 2070 246 12,138 330 744

Downstream 1,342 1,037 145 5,926 155 397

Upstream 1,332 901 98 6,008 168 321

Within gene 108 103 3 172 7 25

At 3′ end 16 25 0 28 0 1

At 5′ end 3 4 0 4 0 0

B Leghorn Fayoumi

Timepoint 2v6 2v10 6v10 2v6 2v10 6v10

Total interactions 233,843 39,185 11 1,314 49,714 42

Trans 220,243 36,781 11 1,211 46,612 35

Cis Total 13,600 2,404 0 103 3,102 7

Downstream 6,969 1,112 0 49 1,485 0

Upstream 6,414 1,177 0 52 1,617 3

Within gene 181 87 0 2 0 4

At 3′ end 28 23 0 0 0 0

At 5′ end 8 5 0 0 0 0

FIGURE 5
Figure showing the Network plot between immune annotated differentially expressed genes (Blue colour Diamond shaped), co-expressing
differentially expressed lncRNAs (Black colour spherical shaped), associated transcription factors (Red colour triangular shaped), microRNAs (Pink colour
arrow shaped) and biological process GOs (Green colour rectangular shaped) identified in breed based analysis. (A) non-challenged 2-day, (B) non-
challenged 6-day, (C) non-challenged 10-day, (D) challenged 2-day, (E) challenged 6-day, (F) challenged 10-day.
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Supplementary Table S9. In breed-based analysis, challenge 2-day
data showed the highest number of cis-interactions, DElncRNAs and
DEGs, while non-challenged 10-day data showed the least number of
cis-interactions, DElncRNAs and DEGs. In timepoint-based analysis,
Leghorn 2 vs. 6-day data showed the highest number of cis-
interactions, DElncRNAs and DEGs. In contrast, the Fayoumi
6 vs. 10 days data showed the least cis-interactions, DElncRNAs,
and DEGs. There were no cis-interactions in Leghorn 6 vs. 10-day
data. About 852 different lncRNAs were found to co-expressing with
DEGs annotated with either an immune-related GO term or an
immune system pathway, of which 435 lncRNAs were involved in
more positive coregulations and 417 lncRNAs were involved in more
negative coregulations.

Gene-transcription factor
interaction analysis

A total of 10 motifs were identified in the 5’ UTR of the DEGs
expressed across all the conditions. Of these, 4 motifs (motifs 1, 2,
4 and 5) showed hits with transcription factors with a q-value of <0.05.
About 47 transcription factors were identified for all the DEGs across
all the conditions. Motif 1 showed hits with 21 transcription factors,
motif 2 with 17 transcription factors, motif 4 with 30 transcription
factors and motif 5 with 13 transcription factors. These transcription
factors belong to 4 families: bHLH, E2F, ZBTB and zf-C2H2. The
details of all the transcription factors identified using TomTom were
mentioned in Supplementary Table S10A and details of transcription

factors associated with immune-related genes were mentioned in
Supplementary Table S10B.

Gene -miRNA interaction analysis

A total of 661 miRNAs were found to interact with 431 DEGs
across all six conditions. A total of 688 DEGs showed no miRNAs
associated with them. About 79 miRNAs were found to target
immune-related genes. The genes KIF13B and PRELP were
targeted by the highest number of miRNAs, 50 miRNAs, and the
miRNA gga-mir-1776 was found to target the highest number of
DEGs, 47 DEGs. The details of microRNAs associated with DEGs
were mentioned in Supplementary Table S10C.

Interaction network analysis

The DEGs annotated with Immune-related Gene Ontology terms
and Immune system pathways, along with co-expressingDElncRNAs,
the associated transcription factors and miRNAs, were selected and
plotted as network figures using Cytoscape (Shannon et al., 2003). In
the network plot, Immune-annotated DEGs were represented by blue
diamond nodes, co-expressing DElncRNAs with black spherical
nodes, associated transcription factors with red triangular nodes,
microRNAs with pink arrow nodes and biological process GOs
with green rectangular nodes. The lncRNAs, TFs and microRNAs
surrounding a specific gene were interacting with that particular gene

FIGURE 6
Figure showing the Network plot between immune annotated differentially expressed genes (Blue colour Diamond shaped), co-expressing
differentially expressed lncRNAs (Black colour spherical shaped), associated transcription factors (Red colour triangular shaped), microRNAs (Pink colour
arrow shaped) and biological process GOs (Green colour rectangular shaped) identified in timepoint based analysis. (A) Leghorn 2 v/s 6-day, (B) Leghorn
2 v/s 10-day, (C) Fayoumi 2 v/s 6-day, (D) Fayoumi 2 v/s 10-day.
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TABLE 5 Table showing the number of differentially expressed genes associated with different types of QTLs obtained in (A) Breed-based analysis and (B)
Timepoint based analysis.

A Non-challenged Challenged

2-day 6-day 10-day 2-day 6-day 10-day

Total Genes 320 225 31 855 85 132

Exterior QTL 133 101 17 367 43 68

Health QTL 201 135 23 506 55 86

Physiology QTL 121 97 10 336 35 55

Production QTL 302 214 31 820 84 127

B Leghorn Fayoumi

2v6 2v10 6v10 2v6 2v10 6v10

Total Genes 456 226 5 38 223 12

Exterior QTL 185 94 2 12 92 6

Health QTL 277 143 3 22 146 9

Physiology QTL 174 95 3 18 100 6

Production QTL 439 215 3 34 211 12

FIGURE 7
Figure showing the relative expression (2-DDCT) values of DElncRNAs and co-expressing genes identified in (A) 2 vs. 10-day, (B) 2 vs. 6-day and (C)
6 vs. 10-day conditions, with 2 days data represented as green bars, 6 days data as orange bars and 10 days data as blue bars. SEM values were plotted as
error bars, and significance values (p) were represented by–*−p≤0.05, **−p≤0.01 and ***−p≤0.001.
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and those in a separate cluster were interacting commonly with
multiple genes. In breed-based analysis, six different network plots
were generated and represented in Figure 5. In this figure, A
represents network data obtained in non-challenged 2-day data. Of
the 10 DEGs, the gene LGMN showed highest number of interactions
with lncRNAs (557) and gene CD47 showed the least (96). The genes
CD47, GPRC5B, LGMN and TF showed several lncRNAs which were
co-expressing only with the respective gene. The lncRNAs and TFs in
the central region denote the common one between all the DEGs. In
Figure 5B represents network obtained from non-challenged 6-day
data. Of the 11 DEGs, the gene DDOST showed highest interactions
(179) and gene PECAM1 showed the least (11). The genes FLNB,
GPRC5B, LGMN, MSTRG.22587, PECAM1 and TF showed several
lncRNAs which were co-expressing only with the respective gene. In
Figure 5C represents network obtained in non-challenged 10-day
data. Only 1 gene GPRC5B was identified. In Figure 5D represents
network obtained in challenged 2-day data. Of the 19 DEGs, the gene
DDOST showed highest interactions (1,035) and gene FGL2 showed
the least (51). The genes GPRC5B, LGMN and TF showed several
lncRNAs which were co-expressing only with the respective gene. In
Figure 5E represents network obtained in challenged 6-day data. Of
the 4 DEGs, the gene GPRC5B showed highest interactions (104) and
gene MSTRG. 19088 showed the least (1). All the 4 genes - ANXA2,
GPRC5B, MSTRG.19088 and PADI2 showed several lncRNAs which
were co-expressing only with the respective gene. In Figure 5F
represents network obtained in challenged 10-day data. Of the
2 DEGs, MSTRG.9319 showed highest interactions (100) and gene
GPRC5B showed the least (93). Both the genes showed several
lncRNAs which were co-expressing only with the respective gene.

In timepoint-based analysis, only four different network plots
were generated and represented in Figure 6, as there were no
interactions in Leghorn 6 v/s 10 DPC and Fayoumi 6 v/s
10 DPC data. In Figure 6A represents network obtained in
Leghorn 2 v/s 6-day data. Of the 18 DEGs, the gene DDOST
showed highest interactions (558) and genes CD47 and
FGL2 showed the least (33). The genes ANXA2, CD74, DDOST
showed several lncRNAs which were co-expressing only with the
respective gene. In Figure 6B represents network obtained in
Leghorn 2 v/s 10-day data. Of the 10 DEGs, the genes DDOST
and TF showed highest interactions (214) and genes CD74 showed
the least (11). The genes MSTRG. 22587 and TF showed several
lncRNAs which were co-expressing only with the respective gene. In
Figure 6C represents network obtained in Fayoumi 2 v/s 6-day. Only
1 gene MSTRG. 20675. In Figure 6D represents network obtained in
Fayoumi 2 v/s 10-day. Of the 5 DEGs, the gene TF showed highest
interactions (264) and the gene MSTRG. 20675 showed the least
(113). The genes DDOST, SH3BP5 and TF showed several lncRNAs
which were co-expressing only with the respective gene.

QTL analysis

About 3,972 QTLs were obtained, including 729 Exterior,
1,006 Health, 654 Physiology and 1,583 Production QTLs. Of all six
conditions, challenged 2-day samples showed the highest number of all
types of QTLs (2032), and normal 10-day showed the lowest number of
all QTLs (81). The details of the number of different types of QTLs
obtained in each of the conditions are shown in Table 5.

Validation studies

The relative expression values between respective timepoints
were calculated using the 2-ΔΔCt method individually for each
condition, i.e., 2 vs. 10-day, 2 vs. 6-day and 6 vs. 10-day Figure 7
shows the relative expression values of DElncRNAs and co-
expressing DEGs identified in A: 2 vs. 10-day, B: 2 vs. 6-day and
C: 6 vs. 10-day timepoints. The relative expression values
determined through RT-PCR were consistent with the in silico
analysis. In addition, the unpaired t-test results show that all the
7 lncRNAs and 5 genes showed significant differences.

Discussion

Newcastle disease is a highly contagious disease that causes
severe economic losses in the poultry industry worldwide. The
harderian gland is one of the least studied tissues in chicken, and
it is known to play a potential role in immune response. Our
previous study identified the role of long noncoding RNAs and
genes differentially expressing between normal and challenged
chicken (challenge-based analysis). In this study, we have
identified the role of long noncoding RNAs and genes that were
differentially expressed between Leghorn and Fayoumi breeds of
chicken (breed based analysis) and between the timepoints (2D, 6D,
10D) of challenged chicken (timepoint based analysis) of both the
breeds separately.

In differential expression analysis, compared to challenge-based
analysis, breed-based analysis and timepoint-based analysis showed
more DEGs and DElncRNAs. A higher number of DEGs and
DElncRNAs were found to be upregulated. This result shows
higher differences between the two breeds than between the two
disease conditions, i.e., challenge vs. non-challenge. Comparatively,
the number of DElncRNAs is higher than the number of DEGs, but
the expression levels of the DEGs were higher on average than that of
DElncRNAs. In breed-based analysis, Challenge 2-day data showed
more DEGs, followed by non-challenged 2-day data. The number of
DEGs was found to be decreasing with time in both challenged and
non-challenged animals. This analysis shows that both breeds
showed a difference in gene expression in normal conditions and
invoked a significantly different response against the
NDV challenge.

In timepoint-based analysis, more DEGs and DElncRNAs were
identified in the Leghorn datasets than in the Fayoumi datasets. At
the 2 vs. 6-day condition, Leghorn showed a higher number of DEGs
and DElncRNAs compared to Fayoumi, which shows that NDV
challenge had showed a significant response right at the initial stages
in susceptible Leghorn in comparison to resistant Fayoumi. At the
2 vs. 10-day condition and 6 vs. 10-day condition, the number of
DEGs and DElncRNAs was similar in both Leghorn and Fayoumi.

Further, functional annotation has revealed that about 78 DEGs
were annotated with immune-related GOs, i.e., Immune system
process (GO:0002376), and about 240 DEGs were annotated with
Immune system (Reactome) pathways. Commonly, 28 DEGs were
found to be annotated with both immune-related GOs and
pathways. About 290 DEGs were found to be annotated with
either the Immune GO term, Immune system pathway, or both.
In breed-based analysis, most immune-related genes were

Frontiers in Molecular Biosciences frontiersin.org14

Vanamamalai et al. 10.3389/fmolb.2024.1365888

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1365888


upregulated in Fayoumi in challenged and non-challenged groups.
These DEGs were also highest at 2-day timepoints and decreased at
6-day and 10-day timepoints. There was a significant number of
immune genes at the 2-day timepoint in non-challenged data, which
indicates the differences between both breeds and indicates that
these genes could play a potential role in Fayoumi being
more resistant.

In contrast, the timepoint-based analysis shows that Leghorn
shows more immune genes at 2 vs. 6-day and 2 vs. 10-day
conditions, while Fayoumi shows more downregulated immune
genes at 2 vs. 10-day and 2 vs. 6-day conditions. Several immune
genes were upregulated in Leghorn at 2 vs. 6-day, and 2 vs. 10-day
were downregulated in Fayoumi at 2 vs. 6-day and 2 vs. 10-day
conditions. These results show that although Fayoumi shows a
higher level of expression and more upregulated immune genes
than Leghorn, it shows downregulation between two timepoints,
which could mean that the higher expression had impacted the
disease progress in Fayoumi in the initial stages. Later, the
expression decreased due to a reduction in infection. As
mentioned in previous studies, this result correlates with
decreased NDV titer over time in Fayoumi.

The functional enrichment analysis observed that breed-based
analysis challenge 2-day data showed the highest number of
enriched GOs and pathways. In timepoint-based analysis,
Leghorn 2 vs. 6-day data showed the highest number of enriched
GOs and pathways. In breed-based analysis, challenged chicken
showed a higher number of enriched GOs under cellular process and
metabolic process GOs and few under response to stimulus GO,
which were at the bottom of the gene list, i.e., downregulated at 2-
day timepoint and at the top of the gene list, i.e., upregulated at 10-
day timepoint. The non-challenged chicken also showed a similar
type of enriched GOs with only cellular process GOs downregulated
at the 2-day timepoint and cellular process GOs along with few
metabolic process and response to stimulus GOs were upregulated at
6-day and 10-day timepoints. In timepoint-based analysis, Leghorn
has shown several enriched GOs under cellular process,
developmental process and metabolic process at the bottom of
the gene list, i.e., downregulated at all three conditions–2 vs. 6-
day, 2 vs. 10-day and 6 vs. 10-day. In the case of Fayoumi, enriched
GOs were observed only in 2 vs. 10-day condition and under cellular
process, biological regulation and developmental process GOs,
which were at the top of the gene list, i.e., upregulated. This
result shows that the NDV challenge has impacted and
downregulated several non-immune Gene ontologies in Leghorn,
while Fayoumi showed upregulation. These results show the clear
differentiation in the expression of the genes between Leghorn and
Fayoumi during NDV challenge and normal conditions. This
finding also correlates with the transcriptomic expression
patterns identified previously in the trachea transcriptome.

The co-expression analysis of DEGs and DElncRNAs showed
that most of the gene-lncRNA interaction pairs were of trans type.
As cis-lncRNAs were said to have a higher potential to regulate
genes upstream or downstream, the cis-lncRNA-gene pairs were
analysed further. It was observed that there were slightly higher
numbers of positive and negative correlated interactions than
negative. Almost 25% of the pairs involved the genes annotated
with either an immune-related GO term or an immune system
pathway. Positive and negative correlations were observed, with

positive being slightly higher. In both challenge and timepoint-based
analyses, Leghorn showed more cis-lncRNA interactions with
immune-related genes than Fayoumi. While the breed-based
analysis also showed several upregulated positive co-expressing
lncRNAs. About 852 different DElncRNAs were found to be co-
expressing with 178 different immune genes. About 12 different
lncRNAs, i.e., TCONS_00110137, TCONS_00110138, TCONS_
00116420, TCONS_00121555, TCONS_00126074, TCONS_
00127291, TCONS_00128750, TCONS_00135305, TCONS_
00137724, TCONS_00153297, TCONS_00138596 and TCONS_
00151487 were found to be co-expressing with a set of same
24 immune genes, of which 21 genes were found to be having
positive correlation with 10 DElncRNAs and negative correlation
with 2 DElncRNAs.

In contrast, 3 DEGs were found to have a negative correlation
with the same 10 DElncRNAs and a positive correlation with the
other 2 DElncRNAs. The gene LYZ was found to have
145 different co-expressing DElncRNAs, with 68 positive and
77 negative interactions. Twelve different immune genes were
found to be co-expressing with only 1 DElncRNA each, with
8 genes having a positive correlation and 4 genes having a
negative correlation. Across all the conditions, except in
challenge 2-day data, a higher number of gene lncRNA co-
expression pairs were found to be positively co-expressing
with immune-related genes than negative. In challenge 2-day
data, more antagonistic co-expression pairs were observed.
Compared to Fayoumi, a higher number of immune-related
gene-lncRNA co-expression pairs were observed in Leghorn
2 vs. 6 days data, similar to genes. In addition, breed-wise
QTL analysis showed that challenged 2-day samples showed
the highest number of QTLs and non-challenged 10-day
showed the lowest number of QTLs. The highest number of
genes with Health QTL were also observed in challenge 2-day
data. In timepoint-wise QTL analysis, Leghorn showed the
highest number of genes with QTLS under the health QTL
category compared to Fayoumi in all conditions.

Apart from this, several transcription factors and microRNAs
interacting with the DEGs were also identified. Transcription factors
interacting with the 28 immune annotated genes were identified, of
which 5 DEGs showed no motifs with transcription factors, 2 DEGs
showed all 4 motifs and all 47 transcription factors were found to
interact with them. The remaining 21 DEGs showed 1-3 motifs and
12–46 transcription factors. Of the identified 47 transcription
factors, 17 belong to zf-C2H2 (zinc finger Cys2–His2) family,
which are known to play a vital role in disease and
developmental process (Han et al., 2016), 14 belong to bHLH
(basic helix-loop-helix) family, which play vital role in cell
determination, differentiation and proliferation (Ledent and
Vervoort, 2001), 1 belongs to ZBTB (Zinc finger and BTB
domain containing) family, which play a vital role in
differentiation, development and functioning of T-lymphocytes
and related molecular mechanisms (Cheng et al., 2021),
1 belongs to E2F family, which regulate cell cycle and apoptotic
processes (Xanthoulis and Tiniakos, 2013) and 14 were of unknown
families. Along with the positive co-expressing lncRNAs, further
studies can also use this transcription factor information to enhance
the expression of the immune-related DEGs in the susceptible
Leghorn breed to improve the overall resistance. Along with this,
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several microRNAs were identified to be associated with DEGs. In
the case of the 28 immune-related genes, 13 genes showed no
miRNAs. The remaining 15 genes were identified to be targeted
by 79 different miRNAs. Of them, the miRNA gga-mir-2127 was
identified to be targeting 3 genes–CD74, DUSP7 and PTPRC.
Similarly, the miRNAs gga-mir-1647 (DUSP7 & GPRC5B), gga-
mir-6556-5p (DDOST & LGMN), gga-mir-6561-5p (DUSP7 &
IRF8), gga-mir-6587-3p (DUSP7 & LOC419851), gga-mir-6637-
3p (ACTB & DUSP7), gga-mir-6649-3p (DDOST & TMEM263),
gga-mir-6656-5p (DDOST & PDIA3), gga-mir-7456-5p (GPRC5B
& TMEM263) and gga-mir-7460-5p (TF & TMEM263) were
identified to be targeting 2 different genes each. Future research,
including studies like small RNA-seq and chip-seq, can give further
insights into miRNA and transcription factor expression levels
during NDV challenge in chickens. This data, along with the
information on transcription factors, microRNAs and co-
expressing DElncRNAs identified in this study, can be used
further to work on any specific genes that play a vital role in the
immune system processes during NDV challenge in chickens to
enhance their expression thereby improving the resistance in the
susceptible breeds.

In our previous study on harderian gland data, it was observed
that Leghorn showed a higher number of DEGs and DElncRNAs,
especially those annotated with immune-related GO terms and
pathways mainly in the comparison–Leghorn 6 DPC challenged
vs. non-challenged. In comparison, resistant Fayoumi showed a
lesser number of DEGs. The expression pattern of DElncRNAs
was also found to be similar. In addition to this information, in
the current study, Leghorn showed a higher number of upregulated
immune-related genes than Fayoumi in timepoint-based analysis
(between timepoints during the challenge), especially during the
initial stages. This finding shows that Leghorn, being
comparatively more susceptible to NDV than Fayoumi, showed
several immune-related genes and positive co-expressing cis
lncRNAs upregulated in challenged Leghorn when compared to
non-challenged Leghorn and also in different timepoints during
challenge. Surprisingly, Fayoumi, being comparatively resistant,
showed little difference between challenged and non-challenged
conditions and different time points of the challenge. This finding
could also mean that Fayoumi might have similar immune gene and
cis-lncRNA expression levels even during non-challenged conditions.
The breed-based analysis, which compared Leghorn with Fayoumi in
both challenged and non-challenged conditions separately, identified
several immune-related genes and positive co-expressing cis lncRNAs
to be upregulated in Fayoumi when compared to Leghorn in both
challenged and non-challenged conditions. This result clearly shows
that the differences in the expression of genes annotated with
immune-related GO terms and pathways, i.e., immune-related
genes and the co-expressing cis-lncRNAs between Leghorn and
Fayoumi, and their role in the presence of differences in the
resistance of Leghorn and Fayoumi chicken against NDV. This
study is limited to in silico analysis of harderian gland tissue
transcriptome data and experimental validation of expression of a
few selected lncRNAs and co-expressing genes. The analysis of
different tissues helps to understand the overall response of the
host during disease. Further studies need to be done to unravel the
mechanisms of co-expression and interaction of DEGs and
DElncRNAs, which might be used for breed improvement.

Conclusion

Newcastle disease is a highly contagious disease causing substantial
economic impact. Leghorn and Fayoumi are the two breeds of chicken,
with the first being comparatively more susceptible to NDV than the
latter. In this study on harderian gland transcriptome analysis, we
observed that the number of DEGs decreased with time in both
challenged and non-challenged animals, and there was a significant
difference in gene expression between Leghorn and Fayoumi, even in
normal conditions. Several immune genes were differentially expressed
at the 2-day timepoint in non-challenged data, which indicates the
differences between both breeds, and this shows that these genes could
play a potential role in Fayoumi being more resistant. In contrast, the
timepoint-based analysis shows several genes annotated with immune-
related GOs and pathways were upregulated in Leghorn and
downregulated in Fayoumi between 2-day, 6-day and 10-day
timepoints. These results show that, unlike Leghorn, Fayoumi shows
a higher immune response initially and later, the response subsides with
reduced infection. This result also correlates with decreased NDV titer
over time in Fayoumi, as mentioned previously. In addition, the breed-
based analysis showed several immune genes and positive cis-lncRNAs,
which were upregulated in Fayoumi compared to Leghorn in both
challenge and non-challenge conditions. Apart from immune-related
genes, it was observed that there were several non-immune genes which
were downregulated in Leghorn and upregulated in Fayoumi. A similar
expression pattern was observed in the case of lncRNAs co-expressing
with these genes. This study clearly shows the differences in the
expression patterns of both genes and lncRNAs in Leghorn and
Fayoumi during the NDV challenge in the harderian gland
transcriptome. Further, in-depth analysis, including data from
different tissues, will reveal several lncRNAs that might regulate the
immune-related genes, making Fayoumi comparatively more resistant
to NDV than Leghorn. The mechanism behind regulating the immune
response and the role of the genes and lncRNAs can be utilised in breed-
improvement programs to enhance the resistance of susceptible breeds.
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