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Background: Epidemiological research has demonstrated that there is a
connection between lipid metabolism disorder and an increased risk of
developing arteriosclerosis (AS) and abdominal aortic aneurysm (AAA).
However, the precise relationship between lipid metabolism, AS, and AAA is
still not fully understood. The objective of this study was to examine the pathways
and potential fatty acidmetabolism-related genes (FRGs) that are shared between
AS and AAA.

Methods: AS- and AAA-associated datasets were retrieved from the Gene
Expression Omnibus (GEO) database, and the limma package was utilized to
identify differentially expressed FRGs (DFRGs) common to both AS and AAA
patients. Functional enrichment analysis was conducted on the (DFRGs), and a
protein-protein interaction (PPI) network was established. The selection of
signature genes was performed through the utilization of least absolute
shrinkage and selection operator (LASSO) regression and random forest (RF).
Subsequently, a nomogram was developed using the results of the screening
process, and the crucial genes were validated in two separate external datasets
(GSE28829 and GSE17901) as well as clinical samples. In the end, single-sample
gene set enrichment analysis (ssGSEA) was utilized to assess the immune cell
patterns in both AS and AAA. Additionally, the correlation between key crosstalk
genes and immune cell was evaluated.

Results: In comparison to control group, both AS and AAA patients exhibited a
decrease in fatty acid metabolism score. We found 40 DFRGs overlapping in
AS and AAA, with lipid and amino acid metabolism critical in their
pathogenesis. PCBD1, ACADL, MGLL, BCKDHB, and IDH3G were identified
as signature genes connecting AS and AAA. Their expression levels were
confirmed in validation datasets and clinical samples. The analysis of
immune infiltration showed that neutrophils, NK CD56dim cells, and Tem
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cells are important in AS and AAA development. Correlation analysis suggested
that these signature genes may be involved in immune cell infiltration.

Conclusion: The fatty acid metabolism pathway appears to be linked to the
development of both AS and AAA. Furthermore, PCBD1, ACADL, MGLL,
BCKDHB, and IDH3G have the potential to serve as diagnostic markers for
patients with AS complicated by AAA.
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abdominal aortic aneurysm, bioinformatics, Atherosclerosis, lipid metabolism disorder,
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Introduction

Abdominal aortic aneurysm (AAA) is a cardiovascular
condition characterized by the abnormal enlargement of the
aorta, exceeding 50% of its normal diameter. This condition can
potentially result in the rupture of the aorta, leading to severe
bleeding (Sakalihasan et al., 2018). Typically, patients with AAA
do not experience any symptoms until a rupture occurs. This is a
prevalent and potentially fatal illness that results in over
150,000 deaths worldwide every year (Golledge et al., 2006;
Ullery et al., 2018). Aneurysms exceeding 5.5 cm in diameter,
which expand quickly within a brief timeframe and disrupt blood
flow to organs far from the heart, may be suitable for traditional
open surgery or endovascular repair of the aorta. Nonetheless,
relying solely on these size parameters as indicators does not
yield highly accurate assessments (Chaikof et al., 2018).
Moreover, during the monitoring period, small AAA may burst,
and currently, there is an insufficient range of effective treatments to
alter the course of AAA development (Golledge, 2019; Oliver-
Williams et al., 2019). Hence, it is essential to unravel the
fundamental processes driving the initial advancement of AAA in
order to pinpoint precise targets for effective treatment.

Atherosclerosis (AS), a condition characterized by the
thickening of arterial walls as a result of the accumulation of
lipids and inflammation, is affected by the equilibrium between
inflammatory and reparative mechanisms (Bäck et al., 2019). The
onset of this disease occurs when lipoproteins penetrate the arterial
lining and are taken up by macrophages, resulting in the formation
of fatty foam cells. Insufficient removal of these cells exacerbates
the advancement of the condition (Sukhorukov et al., 2020; Cui
et al., 2021). The growing body of evidence indicates a potential
link between AS and AAA (Trollope and Golledge, 2011; Peshkova
et al., 2016; Hołda et al., 2020; Takahashi, 2021). The pathways
associated with the metabolism of lipids could potentially elucidate
the shared pathogenic mechanism between AS and AAA. AS can
begin with the accumulation of Apo B-containing lipoproteins
within the walls of arteries, which leads to the activation of the
endothelium and the influx of monocytes. This process contributes
to the buildup of cells, extracellular matrix, and lipids within the
arterial vessels (Ruparelia and Choudhury, 2020). In individuals
with AS, disturbances in the metabolism of liver lipids could
heighten the likelihood of developing atherosclerotic conditions
(Zhang et al., 2022). In addition, imbalanced lipid metabolism,
which causes irregular cholesterol levels, is a key risk factor for AS.
Consequently, therapies focusing on restoring lipid homeostasis
are essential in reducing AS incidents (Aguilar-Ballester et al.,

2020). The experimental induction of AAA leads to significant
changes in the metabolic composition of both aortas and blood.
These changes are primarily focused on the disruption of nitric
oxide production, lipid metabolism, and energy-related metabolic
pathways (Guo et al., 2020; Chao de la Barca et al., 2022). Elevated
lipoprotein levels have been found to be an independent indicator
of increased risk of disease in patients with AAA (Kubota et al.,
2018). In patients with AAA, there is a notable elevation in low-
density lipoprotein, which primarily transports cholesterol
produced within the body. This increase is considered a
potential risk factor that could adversely affect the outlook for
individuals with AAA (Hobbs et al., 2003). Conversely, high-
density lipoprotein, which primarily facilitates the removal of
cholesterol from the bloodstream, exhibits an inverse
relationship with the risk of AAA (Takagi et al., 2010). These
findings implied a significant correlation between lipid
metabolism, AS, and AAA. Yet, the exact molecular mechanism
and the pathological correlations are still not well-defined.
Therefore, investigating biomarkers associated with lipid
metabolism could be immensely valuable for comprehending
the underlying mechanisms and developing future treatments
for individuals suffering from AS who are further
complicated by AAA.

Based on this foundation, our proposed approach involves
utilizing bioinformatics to analyze datasets related to AS and
AAA in the GEO database. The aim is to identify fatty acid
metabolism-related genes (FRGs), and validate their differential
expression using external datasets and clinical samples.
Additionally, we conducted single-sample gene set enrichment
analysis (ssGSEA) to evaluate the immune cell patterns in AS
and AAA. Furthermore, we calculated the correlation between
key shared genes and each immune cell type. The ultimate goal
is to gain new insights into the mechanisms underlying the onset
and progression of AS and AAA, and to identify potential
biomarkers for the diagnosis and treatment of individuals with
AS complicated by AAA.

Methods

Raw data acquisition and pre-processing

Gene expression profiles for AS and AAA were sourced from the
Gene Expression Omnibus (GEO), accessible at the following URL:
https://www.ncbi.nlm.nih.gov/geo/. The selection of datasets
included the following criteria: (i) the generation of gene
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expression profiles via array techniques; (ii) arterial tissue served as
the source for sample collection; (iii) the inclusion of datasets
comprising a minimum of 10 samples; (iv) the availability of raw
data for investigative purposes. After applying these parameters, the
datasets GSE57691 (AAA), GSE47472 (AAA), GSE98278 (AAA),
GSE17901 (AAA), GSE100927 (AS), and GSE28829 (AS) were
identified and chosen for subsequent analysis. Supplementary
Table S1 displays the characteristics of the participants. The affy
package was utilized to carry out preprocessing and normalization of
these datasets. Due to the limited number of samples in the datasets
related to AAA, especially with the control group having fewer than
10 samples, the combat function from the sva package was used to
integrate three datasets (GSE57691, GSE47472, and GSE98278)
associated with AAA. As a result, there were 18 control samples
and 94 AAA samples in total. This combined dataset is used as the
analysis set, defined as AAA-related merged data sets. To validate
the signature genes implicated in AAA, we employed the
GSE17901 dataset, which is derived from a mouse model using
ApoE−/−mice subjected to angiotensin II-induced AAA (Spin et al.,
2011). This well-characterized model was chosen due to its
documented mimicry of human AAA pathology, particularly in
terms of vascular inflammation and immune response.
GSE100927 includes 35 control samples and 69 AS samples,
while GSE28829 consists of 13 early AS and 16 advanced AS
(Table 1). In addition, 158 FRGs was gathered from the
Molecular Signatures Database (MSigDB).

Identifying differentially expressed
genes (DEGs)

We utilized the limma package to conduct a comparative
analysis of gene expression between the control (Con) and
disease groups. The DEGs were identified by applying the
criterion of a p. adj <0.05 (Yuan et al., 2022). Volcano maps
were utilized to visualize DEGs from datasets, with the assistance
of the ggplot package.

Assessment of fatty acid metabolism score
between con and disease groups

The fatty acid metabolism score was evaluated using the gene
set variation (GSVA) approach. To achieve this, we utilized the
GSVA package to compute the fatty acid metabolism score for

each sample, based on the fatty acid metabolism gene set. The
obtained scores were then graphically displayed using a
violin diagram.

Identifying differentially expressed
FRGs (DFRGs)

To acquire the expression profiles of DFRGs, we cross-
referenced the identified FRGs with DEGs from both the
integrated AAA dataset and the GSE100927 dataset. Utilizing the
pheatmap package, we constructed a heatmap to depict the
expression patterns of these DFRGs.

Establishment of a network illustrating
interactions between proteins

We employed the Search Tool for the Retrieval of Interacting
Genes (STRING) database (available at http://string-db.org/) to
analyze protein-protein interactions (PPI) among the identified
overlapping DFRGs. Only PPI with a confidence score exceeding
0.7 were considered. The resulting interaction network was then
visualized using Cytoscape software (version 3.9.0). To further
explore the biological functions of DFRGs, we utilized the
clusterProfiler package for Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis and Gene Ontology (GO)
enrichment analysis.

Machine learning identifies signature genes

The Least Absolute Shrinkage and Selection Operator (LASSO)
is a regression method that is employed for regularization in order to
enhance the accuracy of predictions and improve the
comprehensibility of the model (Li et al., 2022). We employed
the glmnet package to conduct LASSO regression analysis in
order to identify the most effective predictors for AS and AAA
within the aforementioned DFRGs. DFRGs were utilized as input to
construct a Random Forest (RF) model by employing the
randomForest package in R, utilizing a RF classifier. We
determined the significance levels of gene variables using the
MeanDecreaseGini method. Genes that exhibited an importance
value of one or higher were deemed critical and subsequently
selected for the next phases of model development and

TABLE 1 Summary of GEO datasets involving AS and AAA patients.

AAA-related datasets GEO ID Platform Control group Disease group Source Application Species

GSE57691 GPL10558 10 49 Aortic wall Analysis Homo sapiens

GSE47472 GPL10558 8 14 Aortic wall Analysis Homo sapiens

GSE98278 GPL10558 0 31 Aortic wall Analysis Homo sapiens

GSE17901 GPL4134 6 7 Suprarenal aorta Validation Mus musculus

AS-related datasets GSE100927 GPL17077 35 69 Arterial tissue Analysis Homo sapiens

GSE28829 GPL570 13 (early AS) 16 (advanced AS) Arterial tissue Validation Homo sapiens
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validation. For the diagnosis of AS and AAA, the signature genes
were pinpointed as the common genes shared by both LASSO and
RF methods.

Development and evaluation of a
nomogram model

To create the nomogram, we employed the rms package in R,
considering the selected candidate genes. A specific score, known as
“points,” was allocated to each of these genes. The “Total Points”
signifies the aggregate score derived from the entire set of genes. The
effectiveness of the nomogram in diagnosing AS and AAA was
determined by constructing a Receiver Operating Characteristic
(ROC) curve. Additionally, the precision of the model was
evaluated by examining calibration curves and employing
decision curve analysis (DCA).

GeneMANIA database

GeneMANIA (genemania.org) is a user-friendly web platform
that aids in understanding gene functions, analyzing gene groups,
and choosing genes for tests. It predicts functionally similar genes
using genomic and proteomic data upon user input (Franz et al.,
2018). GENEMANIA was utilized to construct a network of
interactions among genes to evaluate the functions of key
signature genes.

Immune microenvironment analysis

The ssGSEA algorithm, which incorporates gene sets linked to a
diverse range of immune cell types, functions, checkpoints, and
pathways, was employed to thoroughly assess the immunological
characteristics inherent to each sample (Mooney et al., 2013). Using
ssGSEA, we quantified the infiltration of 23 different immune cell
types in both control and diseased tissue samples. We then
employed the pheatmap package to create a heatmap that
illustrates the varying patterns of immune cell infiltration across
these samples. The ggplot2 package was used to perform a detailed
analysis of the relationship between the expression levels of
diagnostic genes, the fatty acid metabolism score, and the degree
of immune cell infiltration.

Verification of the signature genes
expression by clinical samples

Samples of arterial tissue were obtained from the popliteal
arteries of 8 AS patients at Changshu Hospital Affiliated to
Soochow University. During open surgical procedures for
repairing full-thickness abdominal aortic aneurysms, tissue
samples from 8 AAA were collected, while tissue from six
healthy visceral aortas was sourced from organ donors at the
time of kidney transplants taking place at Changshu Hospital
Affiliated to Soochow University. Before collecting data, we
obtained written consent from all participants and received

approval for the study protocol from the Ethics Committee of
Changshu Hospital Affiliated to Soochow University.
Supplementary Table S2 displays the baseline characteristics of
the participants.

The TRIzol reagent (Invitrogen, Thermo Fisher) was used to
process tissue samples for RNA extraction, following the
instructions provided by the manufacturer. Quantitative real-time
PCR (qRT-PCR) analysis was performed using the SYBR qPCR
Master Mix (Bio-Rad) after reverse transcription of total RNA to
cDNA with cDNA synthesis kits (Invitrogen, Thermo Fisher). We
utilized the Roche LC480 Real-Time PCR System to quantify the
expression levels of the signature genes. The internal control for
mRNA, GAPDH, was employed in this study.

Results

Genetic screening for differential analysis

In the dataset GSE100927, which is associated with AS, a total of
13,913 DEGs were identified. Among these DEGs, 6,456 were
upregulated and 7,457 were downregulated (Figure 1A). In the
dataset related to AAA, a total of 7,890 DEGs were identified.
Out of these DEGs, 1,430 showed upregulation while
6,460 showed downregulation (Figure 1B). Furthermore, the
GSVA algorithm was utilized to compute the fatty acid
metabolism score, revealing a significant decrease in the disease
group’s score compared to the Con group (Figures 1C, D).
Furthermore, there is a significant reduction in the fatty acid
metabolism score in advanced AS compared to early-stage AS
(Supplementary Figure S1). These findings suggest that the
progression of AS and AAA is closely linked to the regulation of
fatty acid metabolism. Consequently, our study proceeded to
investigate FRGs in subsequent research.

Identification of common genes and
pathways in both AS and AAA

A Venn diagram analysis revealed that there were a total of
40 shared DFRGs when comparing AS-related DEGs and AAA-
related DEGs (Figure 2A). To explore the potential connections
between proteins encoded by the common DFRGs of AS and AAA,
the PPI network was visualized using Cytoscape. This network
consisted of 33 nodes and 118 edges (Figure 2B). Furthermore, it
is evident from the heatmap analysis that a majority of the DFRGs
were downregulated in the AS group (Figure 2C) and advanced AS
group (Supplementary Figure S2). Specifically, a subset of genes
appeared significantly upregulated in the AS group, including DLST,
MGLL, HMGCL, CPT2, BPHL, ACAA1, ACAA2, HSD17B7, MIF,
RDH11, and S100A10. Similarly, nearly all of the DFRGs showed
downregulation in the AAA group when compared to the Con
group (Figure 2D).

Enrichment analysis was conducted on these 40 DFRGs, which
are potentially associated with the development of AS and AAA. The
results of the GO analysis indicate that these genes might play a role
in the organic acid catabolic process, tricarboxylic acid cycle enzyme
complex, NAD binding, etc; KEGG analysis revealed that these
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genes were involved in fatty acid metabolism, fatty acid degradation,
etc (Figure 3). Hence, we put forward a daring hypothesis that the
occurrence of AS and AAA could be influenced by the pathways
associated with fatty acid metabolism.

The discovery and verification of
signature genes

The analysis utilizing LASSO pinpointed eight pivotal genes as
depicted in Figure 4A, while the RF approach revealed nine key

genes with a relative importance exceeding 1, as shown in Figure 4B.
A Venn diagram, presented in Figure 4C, highlighted the common
genes identified by both RF and LASSOmethods. Within this shared
subset, five genes (PCBD1, ACADL, MGLL, BCKDHB, and IDH3G)
were selected for further analysis and validation.

To improve the precision of predicting the progression of AS, a
nomogram has been created, which considers five specific genes
(Figure 5A). By analyzing the receiver operating characteristic
(ROC) curve, the model demonstrated a significant area under
the curve (AUC) value of 0.95 (Figure 5B). The results from the
calibration curve further validated the remarkable precision of the

FIGURE 1
Genetic screening for differential analysis. (A) A graph displaying the volcano plot of DEGs in the GSE100927 dataset. (B) A graph displaying the
volcano plot of DEGs in the AAA-related merged dataset. Comparison of fatty acid metabolism scores in the GSE100927 dataset (C) and AAA-related
merged dataset (D). ***p < 0.001.
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nomogram model in predicting outcomes for patients with AS
(Figure 5C). Additionally, the DCA demonstrated the potential
advantages of employing the nomogram model for AS patients
(Figure 5D). Figure 5E depicts the expression levels of the five
signature genes. In the AS group, the expression values of PCBD1,
ACADL, BCKDHB, and IDH3G were found to be downregulated,
whereas the expression value of MGLL was upregulated. Similarly,
utilizing these five characteristic genes, we developed a nomogram
specifically for AAA patients. The results obtained from the
nomogram were largely in agreement with the findings described
earlier (Figures 5F–J).

Additionally, we confirmed the expression of the signature genes in
two separate external datasets (GSE28829 and GSE17901) as well as in
clinical samples. The expression levels of PCBD1, ACADL, BCKDHB,
and IDH3G genes were observed to decrease in the advanced AS group
compared to the early AS group, as depicted in Figure 6A. Similarly, in
GSE17901 (Figure 6B), the expression levels of ACADL, MGLL,
BCKDHB, and IDH3G genes were found to decrease in the AAA
group compared to the Con group. Furthermore, the results of clinical
samples demonstrates a decrease in the expression levels of PCBD1,
ACADL, BCKDHB, and IDH3G genes in the AAA and AS groups
compared to the Con group (Figure 6C).

FIGURE 2
Identification of shared genes in both the AS and AAA datasets. (A) The Venn diagram illustrates that there is an overlap of 40 DFRGs in both the AS
and AAA datasets. (B) The PPI network of shared DFRGs. The heatmap revealed the presence of 40 FRGs between the disease and control groups in the
GSE100927 dataset (C) and AAA-related merged dataset (D).
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Interaction analysis of shared
signature genes

A correlation analysis was performed on the set of five genes that
serve as signatures. Remarkably, a positive correlation was observed

in the association between PCBD1, IDH3G, and MGLL genes
(Figure 7A). By employing the GeneMANIA database, a protein
interaction network was constructed for the signature genes, and a
total of 20 interacting genes were identified (Figure 7B). GO
enrichment analysis showed that these 25 genes were primarily

FIGURE 3
Enrichment analysis of shared DFRGs. The results of enrichment analyses are presented in the form of bubble plots (A) and clustered tree plots (B).
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FIGURE 4
Identification of the signature genes. (A) The LASSO regressionmodel was employed to identify shared diagnostic genes. (B) The utilization of the RF
aimed at identifying common diagnostic genes. (C) The identification of five shared diagnostic genes was illustrated through the aforementioned two
machine learning techniques, as shown in the Venn diagram.
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FIGURE 5
Construction and assessment of a nomogram model. The utilization of a nomogram was employed to evaluate the likelihood of developing AS (A)
and AAA (F). The ROC curve of the nomogram model for diagnosing AS (B) and AAA (G). Calibration curves were used to evaluate the predictive
performance of the nomogram model using the GSE100927 dataset (C) and AAA-related merged dataset (H). Decision curve analysis curves were
employed to evaluate the clinical utility of the nomogram model using the GSE100927 dataset (D) and AAA-related merged dataset (I). The
comparison of signature genes expression using the GSE100927 dataset (E) and AAA-related merged dataset (J). *p < 0.05, **p < 0.01, ***p < 0.001.
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enriched in the organic acid catabolic process, mitochondrial matrix,
NAD binding, etc; KEGG enrichment analysis showed that these
genes significantly associated with citrate cycle, two-oxocarboxylic
acid metabolism, etc (Figures 7C, D).

Immune infiltration analysis

Given the significance of immune and inflammatory
responses in the progression of AS and AAA, we conducted
an immune infiltration analysis using the ssGSEA algorithm. The

heatmaps revealed a significant disparity in the distribution of
23 immune cells between the AS samples and the AAA samples
(Figures 8A, B). In comparison to the Con group, the AS group
exhibited elevated levels of aDC, B cells, CD8 T cells, cytotoxic
cells, eosinophils, iDC, macrophages, mast cells, neutrophils, NK
CD56bright cells, NK CD56dim cells, T cells, T helper cells, Tcm,
Tem, TFH, Th17 cells, and TReg. Conversely, the AS group
demonstrated reduced levels of NK cells and Tgd (Figure 8C).
Compared to the Con group, the AAA group exhibited elevated
levels of neutrophils, NK CD56dim cells, Tem, Th1 cells, and
Th2 cells (Figure 8D). It is noteworthy that there was a more

FIGURE 6
Validation of signature genes expression using the GSE28829 dataset (A), GSE17901 dataset (B), and clinical samples (C). *p < 0.05, **p < 0.01,
***p < 0.001.
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substantial increase in the infiltration of neutrophils, NK
CD56dim cells, and Tem in both the AS and AAA groups.

Furthermore, the results of correlation analysis demonstrated
a negative association between the fatty acid metabolism score
and the levels of NK CD56dim cells, TFH cells, neutrophils, Tem
cells, cytotoxic cells, NK CD56bright cells, and Th2 cells in both
AS and AAA samples. Conversely, there was a positive
correlation observed between the fatty acid metabolism score
and Tgd cells in both AS and AAA samples (Figures 9A, B). The
correlation analysis of immune cells with signature genes
revealed that TFH and eosinophils exhibited a negative
correlation with PCBD1, ACADL, BCKDHB, and IDH3G in
AS samples. Similarly, Th1 cells, TFH, and B cells displayed a
negative correlation with PCBD1, ACADL, and MGLL in AAA
samples (Figures 9C, D).

Discussion

Numerous studies have consistently shown that patients with
AS are at an increased risk of developing AAA (Ito et al., 2008;
Trollope and Golledge, 2011; Takahashi, 2021). Yet, the exact
relationship between AS and AAA is not fully understood. It is
hypothesized that this link may involve chronic inflammatory
processes, the death of vascular smooth muscle cells, and the
breakdown of the extracellular matrix (Peshkova et al., 2016).
These factors are similarly involved in the development of
atherosclerotic plaques, which implies that AS, often
impacting the aneurysm wall, plays a significant role in the
susceptibility to AAA. The imbalance of pro- and anti-
inflammatory factors in the context of lipid metabolism issues
plays a crucial role in the development and progression of AS

FIGURE 7
Interaction analysis of shared signature genes. (A) Exploring the interconnections among signature genes. (B)Mapping the co-expression network of
signature genes. Enrichment analysis results are presented in the form of bubble plot (C) and heat map (D).

Frontiers in Molecular Biosciences frontiersin.org11

Gu et al. 10.3389/fmolb.2024.1365447

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1365447


(Kotlyarov and Kotlyarova, 2022). There is also a suggestion that
AS is a process characterized by the lipid peroxidative stress and
buildup of lipids (Borgia and Medici, 1998). In addition, the
Mendelian randomization analyses provided evidence to suggest
that lipids have a significant impact on the development of AAA
(Harrison et al., 2018). Hence, understanding the mechanisms in

which lipid metabolism initiates AS and AAA is crucial in the
development of novel therapeutic approaches aimed at
alleviating the impact of these conditions. In this study, we
performed a transcriptomic analysis to identify shared
diagnostic biomarkers and explore the immune relationship
between AS and AAA based on the fatty acid metabolism gene

FIGURE 8
Analysis of immune cell infiltration in AS and AAA samples. Heatmap illustrating the infiltration of 23 different types of immune cells in the datasets
related to AS (A) and AAA (B). (C) The immune cell infiltration between the AS and Con groups can be visualized using a box plot. (D) The immune cell
infiltration between the AAA and Con groups can be visualized using a box plot. *p < 0.05, **p < 0.01, ***p < 0.001.
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set. Our findings provide valuable insights into the molecular
mechanisms underlying these two pathologies and highlight
potential targets for therapeutic interventions.

Firstly, our results demonstrated that 40 FRGs involved in fatty
acid metabolism were differentially expressed in both AS and AAA
samples compared to healthy controls. Moreover, the GSVA

algorithm was employed to calculate the fatty acid metabolism
score, which indicated a significant reduction in the score of the
disease group as compared to the Con group. These findings suggest
that dysregulation of fatty acid metabolismmay play a crucial role in
the development and progression of both diseases. Previous studies
have shown that altered lipid metabolism contributes to the

FIGURE 9
Pearson correlation analysis. Correlation analysis was conducted to examine the relationship between the fatty acid metabolism score and the
presence of infiltrating immune cells in samples of AS (A) and AAA (B). Correlation analysis was performed to investigate the association between the
expression of signature genes and the infiltration of immune cells in AS (C) and AAA (D) samples.
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formation of atherosclerotic plaques and the weakening of the aortic
wall, leading to the development of AS (Zhu et al., 2016; Guo et al.,
2019). The induction of AAA through experimentation leads to a
significant change in the metabolic profile of both the aortas and
blood, primarily focusing on the modification of lipid metabolism
(Guo et al., 2020; Chao de la Barca et al., 2022). In addition, SIRT4 in
mitochondria regulates fatty acid oxidation and its deficiency
promotes AS through NF-κB pathway activation (Chang et al.,
2023). ApoC2, a key member of the apolipoprotein C family,
plays a crucial role in activating lipoprotein lipase. Deficiency in
ApoC2 leads to severe high triglyceride levels and develops
spontaneous AS (Gao et al., 2020). Our findings further support
the involvement of fatty acid metabolism in the pathogenesis of
these two related conditions.

Furthermore, we have identified five shared signature genes
associated with lipid metabolism, namely, PCBD1, ACADL,
MGLL, BCKDHB, and IDH3G, which consistently displayed
dysregulation in both AS and AAA samples. Furthermore, we
opted to validate the signature genes using the mouse AAA
model-related dataset (GSE17901), known for its
representation of human AAA characteristics, particularly
inflammatory and immune processes crucial for aneurysm
advancement. Recognizing the limitations of mouse models in
mimicking human AAA complexity, especially in systemic lipid
metabolism, we gathered clinical samples to further explore the
identified genes’ roles and confirm their relevance to AAA and AS
pathological features, including alterations in lipid metabolism.
Mutations in the PCBD1 gene have been identified as the
underlying cause of transient neonatal hyperphenylalaninemia
and primapterinuria (Ferrè et al., 2014). A previous investigation
presented genetic proof that mutations in PCBD1 can lead to the
development of early-onset nonautoimmune diabetes, which
exhibits characteristics resembling dominantly inherited
HNF1A-diabetes (Simaite et al., 2014). The activation of the
TNF signaling pathway is facilitated by ACADL, leading to the
promotion of intramuscular adipocyte differentiation (Li et al.,
2023). ACADL deficiency pronounced hypoglycemia,
accumulation of lipids, elevated levels of free fatty acids in the
bloodstream, and impaired insulin sensitivity in the liver (Zhang
et al., 2007). ACADL plays a significant role in the unfavorable
prognosis and controls the development of breast cancer (Hill
et al., 2011). Moreover, ACADL has been linked to the
advancement of esophageal squamous cell carcinoma and the
negative prognosis of affected individuals (Yu et al., 2018).
ACADL was identified as a critical gene in the development of
liver hepatocellular carcinoma and is strongly associated with
favorable prognosis (He et al., 2022). The crucial factor
determining the anti-atherogenic phenotype of dKO mice was
found to be the dysregulation of ACADL (Längst et al., 2022).
MGLL, an essential metabolic enzyme, performs the crucial
function of converting triglycerides into free fatty acids, thus
playing a vital role in lipid metabolism (Zhang et al., 2021). The
overexpression of MGLL is key in endometrial adenocarcinoma
onset and progression, and resistance to progesterone. Inhibitors
targeting MGLL hold promise in treating progesterone-resistant
endometrial adenocarcinoma (Ma et al., 2022). MGLL, as a lipid
metabolic enzyme, is directly linked to the progression of
gastrointestinal stromal tumors due to its correlation with

adverse clinicopathological (Li et al., 2016). The confirmation
of maple syrup urine disease diagnosis involves identifying
pathogenic variants in the BCKDHB gene (Strauss et al.,
1993). The malignant progression of lung cancer is driven by
the promotion of glycolysis-related lactate production and the
lactylation process affecting IDH3G (Wang et al., 2023). In the
current study, these five signature genes hold promise as
potential targets for early diagnosis and monitoring AS and
AAA progression. Nevertheless, further research should focus
on validating the diagnostic utility of these biomarkers in larger
patient cohorts.

Research has indicated that both AS and AAA diseases exhibit
an immune response and inflammatory activity involving various
types of immune cells (Rizas et al., 2009; Vallejo et al., 2021). The
promotion of smooth muscle cells’ synthetic and proinflammatory
phenotype is facilitated by neutrophil extracellular traps, thereby
contributing to the formation of AAA (Yang et al., 2023). Activation
of neutrophils and inflammation of blood vessels result in the
formation of a unique microenvironment within the wall of the
AAA, characterized by the presence of pro-inflammatory and
chemotactic cytokines (Klopf et al., 2021). The impact of
neutrophil extracellular traps on the development and
advancement of atherosclerotic lesions is undeniable and
substantial (Döring et al., 2017). Neutrophil extracellular traps
contribute to the inflammation of macrophages and hinder the
resolution of AS in diabetic mice (Josefs et al., 2020). In line with
these studies, our findings uncovered distinct immune relationships
between AS and AAA. Moreover, both the AS and AAA diseases
demonstrated a significant rise in the infiltration of neutrophils.
Moreover, correlation analysis of immune cells with signature genes
revealed specific cell types that were negatively correlated with
certain genes involved in fatty acid metabolism. For instance,
TFH and eosinophils exhibited a negative correlation with
PCBD1, ACADL, BCKDHB, and IDH3G in AS samples, while
Th1 cells, TFH, and B cells were negatively correlated with
PCBD1, ACADL, and MGLL. These findings suggest potential
immune-mediated mechanisms underlying the dysregulation of
fatty acid metabolism in AS and AAA.

Despite the progress made in our study, there are still limitations
that need to be addressed. Firstly, it is imperative to utilize genetic
interference techniques to control the expression of the identified
genes in cell culture models. Further research is necessary to clarify
the precise role of immune cells in disease pathogenesis and to
explore potential immunotherapeutic strategies. In addition, in
future research efforts, it is recommended that blood samples be
collected from patients with AAA or AS to confirm the presence of
these shared diagnostic indicators to facilitate the clinical
diagnostic process.

Conclusion

In conclusion, our transcriptomic analysis identified shared
diagnostic biomarkers and unveiled the immune relationship
between AS and AAA based on the fatty acid metabolism gene
set. These findings contribute to our understanding of the
molecular mechanisms underlying these two pathologies and
provide potential targets for future therapeutic interventions.
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Continued research in this field will help advance our knowledge
of the complex interplay between lipid metabolism, immune
response, and cardiovascular diseases, ultimately leading to
improved diagnostic strategies and treatment options for
patients with AS and AAA.
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