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infer regulators of mRNA 3’ end
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Mihaela Zavolan1*
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Alterations inmRNA 3’ end processing and polyadenylation arewidely implicated
in the biology of many cancer types, including glioblastoma (GBM), one the
most aggressive tumor types. Although several RNA-binding proteins (RBPs)
responsible for alternative polyadenylation (APA) were identified from functional
studies in cell lines, their contribution to the APA landscape in tumors in vivo
was not thoroughly addressed. In this study we analyzed a large RNA-seq data
set of glioblastoma (GBM) samples from The Cancer Genome Atlas (TCGA)
to identify APA patterns differentiating the main molecular subtypes of GBM.
We superimposed these to RBP footprinting data and to APA events occurring
upon depletion of individual RBPs from a large panel tested by the ENCODE
Consortium. Our analysis revealed 22 highly concordant and statistically
significant RBP-APA associations, whereby changes in RBP expression were
accompanied by APA in both TCGA and ENCODE datasets. Among these, we
found a previously unknown PTBP1-regulated APA event in the PRRC2B gene
and an HNRNPU-regulated event in the SC5D gene. Both of these were further
supported by RNA-sequencing data of paired tumor center-periphery GBM
samples obtained at the University Hospital of Basel. In addition, we validated the
regulation of APA in PRRC2B by PTBP1 in siRNA-knockdown and overexpression
experiments followed by RNA-sequencing in two glioblastoma cell lines. The
transcriptome analysis workflow that we present here enables the identification
of concordant RBP-APA associations in cancers.
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Introduction

The processing of eukaryotic mRNAs involves 3′ end cleavage and addition of a
polyadenosine (poly(A)) tail. These steps are carried out by the 3′ end processing complex,
which contains around 20 core proteins (Gruber and Zavolan, 2019). Most human genes
express multiple mRNA isoforms, which differ in their use of transcription start site, 3′

end processing site and/or internal exons. Variation in the choice of 3′ end processing
sites (alternative polyadenylation, APA), gives rise to mRNA isoforms of different lengths,
and often the difference is only in the length of 3′ untranslated regions (3′UTRs). As
3′UTRs interact with many proteins and protein complexes, the consequences of 3′UTR
APA are many, ranging from changes in mRNA stability and localization to changes in
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the localization of the encoded protein (Mayr, 2019). 3′UTR
APA accompanies changes in cellular state: 3′UTRs become
longer during cell differentiation (Ji et al., 2009) and shorter in
tumors (Xia et al., 2014), where most cell types have an altered
polyadenylation landscape with shortened 3′UTRs (Burri and
Zavolan, 2021).

Since the realization that 3′UTRs undergo systematic shortening
in cancer cells (Mayr and Bartel, 2009), there is great interest in
identifying the responsible regulators. An important candidate is
CPSF5 (also known as CFIm25), a protein of 25 kDa that takes part,
as a dimer, in the mammalian cleavage factor I (CFIm) complex
(Yang et al., 2011). This complex typically binds to UGUA motifs
located ∼40 nucleotides upstream of the 3′ end processing site (also
known as polyadenylation site, poly(A) site or PAS) (Yang et al.,
2010), promoting their processing. The knockdown of CFIm leads
to the use of coding-region proximal poly(A) sites (pPAS) and
global shortening of 3′UTRs (Gruber et al., 2012; Martin et al.,
2012), which is why this protein has been actively researched in
the context of cancers and ultimately implicated in the observed
APA (reviewed in (Masamha, 2023)). Since these initial studies, a
variety of RNA-binding proteins (RBPs) have emerged as regulators
of APA and often of splicing as well. HNRNPC is one of these
regulators, best known for its role in suppressing the inclusion
of Alu elements in mRNAs (Zarnack et al., 2013), and more
recently found to also repress the usage of PAS containing in their
vicinity the polyuridine binding motif of HNRNPC (Gruber et al.,
2016). In a previous study of data from The Cancer Genome
Atlas (TCGA), we found that 3′UTR shortening also occurs in
glioblastoma (GBM), and we have associated this APA pattern with
the increased expression of the polypyrimidine tract binding protein
1 (PTBP1), which has much higher expression in GBM compared to
normal tissue (Gruber et al., 2018).

Given the interest in APA in cancers and also the availability
of multi-omics data not only from cancers but also pertaining to
the impact of RBPs on RNA processing, we have developed an
approach to identify individual regulatory relationships between
PAS and RBPs in a disease context. We have applied this approach
to GBM, a tumor type where APA has been studied before,
thereby providing us with a good basis for evaluating the efficiency
of the approach in identifying regulators of APA. Our results
reveal a number of RBPs that have systematic association with
3′UTR shortening and lengthening including CFIm and HNRNPC.
In GBM, we identify significant PAS-RBP associations that are
consistent with RBP perturbation data. These associations involve
a variety of RBPs, and we highlighted the examples of HNRNPU-
SC5D and PTBP1-PRRC2B. The approach is general, and we expect
that its application to other cancers will accelerate the discovery
of key factors responsible for altered gene expression patterns
in cancers.

Methods

RNA-sequencing data download and
processing

The GRCh38 (hg38) assembly of the human genome along
with the comprehensive gene annotation (v42) was downloaded

from the GENCODE Consortium website (Frankish et al.,
2021). Annotation was additionally supplemented with the
non-coding genomic elements from RNAcentral portal
(Consortium, 2021).

Genomic alignments (BAM format) of short paired-end reads
from 150 glioblastoma RNA-seq IDH-WT samples of the TCGA-
GBM project classified into three GBM subtypes (Wang et al.,
2018) were obtained from the GDC portal (accession number
phs000178.v11.p8). In addition, we required that all analyzed
samples have defined tumor purity and survival information,
which limited the final scope to 122 TCGA-GBM samples. The
results of 472 RBP depletion experiments followed by paired-
end RNA-seq including 440 shRNA-mediated knockdown and
32 CRISPR-mediated knockout experiments were downloaded
from the ENCODE portal in BAM format (Van Nostrand et al.,
2020). The list of all samples used in the study is presented
in Supplementary Table S1.

All RNA-seq samples were identically processed. BAM
files were converted to fastq files and then re-aligned to
the hg38 assembly of the human genome using STAR-2.7.8a
aligner in one-pass mode without supplying the annotation
file and otherwise default parameters, as was previously done
(Wilks et al., 2021). Samtools v1.18 (Li et al., 2009) was used
to extract only uniquely mapped reads present in not more
than 10 duplicates.

RNA sequencing of tumor
center-periphery samples

Human adult GBM tissue samples were obtained from the
Neurosurgical Clinic of University Hospital of Basel, Switzerland, in
accordance with the Swiss Human Research Act and institutional
ethics committee (EKNZ 02019-02358). All patients gave written
informed consent for tumor biopsy collection and signed a
declaration permitting the use of their biopsy specimens in scientific
research, including storage in our brain tumor biobank (Req-
2019-00553). All patient-identifying information was removed,
and tissues were coded for identification. Tumor samples from
contrast-enhancing center and non-enhancing periphery according
to intraoperative neuronavigation were snap frozen in the operating
theater and stored in liquid N2 until RNA extraction. Tumor
methylation subtyping from native genomic DNA was performed
as described by Capper et al. using the Illumina Infinium Epic array
(PMID 29539639).

RNA was extracted from four tumor center-periphery
sample pairs using the AccuPure Tissue RNA Mini Kit. All
samples were checked to have RIN number >6.5. Library
preparation was performed, starting from 100 ng total RNA,
using the TruSeq Stranded mRNA Library Kit (Cat# 20020595,
Illumina, San Diego, CA, United States) and the TruSeq RNA
UD Indexes (Cat# 20022371, Illumina, San Diego, CA, United
States). 15 cycles of PCR were performed and the samples were
sequenced on an Illumina NextSeq 500 instrument to obtain
38 bp paired-end reads. Reads in FASTQ format were mapped
to the hg38 genome and further processed together with other
public RNA-seq samples used in the study, using the same
workflow (see above).
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Cell culture, transfections, and
RNA-sequencing of glioblastoma cell lines

For the experimental validation of PTBP1’s role in glioblastoma
cell lines, LN18 cells were cultured on D6546 medium (0.11 g/L
NaP) supplemented with 4 mM L-glutamine, 5% FCS and 1X P/S.
U-87 MG cells were grown on D6546 medium (0.11 g/L NaP)
supplemented with 2 mM L-glutamine, 10% FCS and 1X P/S. For
the knockdown of PTBP1, LN18/U-87 MG cells were seeded at
a density of 25% in six-well plates. Following a 24 h incubation,
at around 50% confluency, siRNAs against PTBP1 (siPOOLs
from siTOOLs BIOTECH) were incubated with Lipofectamine
RNAiMAX (Invitrogen) and added to the wells. Real-time qPCR
(qRT-PCR) analyses were carried out to quantify PTBP1 expression
on the StepOnePlus™ Real-Time PCR System. Specific primers used
for detection of PTBP1 were.

PTBP1 FP: CCAAGTTCGGCACAGTGTTG.
PTBP1 RP: TATACCAGGTGCACCGAAGG.
Samples were analyzed in PCR triplicates from three biological

replicates. The expression of PTBP1 protein were probed with the
respective antibodies, Cell Signaling #57246, Cell Signaling #79940
and Cell Signaling #4799 at 1:1,000 dilution using the standard
Western blotting protocol.

Total RNA was quality-checked and 200 ng total RNA was used
for library preparation with the TruSeq Stranded mRNA Library
Prep Kit High Throughput (Cat# RS-122-2103, Illumina, San Diego,
CA, United States). Libraries were quality-checked on the Fragment
Analyzer (Advanced Analytical, Ames, IA, United States) using the
Standard Sensitivity NGS Fragment Analysis Kit (Cat# DNF-473,
Advanced Analytical). Samples were sequenced using the Illumina
NovaSeq 6,000 sequencing system with 50 bp paired-end reads.

Quantification of tandem poly(A) sites
usage

The polyAsite atlas (Herrmann et al., 2020) of the human
genome (assembly version GRCh38.96) was downloaded
in BED format. Tandem poly(A) sites within the terminal
exons (TEs) were extracted with custom scripts. A modified
PAQR workflow (Gruber et al., 2018) was used to extract the matrix
of raw read counts supporting distinct poly(A) sites across all
analyzed RNA-seq samples. Briefly, the workflow modifications
included the calculation of the median instead of mean coverage
level supporting the poly(A) site usage, and the omission of the
step that ensured that the used PAS was identical to the best break
point in the corresponding terminal exon region. We used the
following stringent input parameters that allow the quantification
of tandem poly(A) sites separated by the genomic distance of at
least 1 kb, of which 700 nt region is reserved for the calculation
of the median coverage level, and 300 nt is the region directly
upstream from the poly(A) site where a coverage drop is expected
(values set on the basis of mRNA fragment size targeted during
sample preparation): PAQ_coverage_downstream_extension 700,
PAQ_min_distance_start_to_proximal 1,020, PAQ_min_length_
mean_coverage 700, PAQ_min_mean_exon_coverage 1, PAQ_
distal_downstream_extension 700, PAQ_max_mean_coverage 50,
PAQ_cluster_distance 1,000, PAQ_upstream_cluster_extension

320, PAQ_coverage_mse_ratio_limit 0.8, PAQ_fragment_length
320.We obtained quantification for 4,935 PASwithin 1,982 terminal
exons. In each terminal exon, we defined the most 3′-end-adjacent
PAS as distal (dPAS), and other sites as proximal (pPAS). Hence,
2,953 PAS were termed proximal.

The relative usage of PAS within the terminal exon (PAU)
was estimated as the number of reads supporting the PAS as a
fraction of the total number of reads supporting all PAS within the
terminal exon.

To account for the library size and the noise from
low expression intensity that systematically confound the
estimates of relative usage of alternative transcript isoforms
(Kakaradov et al., 2012; Mironov et al., 2021), we used the following
procedure to estimate the usage score of a poly(A) site (PAU score)
relative to other poly(A) sites within the terminal exon. First, given
the number of raw reads supporting a poly(A) site (M) and the total
number of reads supporting all the sites at the terminal exon (N),
we perform two binomial tests to obtain the following p-values:

pval1 = p(m >M |N,prob = 0.5),pval2 = p(m <M |N,prob = 0.5)
We then calculate the score as: score = (−1)log10 pval1 −
(−1)log10 pval2

Thus, the score ranges from - ∞ to + ∞ and reflects the
propensity of the PAS to yield a major (score ➝ +∞) or minor
(score➝ -∞) transcript isoform, controlling for the noise due to low
read counts (Supplementary Figure S1A). Next, we calculated the
size factors according to DESeq2 methodology (Love et al., 2014).
Namely, each row of the expression matrix with samples in columns
and poly(A) sites in rows was divided by the row median. The size
factor s fk of the sample k was estimated as the median of the kth
column. Then, for each poly(A) site, we fitted a quantile regression
with the library size being the explanatory variable and the absolute
value of the score being the response variable (an example for one
poly(A) site is shown at Supplementary Figure S1B). We then used
the positive residuals as library-size-controlled absolute score values,
while negative residuals were zeroed. Each positive value was then
multiplied by +1 or −1 to maintain the sign of the original score.
The obtained values thus reflect the relativemagnitudes of PAS usage
controlled for library size and later referred to as PAS scores.

To analyze differential alternative polyadenylation (dAPA)
between conditions, we calculated median PAU values for each
condition and the difference of them for each PAS (∆ PAU,
for proximal and distal it is denoted as ∆ pPAU and ∆ dPAU,
respectively). By using the sample-level PAU levels as weights of PAS
positions and comparing the condition-specific median levels, we
adjusted ∆ PAU signs to ensure that higher PAU values of proximal
PAS always correspond to shortening of the terminal exons, while
higher PAU of distal PAS always correspond to lengthening. To
evaluate the significance of ∆ PAU values, we employed different
strategies as suited for a particular experimental setups. In ENCODE
RBP depletion experiments, we ran DEXSeq (Anders et al., 2012)
with default parameters individually in each experiment. We
discarded experiments in which dispersion trend was not well
captured, and corrected p-values for multiple-testing of many PAS
using Benjamini–Hochberg approach (Benjamini and Hochberg,
1995). This yielded 0 (minimum) - 158 (maximum) significant
dAPA events per experiment, with the median being 6.5 dAPA
events. The same approach appeared incorrect for comparisons of
TCGA-GBM subtypes, in which each condition comprises dozens
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of samples, as was evidenced from diagnostic dispersion plots
(data not shown). Indeed, differential expression analysis between
large cohorts of human population samples with DESeq package
(Love et al., 2014), on which DEXseq is largely based, was recently
reported to be prone to false positives (Li et al., 2022). The same
study recommended using instead Mann-Whitney sum-of-ranks
test (also known as Wilcoxon test) for the difference of medians.
To adapt this recommendation for dAPA analysis, for each PAS
independently, we fitted the following quantile regression model,
similarly to a previous work (Mironov et al., 2021):

rPAS = β0rother + β1Dcondrother where rPAS is the library-size
normalized number of reads supporting the PAS, rother is the
library-size normalized total number of reads supporting other
PAS of the terminal exon, Dcond is a dummy variable equal
to zero in one condition and to one in another condition. An
example of a fitted model for a proximal PAS in CHST11 gene
is shown at Supplementary Figure S1C. We took the maximum
of p-values from t-tests on β coefficients (Greene, 2008),
and corrected them for multiple testing of many PAS using
Benjamini–Hochberg approach (Benjamini and Hochberg, 1995).
Thus we ensured that there is expected significant association of
rPAS with the host gene expression (captured by β0) and there is
significant dependence on the condition (captured by β1). In fact,
median PAU values in each of the conditions can be computed from
the fitted values of β coefficients:PAUcondition0 =

β̂0

1+β̂0
,PAUcondition1 =

β̂0+β̂1

1+β̂0+β̂1
.

Thus, ∆ PAU can be reformulated as: ∆PAU = β̂0+β̂1

1+β̂0+β̂1
− β̂0

1+β̂0
Finally, in the identification of significant associations between

PAS usage and the expression of RBPs, we compared median
PAS scores in cohorts of high RBP expression and low RBP
expression using Mann-Whitney sum-of-ranks test followed by
Benjamini–Hochberg correction for multiple testing (Benjamini
and Hochberg, 1995).

Quantification of gene expression

Expression of protein-coding genes was evaluated from
respective coding regions (CDS elements in the annotation) present
in most annotated transcript isoforms. More precisely, for each
protein-coding gene, we splitted the spanned genomic region into
bins by the number of overlapping coding transcripts, and took
the union of the bins having maximum overlapping transcripts.
Thus produced custom GTF annotation file was as input to
FeatureCounts package (Liao et al., 2014) to obtain per gene raw
fragment counts across samples, with the following parameters:
featureCounts -p -O --fraction -Q 255 -s 2 -B -C -P -d 0 -D
10000000000000 -t exon -g gene_id. Obtained raw values were then
normalized by variance-stabilizing transformation (VST) within the
DESeq package (Love et al., 2014).

To evaluate differential gene expression in ENCODE RBP
perturbation experiments, DESeq2 package (Love et al., 2014)
with default parameters was utilized independently for each
experiment, obtained p-values were corrected formultiple-testing of
many genes using Benjamini–Hochberg approach (Benjamini and
Hochberg, 1995). In other analyses, Mann-Whitney sum-of-ranks
test was utilized.

Quality control of RNA-seq samples

Uniquely mapped low-duplication reads (see above) were
analyzed with FastqC (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) to estimate median per-base sequence
quality and other quality metrics. Median transcript integrity
number (TIN score) (Wang et al., 2016) was calculated for each
sample. The fractions of fragments mapped to each transcript
biotype, as well as intergenic and antisense segments, are further
important RNA-seq quality metrics (Katsantoni et al., 2023)
that we calculated using a custom genome annotation and
featureCounts tool (Liao et al., 2014). All samples had median
per-base sequencing quality of more than 30 and only a handful
of samples had less than 90% of fragments mapped to protein-
coding genes; 15 samples with TIN score below 50 were discarded
(Supplementary Figure S2A, S4A).

Three of the four pairs of glioblastoma tumor center-periphery
samples from the University Hospital Basel clustered as expected
in the PCA plot of gene expression (Supplementary Figure S4B),
one pair, in which the periphery sample had the lowest TIN
score, did not (Supplementary Figure S4A). This clustering
was marked by a coherent separation between periphery
and tumor center samples by the first principal component
(periphery samples were placed left, while tumor center samples
were placed right).

ENCODE RBP depletion experiments were performed in
two cell lines, K562 and HepG2, and were designed such
that the same control samples (116 in total) were used in
1–20 experiments, with the median being eight experiments
(Supplementary Table S1). Each control sample was paired with
a particular bioreplicate thus forming 58 pairs of bioreplicates.
We obtained the first two components from PCA and UMAP
analysis of gene expression for these samples and removed pairs
for which the Euclidean distance was higher than q75 + 1.5∗ IQR,
where q75 and IQR denote 75% quartile and interquartile range,
respectively (Supplementary Figure S4A) in either PCA or UMAP,
as we considered these to be outliers. Next, we verified that
remaining samples clustered by cell line in PCA and UMAP
plots, HepG2 displaying larger variability in comparison to K562
(Supplementary Figure S4B). We then repeated the same procedure
with the retained samples, but using PAS scores of proximal
poly(A) sites instead of gene expression values as input to
PCA and UMAP analysis, again removing bioreplicate outliers
(Supplementary Figure S4C) and verifying that the remaining
samples clustered by cell line (Supplementary Figure S4D). As a
result of these quality controls, 84 control samples, used across
313 depletion experiments, were retained. We further analyzed
the usage of 2,953 expressed proximal PAS and removed 1,286
PAS for which PAS scores strongly fluctuated within control
samples fromHepG2orK562 cell lines (Supplementary Figure S4E).
Finally, in each RBP perturbation experiment, we checked that RBP
expression significantly decreased, as expected, upon depletion and
the dispersion trend was well captured by DEXseq (Anders et al.,
2012); otherwise, the experiment was excluded from the analysis,
which limited the data to 215 depletion experiments (119 in
K562 and 96 in HepG2 cell lines). The key information from
the quality control analysis was appended to the sample list
in Supplementary Table S1.
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Statistical analysis

The data were analyzed using python version 3.10.8
and R statistics software version 4.1.3. Quantile regression
models were fitted with the statsmodels package. Non-
parametric tests were performed with the scipy.stats python
package. p-values were adjusted for multiple testing using
Benjamini–Hochberg approach (Benjamini and Hochberg, 1995),
if not specified otherwise. In all figures, the significance levels 0.05,
0.01, and 0.001 are denoted by∗ ,∗ ∗ , and∗ ∗ ∗ , respectively.

Data and code availability

RNA sequencing data has been deposited to the NCBI
BioProject database, under accession PRJNA1060502. Processing
scripts are available from the zenodo repository.

Results

General patterns of gene expression and
APA in GBM subtypes

A schematic depiction of our analysis workflow is shown
in Figure 1A. We downloaded BAM files for 122 GBM samples
from the GDC portal (https://portal.gdc.cancer.gov/) and realigned
the reads to retain those that mapped uniquely to the genome
and had low duplication rate (see Methods). We then estimated
gene expression levels and poly(A) site usage for all potential
poly(A) sites in the expressed genes (see Methods). To validate
this preliminary analysis, we build on the study of (Wang et al.,
2018), who identified genes whose expression defines three main
GBM subtypes, namely, proneural, classical and mesenchymal,
in order of their presumed malignancy level, and provided the
corresponding annotation of TCGA-GBM samples with the most
plausible subtype. We estimated expression levels of protein-
coding genes across TCGA-GBM samples with our approach
(Figure 1B, see Methods) and calculated the subtype signature
score for all samples that were already annotated with one of
the three subtypes, finding that indeed, the signature score and
sample subtype annotation matched those previously reported
(Wang et al., 2018) (Figure 1C). The sample separation in the
PCA plot was associated with the previously reported degree of
transcriptional homogeneity of TCGA-GBM samples, as expected
(Supplementary Figure S2B (Wang et al., 2018)). Nevertheless, the
separation between subtypes based on gene expression was
imperfect, as described in the previous study. This suggested so-
far unidentified sources of intratumor heterogeneity, previously
confirmed in histopathological, immunohistochemical, and single-
cell RNA-seq assays (Wang et al., 2018; Becker et al., 2021). In
parallel, we quantified the use of annotated poly(A) sites from
the polyAsite database (Herrmann et al., 2020), identifying 987
expressed proximal poly(A) sites that passed stringent criteria of
quality (Gruber et al., 2018) across all samples. PCA of poly(A) site
usage scores across samples (Figure 1D; Supplementary Figure S2C,
see Methods) did not delineate the GBM subtypes, indicating that
transcription and polyadenylation are non-redundant mechanisms

for regulating gene expression, as observed before (Lianoglou et al.,
2013). Finally, we used DEXSeq (Anders et al., 2012) to carry out
differential analysis of poly(A) site usage in pairs of subtypes and
found that the usage of pPAS is higher in the mesenchymal subtype
compared to both classical and proneural (Figure 1E).This indicates
a possible association between malignancy and the length of TEs,
specifically, relative to the classical subtype, TEs tend to be shortened
in the more malignant mesenchymal subtype and lengthened in
the less malignant proneural subtype. Thus, our analysis reproduces
the proposed classification of GBM subtypes based on mRNA
expression and reveals their weak but detectable association with TE
shortening and lengthening.

Association of gene expression and APA
with tumor purity and survival

The clinical importance of GBM transcriptional subtypes for
guiding therapeutic choices was highlighted by several studies
(Zhang et al., 2020). For instance, the addition of Bevacizumab to
the first-line treatment provided a progression-free survival benefit
only for mesenchymal and proneural tumors, as revealed in a
retrospective analysis of biospecimens from patients involved in a
clinical study (Sandmann et al., 2015). However, high intratumor
heterogeneity of GBM cancers hinders the ability of transcriptional
subtypes to predict survival. In addition, transcriptional subtypes
were reported to arise from infiltrationwith immune cells, especially
M2 macrophages and neutrophils (Wang et al., 2018), which affect
the “tumor purity”. Isoform-based subtyping of GBM was shown
before to improve survival prediction compared to gene expression-
based subtyping (Pal et al., 2014). We therefore decided to elaborate
on this and systematically analyze the association of gene expression
and APA with tumor purity and survival.

First, we reproduced the reported decreased tumor purity
of the mesenchymal subtype relative to classical and proneural
subtypes ((Wang et al., 2018), Figure 2A). Further, we found that
while subtypes are weakly associated with progression-free survival
(as also reported in (Wang et al., 2018)), tumor purity has strong
significant association (Figure 2B). Taken together these results
suggest that association of transcriptional subtypes with survival
may be solely attributed to tumor purity. We therefore further
asked whether we can identify transcriptomic features that are
significantly associated with survival but not with tumor purity,
as these could provide additional predictive power. We reasoned
that while individual transcriptomic events (particular genes or
PAS) may not be sufficiently reliable predictors across all tumors,
collections of such features constructed would be more statistically
robust. Motivated by several previous studies (e.g., (Bair et al., 2006;
Shen and Huang, 2006)), we decided to analyze the association
of principal components (PC) with survival and tumor purity.
Thus, we obtained PC values of TCGA-GBM samples for eight top
principal components (Figure 2C, top) from the gene expression
and APA PCA conducted above (Figures 1B,D). In addition, we
combined gene expression andAPA events and also performed PCA
(Supplementary Figure S3A). To ensure a fair comparison, we used
the same number of input features in the gene-expression, APA, and
APA + gene expression-based PCA. We then calculated Kendall Tau
coefficients of correlation between each of the PC coordinates with
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FIGURE 1
Overview of gene expression and APA in glioblastoma. (A) Schematic illustration of the analysis. (B) Gene expression-based relationship of TCGA-GBM
samples. Sample subtype annotation provided in (Wang et al., 2018) is shown with different colors, in PCA and UMAP representations. Lines represent
75% quartiles of 2D kernel density-estimated joint distributions. Top 987 genes with highest median normalized expression were used as input. (C)
Distribution of subtype signature scores, calculated with the procedure described in (Phillips et al., 2020), in the 122 TCGA GBM samples stratified by
the subtype annotation. (D) PCA and UMAP representation of sample relationships based on PAS scores of the proximal poly(A) sites (see Methods). 987
pPAS with defined reliable usage value across all TCGA-GBM samples, were used as input. (E) Summary of APA differences between GBM subtypes.
Each point is an event, red - significant, gray—not significant in terms of the difference in usage of the proximal PAS between samples of different
subtypes (see Methods).

tumor purity (Figure 2C, top; Supplementary Figure S3B). The gene
expression-based PC2 component, along which the transcriptional
subtypes were separated (Figure 1B) and which explained 9% of
variance, exhibited the strongest association with tumor purity,
in concordance with observations on Figure 2A. In contrast, the
APA-based PC2 component, while explaining a similar ∼8% of

APA variance in the dataset, had relatively weak association with
tumor purity.

Next, we probed the association of PC components with
survival. We decided to employ the same K-sample log-rank
hypothesis test of identical survival functions that we used before
to analyze the association of transcriptional subtypes with survival
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FIGURE 2
Association of gene expression and APA events with tumor purity and progression-free survival. (A) Tumor purity of TCGA-GBM samples of different
subtypes, as determined by ABSOLUTE (Carter et al., 2012) (obtained from (Wang et al., 2018)). (B) Kaplan-Meier curves of progression-free interval
events (PFI) as a function of tumor subtype (left) and tumor purity (right). p-values were obtained from the K-sample log-rank hypothesis test of
identical survival functions implemented in the python package scikit-survival (Fleming and Harrington, 1981). Survival data was obtained from
TCGA-Clinical Data Resource paper (Liu et al., 2018). (C) PCA performed on 987 input features of three distinct types: gene expression values (the same
as on Figure 1B), pPAS scores (APA, the same as on Figure 1D), and combined, i.e., top 493 pPAS with lowest number of zero scores and 494 genes with
highest median expression (totalling to 987 input features, APA + gene expression, see Supplementary Figure S3A). Top: Percentage of variance
explained by individual principal components (above) and absolute value of Kendall tau correlation coefficient, calculated between principal
component coordinates and tumor purity. 95% bootstrap CI is shown. See Supplementary Figure S3 for additional details and examples. Bottom: left -
PC coordinate values and tumor purity values across 122 TCGA-GBM samples were transformed to ranks (in ascending order, i.e., the higher the value -
the higher the rank). Thresholds on rank values were iteratively used to separate the dataset into two groups - below and above the threshold, and
2-sample log-rank hypothesis test of identical survival functions was used to obtain the p-value for each threshold. These p-values ( y-axis) are shown
as a function of threshold (x-axis) on tumor purity, PC2 (APA), and PC4 (APA + gene expression) values. Iterations included ranks from 30 to 92 to
ensure that threshold-separated groups contain at least 30 samples; middle - boxplot of calculated p-values for individual cutoffs on tumor purity;
right - boxplots of calculated p-values for individual cutoffs on PC coordinates; rightmost panel - scatter of Kendall tau correlation of PFI with tumor
purity (x-axis, the values were obtained from Panel (C), top subpanel) and median p-values for the hazard ratio ( y-axis, the values were obtained from
(C), bottom left subpanels). PC2 (APA), PC4 (APA + gene expression), and PC2 (gene expression) are highlighted. (D) Left-most subpanel: 122
TCGA-GBM samples were separated into four groups by putting thresholds on tumor purity value (x-axis) and PC2 (APA) value ( y-axis). Thresholds
were selected to minimize p-value (maximize significance) for the association with survival ((C), bottom left subpanels). Middle subpanels demonstrate
the association of tumor purity-separated groups and PC2-separated groups with progression-free survival. Right-most subpanel demonstrates the
association of four-group-separation from the left-most subpanel with progression-free survival.
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(Figure 2B). This technique enables us to directly compare p-
values of alternative sample groupings. Thus, we transformed PC
coordinates and tumor purity values into ranks and iteratively
tested the ability of possible rank thresholds to separate the dataset
into two groups with survival differences (Figure 2C, bottom left).
APA-based PC2 and APA-and-gene expression-based PC4 were
among the best-performing features with low p-values across many
possible thresholds, although still not as strongly predictive for
survival as tumor purity. Finally, we juxtaposed Kendall correlation
values of PCs with respective median (across different thresholds)
p-values of PCs which further highlighted APA-based PC2 and
APA-and-gene expression-based PC4 as attractive features to
distinguish the samples, being strongly associated with survival
and weakly associated with tumor purity (Figure 2C, bottom right;
Supplementary Figure S3C), thus providing orthogonal information
with respect to tumor purity. In comparison, gene expression-based
PC2 had even stronger association with survival but also very
strong correlation with tumor purity (Supplementary Figure S3B).
We further showed that separating the dataset into four groups
using thresholds of APA-based PC2 coordinate values and tumor
purity allows to obtain statistically significant association with
survival (Figure 2D), in large contrast to transcriptional subtype-
based separation (Figure 2B, left). As an added value over the already
significant association based solely on tumor purity (Figure 2D,
middle), two groups stood out as exhibiting clear “intermediate”
state between the most malignant (Figure 2D, right, orange curve)
and least malignant (Figure 2D, right, magenta curve) groups.

Identification of RNA-binding protein
regulators of polyadenylation

While APA is extensively studied in cancers where a general
trend towards TE shortening relative to matched control tissue has
been described (Xia et al., 2014), the regulators driving this pattern
of APA in individual cancers are still largely unknown (Gruber and
Zavolan, 2019; Masamha, 2023). To reveal such regulators in GBM
we adopted an approach that was introduced in (Mironov et al.,
2023), where it was used to identify regulators of alternative
splicing. The concept is to leverage data from experiments in which
individual RNA-binding proteins (RBPs) were depleted to identify
RNA processing events that are associated with each RBP, and then
select associations that are consistently present (i.e., statistically
significant and identical regulatory effect) in patient data. The
RBP perturbation data enables a more reliable identification of
direct regulatory interactions, as the complexity of gene expression
changes is much lower compared to those occurring in cancers.
The ENCODE consortium generated RNA sequencing data from
K562 and HepG2 cell lines in which individual RBPs (∼200 in
total) were depleted by shRNA-mediated knockdown or CRISPR-
based knockout. We downloaded the corresponding sequencing
files from (Van Nostrand et al., 2020) and after extensive quality
control analysis (see Methods) we determined the number of
pPAS undergoing a significant change in usage upon each RBP
perturbation and also assessed whether the effect of this change
is an increase or decrease in the length of the corresponding
TEs (Figure 3A). The results revealed 37 RBPs whose depletion
is associated with TE shortening or lengthening in at least

one of the two cell lines. These included CPSF6, PTBP1 and
HNRNPC and HNRNPU, though the magnitude and significance
of their effect varied between lines (Supplementary Figure S6).
While for 24 (∼65%) of them there is no co-directionality
of pPAS usage alterations as measured by cosine similarity
(Supplementary Figure S6A), for 11 RBPs the effects were consistent
(positive cosine similarity) and only 2 RBPs showed opposite
effects (negative cosine similarity). We further asked whether the
predominant direction of the effects (shortening vs. lengthening)
is consistent between cell lines and found that 19 RBPs showed a
consistent pattern (Supplementary Figure S6B), the most consistent
being CPSF6 (Martin et al., 2012), PTBP1 (Gruber et al., 2018;
Bak et al., 2024), and HNRNPC (Gruber et al., 2016), RBPs that
were previously implicated in APA regulation. Thus, our approach
identifies some of the well-known regulators of APA, but also several
other RBPs whose perturbation consistently impacts the length of
TEs or even particular APA events, directly or indirectly.

We next asked whether the pPAS that respond to RBP
perturbations in cell lines also show evidence of RBP-dependent
expression in GBM samples. To answer this question we
implemented the analysis depicted in Figure 3B and characterized
the RBP-pPAS associations by the type of evidence supporting
them (Figure 3C). Namely, we started from all possible pPAS-
RBP associations that could be quantified in both TCGA-GBM and
ENCODE RBP perturbation data (see Methods). First, we identified
pairs for which there was evidence of direct binding of the RBP to
the TE in which the pPAS was located, based on crosslinking and
immunoprecipitation data (CLIP) from the POSTAR3 database
(Zhao et al., 2022). Next, we identified pPAS that significantly
respond to RBP depletion (Figures 3B,C - PERT). Given that
RBPs extensively regulate each other’s expression (Leclair et al.,
2020), we further checked for correlations of pPAS usage with RBP
levels across all ENCODE perturbation experiments, identifying
statistically significant associations (Figures 3B,C - CO). The results
are summarized in Figure 3C, showing that experimental evidence
of pPAS-RBP associations from CLIP and RBP perturbation data
enriches pPAS-RBP pairs that are significantly correlated in TCGA-
GBM. For most such pairs, the direction of change in pPAS
usage inferred from RBP perturbation experiments in ENCODE is
consistent with the direction of change associated with fluctuations
in RBP expression in the TCGA-GBM data. The complete list of
2,545 RBP-pPAS pairs (130 RBPs, 169 pPAS) significantly correlated
in TCGA-GBM, along with their characterization (CLIP, PERT, CO)
is provided in Supplementary Table S2.

Consistent pPAS-RBP associations in
TCGA-GBM

We next inspected 22 consistent pPAS-RBP associations
characterized as PERT, PERT +CLIP, or CO+ PERT (Figure 3C). As
shown in Figure 4A, these behaved similarly in RBP perturbation
experiments and TCGA-GBM samples with variable expression
of the RBP. Two associations were found in both of the analyzed
cell lines: HNRNPU-SC5D and PTBP1-PRRC2B. HNRNPU is a
splicing factor which recently has been implicated in APA of CD55
in breast cancers (Huang et al., 2023). Its association with sterol-
C5-desaturase-like (SC5D) APA appears to be novel. PTBP1 has
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FIGURE 3
Identification of RBP-regulators of APA. (A) Summary of RBP impact on PAS usage in K562 (left) and HepG2 (right) cells. Top panels: histograms of the
number of significant pPAS usage changes occurring upon depletion of an RBP. Bottom panel: overall effect of individual RBPs on TE length. x-axis
indicates the number of significantly changing pPAS upon depletion of the RBP and y-axis the impact of the change on TE length (log2 of the ratio of
shortening vs lengthening TEs). Each dot corresponds to an RBP whose expression was perturbed. Red/blue highlight RBPs whose depletion leads to
predominant shortening/lengthening of TEs, determined from a binomial test of # shortening TEs vs. # shortening TEs+# lengthening TEs, at
FDR<10%, gray - no strong preference for the direction of the TE length change. (B) Schematic illustration of the type of relationship between a poly(A)
site and an RBP. CLIP: pPAS located in terminal exons on which the RBP has been found by crosslinking and immunoprecipitation (CLIP). PERT: pPAS
responding to the RBP depletion. CO: pPAS whose usage correlates with the RBP level across all ENCODE perturbations, as determined from a
Chi-square test between the numbers of upregulated, downregulated, and non-significant differential RBP expression and dAPA events, at FDR<0.05.
Significant: pPAS whose usage is significantly associated with RBP expression in TCGA-GBM data. Consistent: pPAS that respond consistently to RBP
perturbation in ENCODE and to changes in RBP level in TCGA-GBM data. In case no regulatory relationship from the ENCODE (PERT, CO) or CLIP data
was identified, a pPAS-RBP pair was assigned a category “OTHER”. See the Methods for details. (C) Summary of regulatory relationships inferred from
ENCODE RBP perturbation data and TCGA-GBM data. Left panel starts from relationships inferred from perturbations in the K562 cell line, right panel
from perturbations in the HepG2 cell line.

been implicated in APA in GBM before (Gruber et al., 2018) and
here we find that it may regulate APA of PRCC2B, recently found to
regulate cell cycle progression in GBM (Jiang et al., 2023). We also

found a high correlation of pPAS usage of highlighted events with
APA-based PC2 coordinates (Figure 2), with pPAS in SC5D having
one of the highest correlation coefficients among all analyzed APA
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FIGURE 4
Examples of consistent pPAS-RBP associations. (A) Change in pPAS usage in ENCODE vs TCGA-GBM. x-axis shows the change upon RBP knockdown
(left panel in K562 cells, right panel in HepG2 cells), y-axis shows the change when comparing TCGA-GBM samples with low vs high RBP expression.
The two associations that were found in both cell lines are highlighted. (B, C) Correlation of pPAS usage and RBP expression in TCGA-GBM samples for
the two examples that were identified from both cell lines, corresponding to HNRNPU-SC5D and PTBP1-PRRC2B pairs. The subtypes of GBM samples
are highlighted with different colors. Significant differences (adjusted p-value <0.05) of median RBP expression or PAS usage between TCGA-GBM
subtypes are depicted (Mann-Whitney U-test, Bonferroni correction for testing three pairwise comparisons). Non-significant differences are not
depicted. Integrative Genome Browser (IGV) screenshot of the coverage of the SC5D terminal exon by RNA-seq reads obtained in different samples
(indicated in the different tracks).
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events (Supplementary Figure S7; Supplementary Table S3). Given
the link between APA-based PC2 with survival (Figures 2C,D), this
suggests that searching for significant RBP-regulated events may
also yield novel strong biomarkers of survival in GBM.

While the inter-patient variation is nowwidely appreciated (e.g.,
(Friedmann-Morvinski, 2014; Skaga et al., 2019; Becker et al., 2021;
Burri and Zavolan, 2021)) and the experimental design usually
includes matched non-tumor control tissue, this was not the case
for GBM data set in TCGA. For this reason, in the above analysis
we compared the patterns of gene expression in cancers considered
to have higher/lower malignancy levels. To determine whether a
similar regulatory relationship can be detected in tumor-control
samples from individual patients we carried out RNA sequencing of
four tumor center-periphery sample pairs. With the same analysis
of subtype transcriptional signatures (Figure 1C), we were able to
assign a dominant type to three of the four sample pairs, one
per subtype (Supplementary Figure S4C). We then inspected the
coverage of the TE not only in the ENCODE cell lines and TCGA-
GBM samples but also in tumor center-periphery sample pairs from
our RNA-seq data. The examples of SC5D and PRCC2B are shown
in Figures 4B,C. Although, again, the variability between sample
pairs is high, we do observe the expected change in pPAS usage
between tumor periphery and tumor center, in accordance with
the identified tumor subtype. Further, we carried out perturbation
experiments (siRNA-mediated KD and overexpression of PTBP1)
in two glioblastoma cell lines, U87MG and LN18 (see Methods
and Supplementary Figure S8). We focused on PTBP1 because
this RBP was already implicated in the regulation of alternative
polyadenylation in glioblastomas ((Gruber et al., 2018; Bak et al.,
2024)) and, more generally, in carcinogenesis via multitude of
pathways (Kim et al., 2021; Huang et al., 2022; Wang et al., 2022;
Ye et al., 2024). The experiments validated that the proximal PAS in
PRRC2B is used more when PTBP1 levels are low and less when
PTBP1 levels are high (Figure 4C). This is in accordance with the
predictions from ENCODE HepG2 and K562 experiments and with
the observed correlations in TCGA-GBM tumor samples.

Our study provides a blueprint for identifying regulatory
relationships between RBPs and individual poly(A) sites in cancers
as well as a list of candidates for further investigation. It also
highlights the heterogeneity of large, publicly-available data sets and
the importance of thorough quality controls to enable distinguishing
signal from noise.

Discussion

Among the many perturbations in gene expression that occur
in cancer, the systematic shortening of terminal exons and 3′

untranslated regions (3′UTRs) of mRNAs has been more recently
observed (Mayr and Bartel, 2009; Xia et al., 2014). Although
3′UTR shortening was initially associated with increased rate
of cell proliferation (Sandberg et al., 2008), another study linked
it to the malignant transformation (Mayr and Bartel, 2009),
and single cell analyses showed that, in fact, most cells express
mRNAs with short 3′UTRs when they are located in a tumor
microenvironment (Burri and Zavolan, 2021). How would 3′UTRs
become systematically shorter or longer? An initial study associated
the increased expression of E2F transcription factors (Elkon et al.,

2012), known to regulate the cell cycle (Johnson and Schneider-
Broussard, 1998), with increased expression of 3′ end processing
factors with the potential consequence of increased processing at
coding-region-proximal poly(A) sites. However, 3′UTR shortening
is observed upon depletion, not overexpression of the CFIm 3′

end processing factor, indicating that the relationship between the
level of 3′ end processing complexes and 3′UTR length is more
complex than initially appreciated. Indeed, a very recent study
showed that CFIm functions within phase-separated compartments,
and that this process is perturbed by the Clk2 kinase-dependent
phosphorylation in cancer cells, leading to effective depletion of
CFIm in these cells (Liu et al., 2023).

Aside from core 3’ end processing factors, other RBPs have
been associated with APA in various conditions, including
cancers (Gruber and Zavolan, 2019). Glioblastoma was one of
the first cancers where the regulation of polyadenylation has
been investigated, and where the CFIm complex was implicated
(Masamha et al., 2014). While CFIm perturbations undoubtedly
affect the polyadenylation landscape, its contribution to GBM
remained unclear, as the inference of altered CFIm expression in
GBM relative to normal brain was confounded by the variable
degree of RNA degradation among samples (Gruber et al., 2018). In
our study, after extensive quality control and subtype classification
of the TCGA GBM samples, the differences in expression
of CFIm components between the more and less aggressive
GBM subtypes were weak in magnitude and statistically non-
significant (Supplementary Figure S9). The only exception was
CFIm59, also known as CPSF7, but this component of CFIm
is not known to affect polyadenylation patterns (Kim et al.,
2010; Martin et al., 2012). Another RBP that was linked to APA
regulation in GBM is PTBP1, an RBP with increased expression
in GBM compared to normal brain 14. Indeed, our analysis
revealed one strongly supported association, between PTBP1 and
PRRC2B, accompanied by significant GBM subtype-specific PTBP1
expression (Figure 4C, right).

We emphasize that our study is limited by the data currently
available. First, we inferred the usage of poly(A) sites from RNA-
seq data, with the PAQR package (Gruber et al., 2018), which a
recent benchmarking study showed has high accuracy of poly(A)
site quantification, while quantifying fewer poly(A) sites compared
to other tools (Bryce-Smith et al., 2023). It is likely that direct
sequencing of mRNA 3’ ends and subsequent quantification of
poly(A) site usage would reveal a larger number of significantly
changing sites. Second, we used the ENCODE data set to identify
poly(A) sites that respond to perturbations of individual RBPs.
While quite extensive, this data set still covers a limited set of
RBPs in just two cell lines, and the samples vary in quality, as
shown by our quality control analyses. While our analysis shows
that significant APA targets tend to respond in the same manner
in the two cell lines (Supplementary Figure S6A), the majority of
analyzed RBPs do not have consistent effects on APA targets in
these cell lines. Thus, it appears that few of the well-characterized
RBPs represented in the ENCODE data impact polyadenylation,
but it may also be that other, so far unexplored RBPs, impact
significantly APA in GBM. Finally, an issue that complicates all
analyses based on RNA-seq data is that the inferred regulatory
relationships may be indirect. Generally, RBPs with primarily
nuclear localization that impact specific TEs are likely to do so at
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the level of polyadenylation.However, RBPs could induce changes in
isoform abundance by regulating other aspects of gene expression,
for e.g., mRNA stability.Thismaymake true regulatory relationships
yield relatively weak correlations in transcriptomic data frompatient
samples. Addressing such issues would require additional data sets
(e.g., RNA-seq from cell fractions), which are not currently available.

In conclusion, our study provides a workflow for integrating
perturbation data from the ENCODE project with data on mRNA
isoform expression in cancers (from the TCGA repository) to infer
regulatory relationships between RBPs and APA isoforms. We have
identified tens of significant relationships that could be further
investigated for their contribution to GBM.
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