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Introduction: Acute lymphoblastic leukemia (ALL) is a prevalent childhood
cancer with high cure rate, but poses a significant medical challenge in adults
and relapsed patients. Philadelphia-like acute lymphoblastic leukemia (Ph-like
ALL) is a high-risk subtype, with approximately half of cases characterized by
CRLF2 overexpression and frequent concomitant IKZF1 deletions.

Methods: To address the need for efficient, rapid, and cost-effective detection of
CRLF2 alterations, we developed a novel RT-qPCR technique combining SYBR
Green and highresolution melting analysis on a single plate.

Results: The method successfully identified CRLF2 expression, P2RY8::CRLF2
fusions, and CRLF2 and JAK2 variants, achieving a 100% sensitivity and specificity.
Application of this method across 61 samples revealed that 24.59% exhibited
CRLF2 overexpression, predominantly driven by IGH::CRLF2 (73.33%). High
Resolution Melting analysis unveiled concurrent CRLF2 or JAK2 variants in
8.19% of samples, as well as a dynamic nature of CRLF2 alterations during
disease progression.

Discussion: Overall, this approach provides an accurate identification of CRLF2
alterations, enabling improved diagnostic and facilitating therapeutic
decision-making.
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1 Introduction

Acute lymphoblastic leukemia (ALL) is the most common
childhood cancer, accounting for approximately 25% of all pediatric
malignancies. In adults, ALL is far less frequent, but it represents a
severe disease where only 30%–40% of patients achieve long-term
remission rates (Terwilliger and Abdul-Hay, 2017). Despite advances
in current therapies, relapse remains a major clinical challenge,
emphasizing the importance of identifying genomic alterations
associated with disease progression and therapeutic resistance
(Advani, 2022; Lejman et al., 2022).

Philadelphia-like ALL (Ph-like ALL) is a high-risk B-ALL subtype
that affects 15%–30% of older children and adolescents/young adults
(AYAs). This entity is characterized by a gene expression profile
resembling Ph + ALL, but lacks the t (9; 22) (q34; q11)
chromosomal translocation. Instead, it exhibits multiple genetic
alterations converging in tyrosine kinase and cytokine receptor
signaling pathways, such as ABL-class fusions, JAK2 rearrangements
or CRLF2 alterations (Roberts, 2017). Approximately 50% of Ph-like
ALL manifest CRLF2 lesions, with overexpression being a hallmark
driven by different mechanisms, including 1) P2RY8::CRLF2 fusion
(due to a cryptic deletion within the pseudoautosomal region 1 (PAR1)
of the sex chromosomes, which juxtaposes CRLF2 to the
P2RY8 promoter; 2) CRLF2 translocation at IGH locus, positioning
CRLF2 under the control of the immunoglobulin promoter; 3) CRLF2
single-nucleotide variants (SNVs; with p.F232C as the most frequent);
and 4) other JAK-STAT pathway activating variants (i.e., JAK2
p.R683G) (Roberts et al., 2018). Moreover, concomitant IKZF1
deletions are frequent in Ph-like ALL, further underscoring the

intricate genetic landscape of this recently recognized entity (Russell
et al., 2009; Harvey et al., 2010a) (Figure 1).

The potential use of targeted therapies, such as Bruton’s tyrosine
kinase (BTK) inhibitors for patients with IKZF1 deletions or ruxolitinib
for those with CRLF2 rearrangements (CRLF2-r) or JAK-STAT
pathway lesions, has been explored (Tasian et al., 2018; Holmes
et al., 2019; Yu et al., 2022). However, some studies have shown
limited effectiveness of ruxolitinib as single agent as well as inferior
outcome in CRLF2-r with concomitant JAK variant cases compared to
CRLF2-r patients (Roberts et al., 2014; Bӧhm et al., 2021). This scenario
remarks the relevance ofCRLF2 overexpression identification, as well as
the underlyingmolecularmechanisms for ALL diagnosis and treatment
selection. Furthermore, it could be useful during patient follow-up to
identify clonal evolution, adapt therapy, and prevent treatment failure
(Palmi et al., 2016; Wang et al., 2023).

There is no consensus on the methodology to characterize CRLF2
alterations. Most approaches rely on high-throughput technologies
(NGS, low density arrays, etc.), which may not be available in all
laboratories and, in some cases, the causative mechanisms behind
CRLF2 overexpression may not be fully elucidated. Real-time PCR-
based techniques are broadly available, cost-effective and versatile and
offer a short turnaround time. High Resolution Melting (HRM) and
SYBR Green fluorescent detection are commonly used in diagnostic
laboratories for genotyping, single nucleotide variation (SNV)
detection and gene expression assessment, respectively, so they
could represent a valid approach for CRLF2 study. However, there
remains a notable gap in the literature regarding methods that
integrate both approaches to identify the different molecular
alterations affecting CRLF2 expression.

FIGURE 1
Normal activation of CRLF2 occurs upon the binding of thymic stromal lymphopoietin (TSLP), which induces a conformational change resulting in
receptor dimerization. CRLF2 rearrangements, p.F232C SNV, and JAK2 variants promote STAT5 phosphorylation and JAK-STAT pathway activation,
leading to oncogenic CRLF2 overexpression and aberrant signaling activation. Deletions of B-lymphoid transcriptional regulators, such as IKZF1, EBF1,
BTG1, and PAX5, also upregulate CRLF2, leading to disrupted cell differentiation. The image was created in Biorender (https://biorender.com/).
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In the present study, we delineate a novel comprehensive, fast,
and cheap technique combining HRM analysis and SYBR Green dye
(RT-qPCR-SYBR-HRM), allowing for the detection of CRLF2
expression and the main causative mechanisms in a single
experiment. We demonstrate that the method is sensible, specific,
convenient, and versatile for this purpose.

2 Materials and methods

2.1 Patients

The study encompassed two patient cohorts diagnosed at
Hospital Universitari i Politècnic La Fe (Valencia, Spain). Cohort
A comprised 100 retrospective ALL patients: 74 pediatric
(0–17 years), 12 AYA (18–42 years) and 14 adult (>42 years)
patients (Supplementary Table S1). Cohort B consisted of
61 prospective samples, including 46 pediatric, 11 AYA, and
4 adult patients (Supplementary Table S2). The inclusion criteria
for this study were as follows: availability of high-quality DNA and/
or RNA obtained from bone marrow or peripheral blood, and
documented written consent obtained in compliance with the
recommendations of the Declaration of Human Rights and the
Helsinki Conference. This study was approved by the institutional
ethics committee for clinical research.

All patients were initially characterized using the following
methods: karyotyping and fluorescence in situ hybridization
(FISH, including CRLF2 rearrangement status) were performed

according to standard protocols. ETV6::RUNX1 and BCR::ABL1
fusions were assessed by RT-qPCR (Gabert et al., 2003).

2.2 Nucleic acid extraction and quantitation

Genomic DNA or RNA from bone marrow or peripheral blood
was isolated using the QIAampDNAMidi Kit or the RNeasyMidi Kit
(Qiagen, Valencia, CA), respectively, using the QIAsymphony SP/AS
instrument (Qiagen) according to manufacturer’s instructions. The
quantification and quality of nucleic acids were assessed with a
QIAxpert instrument (QIAgen). Reverse transcription was
performed on 500 ng of RNA using the SuperScript IV VILO kit
(Thermo Fisher Scientific, San Francisco, CA, United States).

2.3 Development of a new RT-qPCR-SYBR-
HRM method for CRLF2 expression
assessment and the identification of the
underlying molecular mechanisms

2.3.1 Method approach
Anovel RT-qPCR-SYBR-HRMapproach was developed in order to

study CRLF2 expression and to identify the underlying molecular
mechanisms, using a common cycling protocol: in the same plate,
using cDNA as template and SYBR Green, CRLF2 expression and
P2RY8::CRLF2 presence were assessed; in parallel, CRLF2 and JAK2
screening was performed by HRM using patients’ DNA (Figure 2).

FIGURE 2
Workflow depicting the RT-qPCR-SYBR-HRM method to assess CRLF2 alterations. Nucleic acids were isolated from bone marrow or peripheral
blood. RNA was subsequently subjected to reverse transcription to obtain cDNA. Real-time PCR plate was set up in order to assess, in parallel, CRLF2
expression and fusions (SYBR Green fluorescent detection) and CRLF2 and JAK2 pathogenic variants (HRM analysis). The image was created in Biorender
(https://biorender.com/).
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All experiments were carried out on a LightCycler480 Instrument
(Roche Diagnostics, Rotkreuz, Switzerland). The thermal cycling
protocol included an initial 5-min hold at 40°C for UDG
activation, followed by an 8-min hold at 95°C. The PCR steps
consisted of 10 s at 95°C, 15 s at 58°C, and 30 s at 72°C for
45 cycles. Melting analysis was performed with a final
denaturalization (95°C for 1 min) and cooling (40°C for 1 min),
and a 60°C–95°C melting gradient with a ramp rate of 0.04°C/s
and continuous acquisition mode set at 25 acquisitions/°C.

2.3.2 CRLF2 expression
To assess CRLF2 expression, SYBR Green and specific primers were

used (Supplementary Table S1). All experiments were conducted in
duplicate, each in a 10 µL reaction containing 1U Uracil-DNA
glycosylase (UDG) (Thermo Fisher Scientific), 1.2 mM of each
primer, 1X SYBR Green Master Mix (Roche), and 2 μL of cDNA.
CRLF2 expressionwas quantified using the 2−ΔΔCTmethod, usingmedian
expression from cohort A as a reference value, and ABL1 as the
housekeeping gene. The ΔΔCts were calculated by subtracting the
median of the ΔCt of the cohort A tested patients to the ΔCt of
each sample.

2.3.2.1 CRLF2 overexpression criteria
To accurately identify differences in gene expression and

establish a reliable overexpression criterion, CRLF2 expression
was assessed in a retrospective cohort of 100 ALL patients
(cohort A). The 20-fold interquartile range (IQR) was considered
as the overexpression cut off value (CRLF2IQR20). This threshold,
expressed as 2−ΔΔCt relative to the median, was 120.19.

2.3.3 P2RY8::CRLF2 detection
P2RY8::CRLF2 fusion was assessed as described in Section 2.3.2

using specific primers (Supplementary Table S3).

2.3.4 CRLF2 and JAK2 variants
HRM analysis was performed on CRLF2 (exon 6) and JAK2 (exon

16) hotspots. All samples were tested in duplicate, positive and negative
controls for each exon were included in each run. PCR was carried out
using 40 ng of genomic DNA, 0.3 µM of each primer (Supplementary
Table S3), 3 mM of MgCl2, and 1X LightCycler 480 High Resolution
MeltingMaster Mix (Roche). Melting curves were analyzed using Gene
Scanning software (Roche). All samples showing divergent melting
curves were sequenced following standard protocols on a SeqStudio
Genetic Analyzer (Applied Biosystems, Foster City, CA).

2.3.5 Analytical performance
2.3.5.1 Variant limit of detection

The Limit of detection (LoD) was assessed using positive
samples for which the variant allele frequency (VAF) was
established with Sanger sequencing and the Minor Variant
Finder (MVF) software. Samples carrying CRLF2 and JAK2
hotspot variants were serially diluted into a negative control, to
obtain VAFs of 30%, 15%, 10%, and 5%.

2.3.6 Sensitivity and specificity
Sensitivity [true-positive (TP)/(TP + false-negative (FN))] and

specificity [true negative (TN)/(TN + false-positive (FP))] were
calculated according to the following definitions: True positive

(TP) refers to a known alteration that is expected to be present, and
it has been correctly identified. False positive (FP) applies to a
variant mistakenly identified. True negative (TN) concerns to a
region of interest where the absence of variants is correctly
identified. False negative (FN) refers to a missed variant that is
expected to be present.

For CRLF2-r identification, FISH was considered as the gold
standard method. For SNV assessment, Sanger sequencing and the
MVF software was used as the reference method.

2.4 IKZF1 deletions

Deletions in IKZF1 and other genes in ALL (BTG1, CDKN2A/B,
EBF1, ETV6, PAR1 region, PAX5 and RB1) were investigated by
multiple ligation-dependent probes amplification (MLPA) using
SALSA MLPA P335 ALL-IKZF1 probemix kit (MRC-Holland,
Amsterdam, the Netherlands) according to the manufacturer’s
instructions. Four negative controls from healthy donors were
included in each run. Capillary electrophoresis was carried out in
SeqStudio Genetic Analyzer and data were analyzed using Coffalyser
software (MRC-Holland).

2.5 Statistical analysis

Medians of quantitative variants were compared with
Mann–Whitney’s U test. Categorical variables were examined
with the chi-square’s test or Fisher’s exact test. Statistical tests
were performed with the RStudio software version 4.2.2, and p <
0.05 was considered statistically significant. Plots were generated
using ggplot2 package version 3.4.2, Fishplot package v0.5 and
cBioPortal, a free web-based platform for interactive data
visualization.

3 Results

3.1 Technical validation

3.1.1 Sensitivity, specificity and limit of detection
A high concordance between the RT-qPCR-SYBR-HRM

method and the gold standard techniques was obtained,
with a sensitivity and specificity of 100% for all
alterations (Table 1).

The lowest VAF detected by HRM was found at a dilution of 1:
6 for CRLF2 p.F232C and JAK2 p.R683G variants, corresponding to
a 5% VAF (Supplementary Figure S1).

3.2 CRLF2 alterations detected in
ALL patients

3.2.1 CRLF2 expression, fusions and activating
hotspot variants

In total, 61 samples from 56 patients (cohort B) were
prospectively analyzed with the method. Patients’ main
characteristics are shown in Supplementary Table S2.
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CRLF2 expression levels ranged from 0.006- to 1704.34-fold
expressed as 2−ΔΔCt. Median CRLF2 expression did not significantly
differ between cohort A and B (3.81 vs. 6.19; p = 0.43).

CRLF2IQR20 was identified in 15/61 (26.2%) samples. The
molecular upregulation mechanism was identified in 15/15
(100%) samples. Eleven patients (11/15, 73.3%) carried the IGH::
CRLF2 fusion (detected by FISH), 3/15 (20%) harbored the P2RY8::
CRLF2 fusion, and 1/15 (6.7%) carried the JAK2 p.R683G variant.
Five out of 14 (35.7%) CRLF2-r samples carried concomitant CRLF2
(p.F232C or JAK2 (2 p.R683G, 1 p.R683S, 1 p.R683I) point
variants (Figure 3).

Of note, 8/46 not-overexpressing samples showed a slightly
higher CRLF2 expression that clustered between IQR10 and
IQR20 values. The method identified the P2RY8::CRLF2 fusions
at subclonal levels (not identified by FISH) in 2 of these samples
(25%) (Supplementary Figure S2).

The median age in CRLF2-r patients was significantly higher
than that in non-rearranged ALL (27.5 vs. 9.26, p < 0.001). CRLF2
expression was significantly higher in IGH::CRLF2 patients
compared to P2RY8::CRLF2 patients (median 1,156.1 vs. 234.6,
p < 0.005). No significant differences in CRLF2 expression were

observed among other demographic or clinical variables. A
comprehensive summary of the results is provided in
Supplementary Table S4.

3.3 IKZF1 and other gene deletions

IKZF1 deletions were significantly (p < 0.01) more frequent in
CRLF2IQR20 patients: 7/15 CRLF2IQR20 (46.67%; 4 IGH::CRLF2 and
3 P2RY8::CRLF2 samples) vs. 5/46 no CRLF2IQR20 patients (10.87%).

In our study cohort, a deletion of exons two to eight in IKZF1,
denoted asΔ2-8, was found in a patient with the P2RY8::CRLF2 fusion
(Figure 4). Additionally, Δ4-8 alterations were identified in two
patients carrying the IGH::CRLF2 and another with the P2RY8::
CRLF2 fusion. Furthermore, three patients exhibited the Δ2-3
isoform, of which two had the IGH::CRLF2 fusion, while the third
patient tested negative for CRLF2-r. One patient with subclonal
P2RY8::CRLF2 fusion showed the IK-3 and IK-6 isoforms, whereas
two CRLF2-r negative patients carried the IK-6 isoform (Figure 4A).

Eighty-nine additional CNVs were identified in 42/61 (68.85%)
samples. The mean number of affected genes per patient was 1.67,

TABLE 1 Sensitivity and specificity achieved by the RT-qPCR-SYBR-HRM method.

Method Target Sensitivity, % [TP/(TP + FN)] Specificity, % [TN/(TN + FP)]

RT-qPCR vs. FISH CRLF2 overexpressiona 100 100

P2RY8::CRLF2 100 100

HRM vs. Sanger CRLF2 100 100

JAK2 100 100

aWe assumed that virtually all CRLF2-r samples overexpress this gene.

FIGURE 3
Box and Whisker plots depicting CRLF2 expression. Patients were categorized into two distinct groups based on their expression levels: CRLF2 and
CRLF2IQR20. CRLF2IQR20 cutoff value is indicated with an orange dashed line. Color-coded dots indicate the assessed mechanisms inducing
CRLF2 overespression. **** indicate a p-value <0.001.
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range 0–9. The most frequently altered genes were CDKN2A
(26.23%), CDKN2B (26.23%), and the PAR1 region (24.59%), as
shown in Figure 4B and Supplementary Table S4. In the AYA
subgroup, a co-occurrence pattern (p < 0.001) was observed between
EBF1 and IKZF1 deletions, whereas in the pediatric subgroup, this
association was not significant. Notably, no mutually exclusive
genetic alterations were identified in our cohort. No significant
differences were found in terms of CRLF2 expression.

3.4 Clonal evolution of CRLF2 alterations

To investigate whether IGH::CRLF2 and P2RY8::CRLF2 were
early or late events during leukemogenesis, we further analyzed
CRLF2-r samples (IGH::CRLF2, n = 11 and P2RY8::CRLF2, n = 3)
according to the tumoral load and disease stage. In patients harboring
IGH::CRLF2 at diagnosis, the blast counts correlated with the
percentage of rearranged cells detected by FISH, suggesting that

FIGURE 4
(A) Schematic representation of IKZF1 isoforms found in our cohort through MLPA analysis. The colored boxes indicate distinct exons. IK-6 is a
dominant-negative isoform, whereas Δ2–3, Δtwo to eight and Δfour to eight isoforms cause haploinsufficiency. (B)Oncoprint showingCRLF2 alterations
with additional CNVs. The Oncoprint also includes demographic and clinical data of the patients.
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IGH::CRLF2 was present in the major leukemic clone. In contrast,
P2RY8::CRLF2 fusion constituted a minor clone among the blast
count, thus confirming its secondary nature. Of note, subclonal levels
of P2RY8::CRLF2 were detected in two patients, one carrying ETV6::
RUNX1 as the primary leukemic event, and another harboring an
IKZF1 deletion (IK-3) and other CNVs (Supplementary Table S4).

Paired diagnosis-relapse samples could be analyzed in
4 CRLF2IQR20 patients, among whom 2/4 (50%) experienced clonal
evolution. Patient 2 harbored the JAK2 p.R683G variant at diagnosis,
which was lost at relapse but acquired both IGH::CRLF2 and JAK2
p.R683S variant, resulting in a 2-fold CRFL2 expression increase
compared to diagnosis (Figures 5A–C). A different evolution
pattern was observed in Patient 12, who carried IGH::CRLF2 at
diagnosis and acquired a JAK2 variant (p.R683I) at relapse, reducing
CRLF2 expression 3-fold compared to diagnosis (Figures 5D–F).

4 Discussion

In this study, we develop a RT-qPCR-SYBR-HRM method able
to quantify CRLF2 expression and detect the main underlying
deregulation mechanisms such as the P2RY8::CRLF2 fusion and
CRLF2 and JAK2 pathogenic variants.

The approach showed 100% sensitivity and specificity for the
identification of CRFL2-r patients, and the same accuracy was found
for the detection of P2RY8::CRLF2 and CRLF2 and JAK2 variants. The
5% VAF limit of detection established for SNVs is widely accepted in
the clinical context (Richards et al., 2015; Pandzic et al., 2022), and lower
than that generally attributed to direct Sanger sequencing.

High throughput alternatives like NGS, Low Density Arrays or
Optical GenomeMapping constitute powerful tools to assess clinically

relevant alterations in a single experiment; but its use may be limited
by their long turnaround time, as the identification of patients eligible
for targeted therapies requires rapid results (Malone et al., 2020).
Moreover, the implementation of high-throughput techniquesmay be
challenging in low-income countries due to the need of complex
validation studies, logistic challenges and technical expertise (Alonso
et al., 2019; Llop et al., 2022; Gil et al., 2023). Thus, conventional
methods still play an important role in molecular laboratories as they
provide sensitive, reliable, and cost-effective results. In contrast with
other published RT-qPCR-based methods, our approach provides a
comprehensive study of CRLF2 characterized by its flexibility,
rapidity, and low cost (Shochat et al., 2011; Palmi et al., 2012).

In our exploratory cohort 24.59% samples showed CRLF2IQR20

expression. In line with Palmi et al., 2016, the driving mechanism
was IGH::CRLF2 in 73.3% of patients and P2RY8::CRLF2 in 20%.
Moreover, subclonal P2RY8::CRLF2 was found in 2/61 samples.
Previous research has shown that subclonal P2RY8::CRLF2 represents
a secondary event during leukemogenesis, usually lost at relapse (Morak
et al., 2012; Vesely et al., 2016). Our results further support this
hypothesis, as subclonal P2RY8::CRLF2 samples carried other driver
fusions (ETV6::RUNX1 and PAX5-r).This data underscores the lack of
clinical significance associated with subclonal CRLF2 alterations and
supports the accuracy of the selected overexpression criteria.

Only one patient harboured a SNV in CRLF2 (1.79%) whereas
JAK2 variants were found in 5.36% patients. This could be explained by
the reported low frequency of CRLF2 pathogenic variants in pediatric
cohorts, which is approximately 2% (Chen et al., 2012), and the higher
co-occurrence (about 10%) between JAK2 variants and CRLF2-r in
non-Down Syndrome ALL (Harvey et al., 2010b). Previous studies
interrogating CRLF2 and JAK2 in ALL have shown that variants can
also be found outside the hotspots screened. However, their frequency

FIGURE 5
Clonal evolution of patient 2 (A–C) and patient 12 (D–F). (A) Fish plot showing clonal evolution where JAK2 p.R683G is lost at relapse and IGH::
CRLF2 and JAK2 p.R683S are acquired. (B) JAK2 p.R683G confirmed by direct sequencing with 17% VAF. (C) JAK2 R683S confirmed by Sanger sequencing
and IGH::CRLF2 fusion identified by FISH at relapse. (D) Fish plot showing clonal evolution where JAK2 p.R683I is acquired at relapse. (E) IGH::CRLF2
fusion identified at diagnosis by FISH. (F) IGH::CRLF2 fusion and JAK2 p.R683I identified at relapse.
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is very low and their clinical relevance is not well established
(Mullighan and Downing, 2009; Harvey et al., 2010b).

In agreement with Russell et al. (2017), AYAs showed higher
CRLF2 expression than pediatric patients, which could be explained
by the fact that median age was significantly higher in CRLF2-r
patients. Moreover, within CRLF2-r patients, the ones harbouring
IGH::CRLF2 were significantly older that those with P2RY8::CRLF2.
We did not find any significant associations between CRLF2
expression and other demographic and clinical variables.

As previously described, we observed IKZF1 deletions in a
substantial proportion of CRLF2IQR20 samples (46.67%), a genetic
trait associated with a high relapse rate and poor overall survival
(Stanulla et al., 2020). Furthermore, we identified several IKZF1
isoforms in our patient cohort, suggesting that any alteration
affecting IKAROS function could be involved in leukemogenesis as
mentioned by Conserva et al. (2023). In contrast to Russell et al. (2017),
we could not find significant differences regarding IKZF1 or BTG1
deletions in CRLF2-r patients, probably due to the low size of our
cohort. We also observed a significant association between EBF1 and
IKZF1 deletions in the AYAs subgroup, but not in pediatric patients.
This association has been previously described by different authors, who
suggest thatEBF1 and IKZF1 cooperate in B cell differentiation blockage
and higher minimal residual disease levels compared to isolated IKZF1
deletions (Mullighan et al., 2009;Marke et al., 2018; Steeghs et al., 2019).

Clonal evolution was observed in CRLF2IQR20 patients. These
findings are clinically relevant, as patients with CRLF2-r and
concomitant JAK2 variants contribute to inferior outcomes in
ALL (Jain et al., 2017). In agreement with Palmi et al. (2012), we
observed that P2RY8::CRLF2 is a secondary event in CRLF2-r
patients. In this context, our results suggest a dynamic nature of
CRLF2 alterations during disease progression. Monitoring genetic
markers enables clinicians to tailor treatment strategies, adapt
interventions to evolving genomic abnormalities, and minimize
the risk of treatment failure (Iacobucci and Mullighan, 2017).
Furthermore, identifying clonal evolution can be decisive for the
selection of appropriate therapeutic approaches, including targeted
therapies addressing specific genetic alterations acquired during
disease progression (Sayyab et al., 2021).

In conclusion, we developed a new versatile, sensitive, and cheap tool
to identify and characterize CRLF2 deregulated patients, which can assist
the therapeutic decision-making. These findings contribute to a better
understanding of the pathogenesis of Ph-like ALL with CRLF2
alterations.
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