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Background: The pathogenesis of juvenile idiopathic arthritis (JIA) is strongly
influenced by an impaired immune system. However, the molecular mechanisms
underlying its development and progression have not been elucidated. In this
study, the computational methods TRUST4 were used to construct a T-cell
receptor (TCR) and B-cell receptor (BCR) repertoire from the peripheral blood of
JIA patients via bulk RNA-seq data, after which the clonality and diversity of the
immune repertoire were analyzed.

Results: Our findings revealed significant differences in the frequency of
clonotypes between the JIA and healthy control groups in terms of the TCR
and BCR repertoires. This work identified specific V genes and J genes in TCRs
and BCRs that could be used to expand our understanding of JIA. After single-cell
RNA analysis, the relative percentages of CD14 monocytes were significantly
greater in the JIA group. Cell-cell communication analysis revealed the significant
role of the MIF signaling pathway in JIA.

Conclusion: In conclusion, this work describes the immune features of both the
TCR and BCR repertoires under JIA conditions and provides novel insight into
immunotherapy for JIA.
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1 Introduction

Juvenile idiopathic arthritis (JIA) is the predominant rheumatic disorder in children,
encompassing various forms of persistent arthritis in childhood that affect joints and extra-
articular structures, potentially resulting in disability or mortality (Zaripova et al., 2021;
Ambler et al., 2022; Luo and Tang, 2024). As per the International League of Associations
for Rheumatology, JIA is categorized into subtypes: oligoarticular, polyarticular, systemic,
psoriatic arthritis, and enthesitis-related arthritis, each differing in genetic predisposition
and severity of arthritis. The onset of the pathophysiological process in JIA involves
aberrant activation of immunocytes, such as lymphocytes, natural killer cells, macrophages,
and neutrophils, leading to the release of pro-inflammatory mediators that contribute to
joint damage and systemic complications (Ling et al., 2012; Zhang W. et al., 2023).
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A prior study indicates that the features of T-cell receptor (TCR)
and B-cell receptor (BCR) repertoires could aid in comprehending
adaptive immunity in autoimmune conditions (Attaf et al., 2015;
Kim and Park, 2019). TRUST4, a highly efficient technique, can
accurately infer TCR and BCR repertoires from bulk RNA-seq or
single-cell sequencing (scRNA-seq) data. This approach has been
shown to be effective in extracting immune profiles from bulk RNA-
seq data without the need for additional T or B-cell receptor
sequencing, thus reducing the cost of profiling immune
repertoires in autoimmune diseases. Moreover, this approach has
demonstrated exceptional efficiency, sensitivity, and precision in
reconstructing CDR3s and can be used to assemble complete
immune receptor sequences (Song et al., 2021; Liu and Han,
2022). The previous bioinformatics analysis results showed an
increase in certain specific CDR3 amino acid sequences
associated with autoimmune diseases, such as systemic lupus
erythematosus and rheumatoid arthritis (Zhang and Lee, 2022).
Hence, we hypothesize that certain specific CDR3 amino acid
sequences also increased in JIA.

scRNA-seq is a cutting-edge technique that allows for the
sequencing of DNA or RNA at the individual cell level
(Ziegenhain et al., 2017; Slovin et al., 2021; Jovic et al., 2022).
This approach provides a comprehensive understanding of the
genetic architecture and gene expression patterns of
individual cells, thereby greatly expanding our knowledge of
transcriptional heterogeneity and dynamics across diverse
biological entities.

In this study, we employed TCR and BCR repertoire analysis
methods, along with integrated analysis via high-dimensional
weighted gene coexpression network analysis (HdWGCNA) and
cell trajectory tools, on bulk RNA-seq and scRNA-seq samples from
healthy control (HC) and JIA patients. The aim was to characterize
the changes in the transcriptional profile between the HC and JIA.
The findings of this study offer novel insights into JIA treatment and
provide fundamental research support for the clinical management
of this disease.

2 Methods

2.1 Data sources

Peripheral blood mononuclear cells (PBMCs) of bulk RNA-
seq data from the GEO datasets (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA439192). PBMC of scRNA-seq data
from 6 JIA and 2 HC samples were obtained, specifically
GSE205095 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE205095).

2.1.1 T and B-cell receptor repertoire construction
and analysis

To construct TCR and BCR repertoires, we employed the
TRUST4. In brief: 1)Calculating the frequency of clonotypes,
followed by Student’s t-test to compare JIA and HC groups. 2)
Assessing TRBV, TRBJ, IGHV, and IGHJ gene proportions, with
Student’s t-test identifying significantly altered genes. 3) Evaluating
diversity in CDR3 amino acid sequences using InvSimpson and
Chao1 indices. 4) Analyzing the distribution of CDR3 amino acid

sequence lengths. 5) Examining the top 10 TCR and BCR V
region motifs.

2.1.2 Cell filtering and normalization
To mitigate interference from dead cells and cellular debris, this

study adjusted for gene expression, and mitochondrial gene
expression ratio in each cell sample. The threshold is as follows:
cells with a total gene count >2,500, <200 genes, or a mitochondrial
gene percentage <5% were excluded. The LogNormalize method is
utilized to logarithmically transform and standardize gene
expression values of cells, ensuring consistent total RNA
expression levels across all cells.

2.1.3 Data dimensionality reduction and
UMAP analysis

Data were first normalized using the ScaleData function, which
ensures that the data are on a comparable scale. Subsequently, we
utilized the RunPCA function to reduce the dimensionality of the
normalized data. To explore relationships between neighboring
cells, the FindNeighbor function calculated distances based on a
specified principal fraction (pcSelect) and identified nearest
neighbors for each cell. The FindClusters function utilized the
Leiden algorithm to assign cells to clusters based on the
adjacency graph, with a resolution parameter of 2.0 for
clustering. Lastly, the RunUMAP function computed UMAP
coordinates, guided by the input principal fraction (pcSelect).

2.1.4 Marker genes identification
To detect hypervariable genes, we performed variable gene

selection for each sample, and a later integration analysis was
performed to identify the 2,000 largest genes based on the overall
gene mean and dispersion to conduct downstream analysis of the
data for clustering, differential analysis, etc.

2.1.5 Cell annotation
Cells were annotated using manual annotation, and the

“FindAllMarkers” function was used to find markers for each
cluster. The clusters were subsequently classified according to the
characteristic gene expression of a specific cell type to annotate cells
across multiple reference sets.

2.1.6 HdWGCNA analysis
HdWGCNA utilized the R package ‘HdWGCNA’ to build a

scale-free network. By establishing a scale-free topology model fit
threshold of ≥0.80 and selecting a soft threshold of 9 for optimal
connectivity, AUCell assessed the scRNA cohort using modules. The
construction of a protein-protein interaction (PPI) was performed
using the ‘HubGeneNetworkPlot’ function.

2.1.7 Cell-cell communication analysis
For exploring cell-cell interaction, we employed CellChat

(version 1.6.1) (Jin et al., 2021). In brief, we used the
‘createCellChat’ function to generate a CellChat object, allowing
for the calculation of communication probabilities and the inference
of cell interaction networks. Moreover, we delved into cell
interaction at the signaling pathway level, allowing for the
inference of inter-cellular interaction based on specific signaling
pathway involvement.
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FIGURE 1
Characteristics of the JIA and HC immune repertoires (TCR repertoires). (A) Comparison of clonotype numbers for the TCR repertoire. (B) The
relative abundance of TCR clonotypes with varying frequencies in the JIA and HC groups. (C) Distributions of TCR CDR3 amino acid sequence length in
the JIA andHCgroups. (D)Comparison of the differences in the clonotype diversity indicators Chao1 and InvSimpson indices. (E)Comparison of theGene
Usages of TRBV and TRBJ. (F) Clonotype tracking of JIA samples. Bar average, error bar standard error. p values were obtained by theWilcoxon test.
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2.1.8 Trajectory analysis
For exploring trajectory analysis of cells, we employed the

Monocle2 software package (version 2.28.0) (Zhang Q. et al.,
2023). The UMI matrix was imported from the Seurat object,
and the newCellDataSet function was employed to generate the
object. Genes with a mean expression >0.1 were selected, followed by
dimensionality reduction using the DDRTree method and cell
ordering through the orderCells function.

2.1.9 Transcriptomic factors analysis
For transcriptomic factors analysis, we employed pySCENIC

(version 1.2.4). In summary, GENIE3 was employed to discover
potential target genes of transcription factors, and the activity of
each regulon within a cell was assessed by computing the area under
the receiver operating characteristic curve using AUCell (version
1.16.0). Lastly, we used R script for cluster analysis and visualization
of RegulonAUC data.

2.1.10 Statistical analysis
Student’s t-test was performed to test for 1) the relative

frequency of the 10 most abundant clonotypes between JIA and
HC group 2) Chao1 and InvSimpson index of CDR3 amino acid
sequence length between JIA and HC group; and 3) differentially
expressed V genes and J genes between JIA and HC group. The
Wilcoxon rank-sum test was employed, and a significance level of
p < 0.05 was used to indicate a statistically significant difference. All
statistical data were analyzed using R scripts.

3 Results

3.1 TCRs analysis

The TCRs were analyzed in the bulk RNA-seq data using the
standard workflow of TRUST4. The results showed that the
frequency of clonotypes in the JIA group was significantly
increased (p < 0.05; Figure 1A). Additional analyses were
performed to examine the distribution of TCR clonotypes
frequencies, uncovering categories of small, medium, large,
and hyperexpanded frequencies. The clonotype distributions
at small frequencies were significantly increased in JIA (p < 0.05;
Figure 1B), whereas the distributions at medium and large
frequencies and hyperexpanded frequencies were increased in
HC(p < 0.05). The results suggested that the JIA exhibited a
greater degree of dominant clonal expansion and a lower TCR
repertoire diversity. The results of distributions of CDR3 amino
acid sequence length showed that the most common
CDR3 amino acid sequences for both JIA and HC are 15.
CDR3 amino acid sequence length did not significantly differ
between the JIA and HC groups (Figure 1C). Both the
Chao1 and InvSimpson indices were utilized to evaluate the
diversity of the CDR3 amino acid sequences. The JIA group
exhibited significantly greater Chao1 and InvSimpson indices
than the HC(p < 0.05; Figure 1D). To measure the frequency of
TRBJ and TRBV genes, we generated a bar chart depicting the
common usage frequencies of these genes (Figures 1E,F). The
results showed that there was no difference between these
two groups.

3.1.1 BCRs analysis
The BCRs were also analyzed in the bulk RNA-seq data using the

standard workflow of TRUST4. And the results showed that the
frequency of clonotypes in JIA was significantly increased (p < 0.05;
Figure 2A). Additional analyses were performed to examine the
distribution of BCR clonotypes frequencies, uncovering categories of
small, medium, large, and hyperexpanded frequencies. The
clonotype distributions at small frequencies were significantly
increased in JIA (p < 0.05), whereas the distributions at medium
and large frequencies and hyperexpanded frequencies were
increased in HC(p < 0.05; Figure 2B). The results suggested that
the JIA exhibited a greater degree of dominant clonal expansion and
a lower BCR repertoire diversity. The results of distributions of
CDR3 amino acid sequence length showed that the most common
CDR3 amino acid sequences for both JIA and HC are 16.
CDR3 amino acid sequence length did not significantly differ
between the JIA and HC groups (Figure 2C). Both the
Chao1 and InvSimpson indices were utilized to evaluate the
diversity of the CDR3 amino acid sequences. Compared to HC,
the Chao1 and InvSimpson indices were significantly increased in
JIA (p < 0.05; Figure 2D). To measure the frequency of TRBJ and
TRBV genes among the JIA andHC groups, we generated a bar chart
depicting the common usage frequencies of these genes (Figures
2E,F). The results showed that there was no difference between these
two groups.

3.1.2 ScRNA-seq analysis of PBMCs
We analyzed the single-cell transcriptional profiles of PBMCs

from JIA patients by examining scRNA-seq data from 2 healthy
individuals and 6 individuals with JIA. A total of 23,104 high-quality
single cells were obtained from 8 samples, with 20,986 cells used for
cell type identification after filtering. Among these, 4,520 cells
belonged to the HC group, and 16,466 cells belonged to the JIA
group. The filtered data underwent integration, dimensionality
reduction, and clustering using an unsupervised method,
resulting in the identification of 33 major cell types visualized
through UMAP (Figure 3A). Ten clusters were distinguished
based on the expression of characteristic gene markers,
representing cell types such as CD14 monocytes,
CD16 monocytes, CD4 T cells, CD8 T cells, B cells, monocyte-
derived dendritic cells (mDCs), plasmacytoid dendritic cells (pDCs),
natural killer (NK) cells, neutrophils, and red blood cells (Figure 3B).
The typical marker genes for each cell type are depicted in Figure 3C.

3.1.3 Phenotypic characteristics of cell types in JIA
To illustrate the differences in cellular composition, the

expression profiles of 10 cell types within these two groups are
depicted in Figure 4A. The relative percentages of all cell types
among PBMCs from each individual were calculated (Figures 4B,C).
The results showed that the relative percentages of CD14 monocytes
were significantly increased in the JIA group.

3.1.4 Characterization of T cells between the JIA
and HC groups

We examined the changes in T cells post JIA onset by analyzing
T cells within PBMCs. UMAP visualization of canonical T-cell
markers revealed 10 distinct T-cell subpopulations (Figure 5A),
including effector CD8+ T cells (GNLY), effector CD8+ T cells
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(GZMH), central memory CD4+ T cells, effector memory CD4+

T cells, naïve CD8+ T cells, naïve CD4+ T cells, exhausted CD8+

T cells, tissue resident memory CD8+ T cells, type 2 helper T (Th2)-

like cells, γδ T cells and other cells (Figure 5B). Functional
enrichment analysis using gene ontology (GO) highlighted the
significant involvement of T cells, such as structural constituent

FIGURE 2
Characteristics of the JIA and HC immune repertoires (BCR repertoires). (A) Comparison of clonotype numbers for the BCR repertoire. (B) The
relative abundance of BCR clonotypes with varying frequencies in the JIA and HC groups. (C) Distributions of BCR CDR3 amino acid sequence length in
the JIA andHCgroups. (D)Comparison of the differences in the clonotype diversity indicators Chao1 and InvSimpson indices. (E)Comparison of theGene
Usages of TRBV and TRBJ. (F) Clonotype tracking of JIA samples. Bar average, error bar standard error. p values were obtained by theWilcoxon test.
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of ribosome, rRNA binding, ubiquitin-protein transferase regulator
activity, mRNA 5′-UTR binding, and signaling adaptor activity. The
results of KEGG pathway indicated T cells participation in pathways
like the ribosome, coronavirus disease-COVID-19, primary
immunodeficiency, hematopoietic cell lineage, T-cell receptor
signaling pathway, and Th17 cell differentiation pathways
(Figure 5E). The expression profiles of differentially expressed
genes (DEGs) in T cells were depicted visually, with red
representing upregulation and blue representing downregulation.
Figure 5F highlights the top five genes displaying the most
notable changes.

3.1.5 Characterization of B cells between the JIA
and HC groups

We investigated the changes in B cells post JIA onset through
a detailed analysis of B cells within PBMCs. By leveraging
canonical B-cell markers, UMAP visualization identified
5 distinct B-cell subpopulations, including follicular B cells,
naïve B cells, atypical memory B cells, and plasma B cells
(Figure 6A). Functional enrichment analysis using GO
highlighted the significant role of B cells, such as MHC class
II protein complex binding, MHC protein complex binding,

antigen binding, MHC class II receptor activity, and peptide
antigen binding. Furthermore, KEGG pathway analysis indicated
that B cells’ involvement in pathways like the B-cell receptor
signaling pathway, Epstein–Barr virus infection pathway,
intestinal immune network for IgA production, hematopoietic
cell lineage pathway, and leishmaniasis pathway (Figure 6C). The
expression profile of DEGs in B cells was visualized. The figure
highlights the five genes showing the most significant
alterations (Figure 6D).

3.1.6 HdWGCNA analysis of T cells
With a soft threshold of 9, we built an unscaled network for

T cells, resulting in the discovery of seven gene modules (Figures
7A,B). The T cell-M3 module showed significant enrichment in
T cells (Figure 7C). Subsequently, we performed GO enrichment
analyses for genes within the T cell-M3 module, highlighting their
functional roles in biological process, cellular component, and
molecular function (Figure 7D). Furthermore, we established a
PPI network to validate the interactions among hub genes within
the T cell-M3 module (Figure 7E). Lastly, we explored gene
expression modules in T cells and identified key hub
genes (Figure 7F).

FIGURE 3
Single-cell transcriptome profiles of PBMCs from the JIA and HC groups. (A) Identification of cell populations. A total of 8 PBMC samples from the
HC group (n = 2) and JIA group (n = 6) were sequenced, and a total of 23,104 high-quality single cells were obtained. After quality control, 20,986 cells
were obtained, and 33 clusters of cells were identified via UMAP. Each dot corresponds to a single cell and is colored according to the cell type. Each color
represents a cluster. (B)UMAP charts of 20,986 single cells colored according to cell type. The 33 cell clusters were further identified as 10 cell types.
UMAP was used to identify and visualize these celltypes. Each dot represents an individual cell and is colored according to its corresponding cell type. (C)
Canonical cell markers were utilized to assign cell identities to the clusters represented in the UMAP plot.
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FIGURE 4
Differences in cell composition between the JIA and HC groups. (A) UMAP plots of the HCs and JIA patients. Each dot corresponds to a single cell
and is colored according to the cell type. (B) The average proportion of each cell type was derived from the HCs and JIA groups. The left picture depicts
the average proportion of each cell type derived from the two groups. The calculationmethod was as follows: (the number of specific cell clusters in one
group) ⁄ (the number of total cells in one group). The dot plot in the upper panel of the right picture shows the sum of the absolute counts of cell
subsets in the PBMCs of each sample, and the bottom bar plot shows the cell compositions at the single sample level. The calculation method was as
follows: (the number of specific cell clusters in one sample) ⁄ (the number of total cells in one sample). (C) Box charts showing the proportion of each cell
type among the total PBMCs in each sample across the three groups (n = 2 in the HC group, n = 6 in the JIA group). p < 0.05 was considered to indicate
statistical significance.
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FIGURE 5
Characterization of T cell subsets between the JIA andHCgroups. (A)UMAP visualization of distinct populations of T-cell subsets is depicted. (B)UMAPplots
of T-cell subsets acquired from the HCs and the JIA group are shown. (C) A dot plot is presented, illustrating the gene expression and percentage of T cells
expressing the top 70 genes that exhibited differential expression. (D) The size of each dot corresponds to the percentage of cells expressed, while the color
represents the expression level on a logarithmic scale. Statistical analysis was conducted using the Wilcoxon rank sum test. (E) Enrichment analyses of the
differentially expressed genes (DEGs) were performed using the Biological Process (BP) database within the Gene Ontology (GO). The GO terms are annotated
with their respective names and IDs and are arranged in descending order based on the logarithm of the reciprocal of the p-value (-log10). The top 20 enriched
GO terms are displayed. Enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. The top 20 enriched GO terms are
displayed. (F) Scatter plot showing changes in DEGs, where red represents upregulation and blue represents downregulation.
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FIGURE 6
Characterization of B cell subsets between the JIA and HC groups. (A) UMAP plots of distinct populations of memory B cells, naïve B cells, activated
B cells and plasma B cells are shown. Additional cell clusters are denoted as other unidentified cells. UMAP plots of B-cell subsets acquired from the HCs
and from the JIA group are shown. (B) A dot plot is presented, illustrating the gene expression and percentage of B cells expressing the top 50 genes that
exhibited differential expression. (C) Enrichment analyses of the DEGswere performed using the BP databasewithin the GOdatabase. TheGO terms
are annotated with their respective names and IDs and are arranged in descending order based on the logarithm of the reciprocal of the p-value (-log10).
The top 20 enriched GO terms are displayed. KEGG enrichment analyses were performed. The top 20 enriched GO terms are displayed. (D) Scatter plot
showing changes in DEGs, where red represents upregulation and blue represents downregulation.
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FIGURE 7
Identification of gene coexpression modules among T cells. (A) Weigned gene coexpression network analysis was performed with T cells. (B) A
Weighed gene coexpression network analysis was performed on T cells. (C) Dot plot for enrichment of modules in different cell types and different
groups. (D) Dot plot of the GO functional enrichment analysis of the T cells-M3 module. (E) Protein–protein interaction network demonstrating the
interactions within Module T cells-M3 (F). The top ten genes of each module calculated according to connectivity.
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FIGURE 8
Identification of gene coexpression modules among B cells (A) Weigned gene coexpression network analysis was performed with B cells. (B) A
weighted gene coexpression network analysis was constructed among the B cells. (C) Dot plot for enrichment of modules in different cell types and
different groups. (D) Dot plot of the GO functional enrichment analysis of module B cells-M2. (E) Protein-protein interaction network demonstrating the
interactions within Module B cells-M2 (F). The top ten genes of each module calculated according to connectivity.
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FIGURE 9
CellChat analysis of the interactions between T-cell subsets. (A, B) Circle plots illustrate the number and strength of interactions between T-cell
subsets in the HC and JIA groups. (C, D) Identification of signaling pathways in cells via network centraility analysis. (E) The gene targets from the MIF
signaling and the expression levels among HC and JIA (F) Discovery of dominant cell communication patterns. The inferred outgoing communication
patterns of secreting cells, which show the correspondence between the inferred latent patterns and cell groups, as well as signaling pathways. The
thickness of the flow indicates the contribution of the cell group or signaling pathway to each latent pattern.
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3.1.7 HdWGCNA analysis of B cells
With a soft threshold of 7, we built an unscaled network for

B cells, resulting in the discovery of seven gene modules (Figures

8A,B). The B cells-M2 module showed significant enrichment in
B cells (Figure 8C). Subsequently, we performed GO enrichment
analyses for genes within the B-cell-M2 module, highlighting

FIGURE 10
Characterization of the landscape of T cells and developmental trajectories of T cells in JIA. (A) Developmental trajectories of the T-cell lineage
inferred using monocle2; each cell subtype is marked with a different color. (B) Cell density variation in T-cell subtypes during pseudotime (top). (C)
Pseudoscatter plots showing the expression variation and distribution of some specific genes during pseudotime, color coded by cell type.

Frontiers in Molecular Biosciences frontiersin.org13

Liu et al. 10.3389/fmolb.2024.1359235

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1359235


their functional roles in biological process, cellular component
and molecular function (Figure 8D). Furthermore, we established
a PPI network to validate the interactions among hub genes
within the B-cell-M2 module (Figure 8E). Lastly, we explored
gene expression modules in B cells and identified key hub
genes (Figure 8F).

3.1.8 Analysis of cell-cell interactions related
to T cells

Cell-cell communication results showed that the number of
communications for T-cell subgroups in JIA patients was 80, with
a communication strength of 1.321; however, in HC, the number
of communications was 88, with a communication strength of

FIGURE 11
Characterization of the landscape of B cells and developmental trajectories of B cells in JIA. (A) Developmental trajectories of the B-cell lineage
inferred using monocle2; each cell subtype is marked with a different color. (B) Cell density variation in B-cell subtypes during pseudotime (top). (C)
Pseudoscatter plots showing the expression variation and distribution of some specific genes during pseudotime, color-coded by cell type.
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3.018. And the results indicated that the significant role of the
MIF signaling pathway in JIA. The MIF pathway contains two
types of ligand-receptor pairs: MIF-(CD74+CXCR4) and MIF-
(CD74+CD44). According to the calculations based on gene
expression, MIF-(CD74+CXCR4) had a greater contribution to
intercellular communication (Figure 9).

3.1.9 Trajectory analysis related to T and B cells
Trajectory analysis results revealed that T-cell subsets could be

categorized into 3 differentiation states, with naïve CD4+ T cells,
central memory CD4+ T cells, and naïve CD8+ T cells representing
early developmental stages, while effector CD8+ T cells (GNLY),
effector CD8+ T cells (GZMH), and exhausted CD8+ T cells were
identified as being in the terminal stage of development (Figure 10).

Similarly, for B-cell subsets, the analysis indicated 5 clusters
corresponding to 5 differentiation states, with naïve B cells and
atypical memory B cells in the early developmental stage, and
plasma B cells and memory B cells in the terminal stage of
development (Figure 11).

3.1.10 Transcription factor regulatory network of T
and B cells

SCENIC analysis was utilized to predict transcription factors in
both T and B cells, and the results were visualized using R. In T cells,
the analysis revealed high expression of transcription factors in naïve
CD4+ T cells and central memory CD4+ T cells (Figure 12).
Similarly, in B cells, the analysis indicated that transcription
factors were highly expressed in naïve B cells (Figure 13).

FIGURE 12
The TF of T-cell subgroups predicted by SCENIC analysis. (A) Dimplot of the main TFs in the T-cell subgroups. (B) Heatmap of the expression levels
of selected TFs in T-cell subgroups. (C) RANK plot of T-cell subgroup TFs.
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4 Discussion

Although the analysis of immune cells in peripheral blood
can provide valuable insights into the coordinated immune
response during pathogen infections, the current
understanding of the underlying mechanisms of JIA onset and
progression and its association with inflammation is limited. To
address this issue, we conducted a comprehensive investigation
of the immune repertoire (TCR, BCR) and scRNA-seq data. Our
objective was to analyze transcriptome sequencing data and
uncover the properties and molecular regulatory mechanisms
underlying JIA.

Our study has illustrated several important findings related to
JIA gene expression heterogeneity. Firstly, the JIA group had
significantly greater clonotype distributions at small frequencies.
The clonotype distributions at small frequencies were significantly

greater in the JIA group, whereas the distributions at medium and
large frequencies and hyperexpanded frequencies were greater in the
HC group. These results suggest that the JIA group has lower TCR
and BCR repertoire diversity and a greater degree of dominant
clonal expansion, indicating a more specific T-cell response against
JIA. Secondly, the JIA group exhibited significantly greater
Chao1 and InvSimpson indices. These findings provide valuable
insights into the features of the TCR and BCR repertoires and
suggest an immune response to common autoantigens in JIA
patients, which corresponds to our hypothesis that autoimmune
diseases could lead to the increase in specific CDR3 amino acid
sequences. Moreover, these findings could aid in the development of
targeted biotherapy and the diagnosis of JIA patients.

Compared to HC group, the relative percentages of
CD14 monocytes in the JIA group were significantly increased in
scRNA-seq data. Monocytes are vital cells of the innate immune

FIGURE 13
The TF of B-cell subgroups predicted by SCENIC analysis. (A)Dimplot of B-cell subgroupmain TFs. (B)Heatmap of the expression levels of selected
TFs in B-cell subgroups. (C) RANK plot of B-cell subgroup TFs.
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system that circulate within the body (Yona and Jung, 2010). The
increase in monocytes may serve as an indicator to observe the
progression of JIA disease. We also conducted HdWGCNA to
investigate the characteristics of the gene coexpression regulatory
modules involved in JIA pathogenesis. The results revealed
significant enrichment of the T cell-M3 and B cell-M2 modules
in the JIA group. CellChat is a tool that is able to quantitatively infer
and analyze intercellular communication networks from scRNA-seq
data (Jin et al., 2021). Our findings revealed the significant role of the
macrophage inhibitory factor (MIF) signaling pathway in JIA,
indicating the vital role of the MIF pathway in the maintenance
of immune tolerance and inflammation. MIF is a cytokine expressed
in a diverse range of cell types, including hematopoietic, epithelial,
endothelial, mesenchymal, and neuronal cells (Bilsborrow et al.,
2019; Luo et al., 2021; Sumaiya et al., 2022). Altered MIF expression
has been implicated in numerous diseases, ranging from
inflammatory disorders such as JIA, lupus, and rheumatoid
arthritis to organ pathologies such as heart failure, myocardial
infarction, acute kidney injury, organ fibrosis, and various
malignancies.

To further elucidate the developmental stages of T/B-cell
subsets, we employed Monocle2 software to conduct pseudotime
series analysis (Tao et al., 2023). T/B-cell plasticity refers to the
capacity of differentiated T/B cells to polarize to other
phenotypes in response to a changed microenvironment or
context and obtain characteristics of other subsets. The
outcomes of our study revealed varying levels of
differentiation in PBMCs from both T and B cells, suggesting
that targeting their differentiation could be a potential approach
for treating JIA. To gain insight into the transcriptional
regulation of JIA, we employed SCENIC analysis to predict
the involvement of transcription factors (Aibar et al., 2017;
Van de Sande et al., 2020). The results showed that
transcription factors were highly expressed in naïve CD4+

T cells, central memory CD4+ T cells, and naïve B cells.
Notably, the transcriptional activity of these 3 cell groups may
surpass that of other cell groups.

In conclusion, we examined the immune repertoire and the
mechanisms underlying the onset and progression of JIA. These
findings indicate that there are significant differences in the TCR
and BCR repertoires between the JIA and HC, with specific genes
identified that could enhance our understanding of JIA.
Additionally, scRNA-seq data analysis revealed an increase in
CD14 monocytes in JIA, and the involvement of MIF signaling
pathways was highlighted through cell-cell communication
analysis. Our findings revealed the changes and regulatory
processes occurring in PBMCs during the development and
progression of this disease. This study provides valuable
insights into potential factors that may contribute to
investigating the specific role of these pathways and cell
population.
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