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Antibodies are proteins produced by our immune system that have been
harnessed as biotherapeutics. The discovery of antibody-based therapeutics
relies on analyzing large volumes of diverse sequences coming from phage
display or animal immunizations. Identification of suitable therapeutic candidates
is achieved by grouping the sequences by their similarity and subsequent
selection of a diverse set of antibodies for further tests. Such groupings are
typically created using sequence-similarity measures alone. Maximizing diversity
in selected candidates is crucial to reducing the number of tests of molecules
with near-identical properties. With the advances in structural modeling and
machine learning, antibodies can now be grouped across other diversity
dimensions, such as predicted paratopes or three-dimensional structures.
Here we benchmarked antibody grouping methods using clonotype,
sequence, paratope prediction, structure prediction, and embedding
information. The results were benchmarked on two tasks: binder detection
and epitope mapping. We demonstrate that on binder detection no method
appears to outperform the others, while on epitope mapping, clonotype,
paratope, and embedding clusterings are top performers. Most importantly, all
the methods propose orthogonal groupings, offering more diverse pools of
candidates when using multiple methods than any single method alone. To
facilitate exploring the diversity of antibodies using different methods, we have
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created an online tool-CLAP-available at (clap.naturalantibody.com) that allows
users to group, contrast, and visualize antibodies using the different
grouping methods.
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drug discovery, antibodies, machine learning, biologics and biosimilars, clustering,
language models (LMs)

Introduction

The development of antibody therapeutics relies on the
identification of a suitable binder towards a clinically relevant
target. Though computational methods promising fully de novo
design are making advances (Wilman et al., 2022), well-established
experimental protocols still dominate antibody discovery (Lu
et al., 2020).

Therapeutic antibodies are primarily discovered via phage
display or animal immunizations. These protocols produce a
large number of potential binders in response to a target. In
animal immunization, one would typically look for expanded
clones upon antigen challenge (Saggy et al., 2012; Laustsen
et al., 2021). In phage display, one would likewise focus on an
‘enriched’ set of sequences (Chan et al., 2014; Saka et al., 2021;
Zhang, 2023) between rounds of panning. Antibodies in the
original set can represent diverse epitopes and developability
profiles. One is tasked to downsample the initial set of
antibodies (1000s) coming from such experiments to a smaller
set (10s). The smaller set is subjected to costlier, more detailed
assays designed to further narrow the scope of drug lead
candidates. Ideally, the diversity of representatives should offer
a good balance between binding propensity, epitope bins, and
developability profiles. Testing a set of functionally promising, but
close-to-identical, molecules would yield close-to-identical assay
results, not hedging the bets on covering a wide spectrum of
functionalities and developability profiles. Randomly picking
from the initial set of antibodies does not guarantee to select
the ‘best’ or most diverse candidates, especially if there is a bias
towards a set of clones.

Downsampling a diverse set of representatives was typically
achieved by grouping the initial set of sequences and selecting
representatives from these. For instance, in immunization, the
‘expanded clones’ were identified by grouping sequences by their
V-J gene assignments, CDR-H3 lengths, and a high cutoff (>80%
sequence identity). The so-called ‘clonotyping’ (Briney et al., 2016;
Pelissier et al., 2022) has proven to be an accurate method,
identifying not only expanded clones but also showing
convergent development of antibodies across different individuals
(Trück et al., 2015; Galson et al., 2020).

The drawback of clonotyping is that, though two clones could be
different in sequence, they might still represent a similar binding
mode, reducing the diversity of the down-sample. Therefore,
methods looking at other diversity dimensions of antibody were
introduced. These are grouping based on paratope (Richardson
et al., 2021), structure (Krawczyk et al., 2018; Robinson et al.,
2021; Spoendlin et al., 2023), or embeddings (Friedensohn et al.,
2020). Such alternative grouping methods aim to improve upon the
original clonotype method by selecting clones that would not be

identified by sequence methods alone, increasing the diversity of the
down-samples.

Paratope-based grouping calculates the similarity between any
two antibodies from their predicted epitopes. It was shown that
paratope predictions can be obtained from sequence alone,
paradoxically, in the absence of the antigen (Liberis et al., 2018).
Though paratope-based prediction does not outperform
clonotyping, it offers more orthogonal picks than clonotype alone
(Richardson et al., 2021), significantly increasing the diversity of the
sample along the paratope-diversity dimension.

Paratope prediction implicitly takes structural information into
account, so it was also proposed that the entire 3D conformation
difference be used as a similarity measure for antibodies (Wong
et al., 2021). Antibody structural models can be computed quite fast
(within milliseconds for some deep learning methods these days
(Jaszczyszyn et al., 2023)), making it possible to produce and
compare large three-dimensional datasets. Early attempts at
structural grouping involved shared templates for structural
modeling or canonical classes (Krawczyk et al., 2018; Kovaltsuk
et al., 2020). Later approaches started to take the entire structure of
the antibody into account, proving utility in epitope binning
(Robinson et al., 2021; Spoendlin et al., 2023). Similarly to
paratope-based grouping, structure-based approaches do not
outperform clonotyping, but provide alternative picks along the
structural dimension, diversifying the down-sample.

A solution that implicitly tackles the multi-dimensional nature
of antibodies is to encode them in a latent space. By allowing the
neural network to devise the vectorized representation based on self-
supervised learning (Rives et al., 2021; Brandes et al., 2022; Elnaggar
et al., 2022; Lin et al., 2023), one can implicitly capture similarity
measures such as same lengths and amino acid distributions but also
some relationships that are not obvious (Wilman et al., 2022). Such
latent representations using antibody-specific AntiBERTa were
shown to reflect gene annotations (Leem et al., 2022).
AntiBERTy was used to reveal mutational trajectories within
repertoires (Ruffolo et al., 2021). Such an approach was taken by
Friedensohn et al. wherein a machine learning model was devised to
encode the CDR combinations (Friedensohn et al., 2020). In
particular, authors employed the Variational Autoencoder (VAE)
to predict cluster assignment, which led them to discover RSV-F
binders that would not be captured by clonotype alone.

An approach combining the structure and machine learning
approaches was proposed recently in the form of SurfaceID (Riahi
et al., 2023). Here, the structural surface is divided into a triangular
mesh with each vertex having physicochemical annotations of close-
by atoms. The authors trained the embedding on the surface patches
to be similar to the overlapping ones on the surface and dissimilar to
the ones farther away. This scheme was used to cluster paratope and
epitope residues simultaneously, which grouped the complexes by
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their antigen structures, and in some cases sub-groups based on
different paratopes against the same epitope (Riahi et al., 2023).

Though, as described above, there are multiple similarity
measures available for antibodies, it is not entirely clear what the
benefits of one over another are, if any, in the absence of uniform
benchmarking. Previous studies comparing clonotyping versus
paratope clustering and clonotyping versus structural clustering
concluded that the more sophisticated methods are orthogonal
rather than outright better than the simplistic sequence-based
methods (Richardson et al., 2021; Spoendlin et al., 2023). To the
best of our knowledge, there was no head-to-head benchmarking of
themethods available. To address this issue, here we benchmarked the
five similarity measures currently available to antibodies: sequence (Li
and GodzikCd-hit, 2006; Steinegger and Söding, 2017), clonotyping
(Hershberg et al., 2015), paratope-based (Richardson et al., 2021),
structure-based (Krawczyk et al., 2018), and embedding-based
clusterings (Friedensohn et al., 2020). We benchmarked these on
four datasets across binder prediction and epitope mapping. To
facilitate employing conclusions of this work, we make an online
application available, CLAP (clap.naturalantibody.com), enabling
users to compare small sets of antibody sequences.

Materials and methods

Datasets used for benchmarking

Five datasets were employed for benchmarking antibody
clustering methods (Table 1). The PTx dataset consisted of
1,113 sequences checked for binding against Pertussis Toxoid
(PTx). In total, the dataset contained 363 binding and 749 non-
binding paired heavy-light chains. The OVA dataset consisted of
lineages that were tested for binding against ovalbumin (OVA)
antigen. In total, the dataset contained 723 binding and 1,646 non-
binding paired heavy-light chains. The dataset generated by Cao
et al. was employed for epitope binning. It contains 3,051 antibody
sequences divided into 12 epitope groups. These three datasets were
employed to gauge the benefits of different similarity measures on
different datasets and to see whether there exists a generalizable
parametrization that provides satisfying results.

As a blind test set for parameterizations, we have employed a
binder/non-binder dataset contributed by Pure Biologics. The
dataset consisted of antibodies for two targets, which we denote
as Target1 and Target2. The antibodies for both targets were divided
into two sets, first with known binding properties, second with
antibodies that were unknown to bind/not-bind. The set with known

binders served to study the optimal parametrization of the model
and to check if it achieves equally optimal performance on the blind
test. In total, Pure_Target1 had 41 binders and 35 non-binders in the
known set and 16 in the blind set. Pure_Target2 had 35 binders and
41 non-binders in the known set and 94 sequences in the blind set.
The datasets were supposed to be a realistic case of a dataset
employed in antibody discovery, used to reveal the pitfalls and
benefits of the approaches we employ.

A single-cell (paired VH/VL) PTx dataset was created based on
material from five genetically modified mice carrying all of the human
immunoglobulin variable region genes. Pertussis Toxoid (PTx) was
used to immunize mice. Heavy chains from sorted splenic B cells from
the same five animal models as the single cell paired data set were
sequenced (using standard protocols). PTx-binding and non-binding
labels were applied to the sequences by the use of surface plasmon
resonance (SPR) and homogeneous time-resolved
fluorescence (HTRF).

OVA dataset authors employed high-throughput single cell B-
cell receptor sequencing (scBCR-seq) to obtain accurately paired
full-length variable regions in a massively parallel manner. More
than 250,000 B cells from rat, mouse, and human repertoires were
sequenced to characterize their lineages and expansion.
Furthermore, rats were immunized with chicken ovalbumin
(OVA), and antigen-reactive B cells from lymph nodes of
immunized animals were profiled. Ninety-three clones from the
identified lineages were synthesized, expressed, and tested, and
clones that were antigen-reactive were identified.

Sequences in the datasets Pure_Target1 and Pure_Target2 were
derived from antibody discovery programs at Pure Biologics. The
sequences used as the training set came from a standard screening
process–they were picked from an antibody phage library panned on
target cells, sequenced using Sanger method, expressed, and
classified as binder/non-binder using flow cytometry. The
sequences in blind/test set were derived from massive Pac-Bio
long read sequencing of the panned library followed by sequence
abundance analysis. The blind/test sets comprised sequences that
were not discovered in the standard screening. After the in silico
clustering process, all molecules from the blind/test set were
expressed and their binding was evaluated in flow cytometry.

The Cao dataset was constructed on data from monoclonal
antibodies isolated from individuals who had SARS-CoV-
2 Omicron BA.2 and BA.5 breakthrough infections. High-
throughput sequencing protocol and deep mutational scanning
(DMS) platform were used to generate data.

Each dataset underwent an assessment for sequence diversity
across samples, which was quantified through pairwise sequence

TABLE 1 Datasets used in this study.

Dataset Number of sequences Binders/Nonbinders Purpose Source

PTx 1,112 363/749 Classification of binder/non-binder Richardson et al. (2021)

OVA 2,369 723/1,646 Classification of binding lineages Goldstein et al. (2019)

Pure_Target1 76 + 16 (blind test) 41/35 Classification of binder/non-binder Pure Biologics

Pure_Target2 76 + 94 (blind test) 35/41 Classification of binder/non-binder Pure Biologics

Cao 3,051 Not applicable Epitope binning Cao et al. (2023)
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identity calculations using Levenshtein Distance applied to residues
from specific regions. The provided figures (Supplementary Figure
S1) visually depict the distinctions among the datasets. Our analysis
indicates that PTx, OVA, and CAO exhibit a more diverse
distribution of sequences, contrasting with the datasets from Pure
Biologics, which manifest lower diversity. Notably, across all
datasets, the complementarity-determining regions (CDR)
demonstrate greater diversity compared to the full sequences, as
evidenced by their lower mean sequence identity.

Similarity measures and grouping methods
implemented and benchmarked

We employed five clustering methods, each employing its own
similarity measure, for this study, given in Table 2. We engaged
methods for benchmarking by selecting the commonly used ones
(e.g., clonotyping and sequence clustering) as well as those that were
proposed as providing a benefit with respect to the established
methods (paratope, structure, and embedding). Each method comes
with a range of modifiable parameters, given in Table 2. Length
stratification indicates whether sequences can be grouped by the
length of a sub-region, typically CDR-H3. Clustering target indicates
on which region the similarity within a group will be
considered–e.g., l3_h3 will only calculate the sequence identity on
the combination of CDR-L3 and CDR-H3, not taking the rest of the
sequence into account. It must be noted that throughout the
manuscript we refer to ‘similarity measures’, which might
introduce confusion with respect to commonly employed
distinction between sequence similarity and identity. For
sequences, we employ identity as a metric with ‘similarity’ being
used as an umbrella term for the different measures to discern
differences between antibodies.

Method-specific parameters show features not falling into the
two previous categories, such as the choice of 3D modeling method
in case of structural clustering. Each of the clustering methods is
briefly described below.

Clonotyping
Antibody sequences are grouped by their assigned variable (V)

region genes and CDR-H3 lengths. Such groups are then further

divided by CDR-H3 sequence identity with cutoffs such as 70% or
80%. The definition of clonotype varies depending on the study, as
gene assignments or the definition of the CDR-H3 could be distinct.
For the purposes of this study, we benchmarked gene grouping by
either V or V + J (joining) regions.

Sequence clustering
In practical terms, sequence clustering is cognate to clonotyping,

in that sequences are grouped by their sequence identity as given by
MMseqs2 (Steinegger and Söding, 2017). The method-specific
parameter employed here is the sequence identity threshold
calculated on the specific region of the aligned sequence (e.g.,
entire variable region, only the CDR-H3, etc.).

Paratope clustering
This involves grouping the sequences by their predicted

paratopes. The method takes advantage of surprisingly good
paratope prediction using deep learning in the absence of antigen
(Liberis et al., 2018). The sequence identity is only calculated on the
residues annotated as paratope, according to a threshold. Here, we
developed a paratope prediction based on a language model
following the protocol described by AntiBERTa (Leem et al., 2022).

Structure clustering
Antibodies are grouped by their structural similarity as

calculated by root-mean-square deviation (RMSD) of C-alpha
atoms of a select region (e.g., CDR-H3). Structural clustering is
composed of two algorithms: the modeling step and the clustering
step. For the modeling step, we benchmarked ABodyBuilder2
(Abanades et al., 2023), a freely-available antibody-specific
adaptation of AlphaFold2, which takes several seconds per
prediction, and a reconstruction of NanoNet, without the benefit
of structural pre-training (Kończak et al., 2022). The latter network
is the simplest form of the machine learning antibody structure
predictor that we are aware of, whereas AB2 represents the state of
the art in the form of AlphaFold2 (Jaszczyszyn et al., 2023).
Contrasting both approaches was designed to reveal whether
using slower, more sophisticated methods has a benefit over the
simpler, faster ones. Since the similarity between the antibodies is
calculated as RMSD, it is a computationally expensive calculation.
For this reason, we benchmarked mTM-Align (Dong et al., 2018a)

TABLE 2 Grouping methods and parametrizations used in this study.

Method Length stratification Clustering target (what gets
clustered)

Method-specific parameters

Clonotyping None, cdrh3 cdrh3, l3_h3, heavy chain, light chain Clonotype: [v, j], [v], Sequence identity threshold

Sequence
clustering

None, cdrh3 cdrh3, l3_h3, heavy chain, light chain, cdrl3 Sequence identity threshold

Paratope
clustering

None, cdrh3 Predicted paratope Paratope identity threshold

Structure
clustering

None, cdrh3, cdrh, cdrs_all cdrs_all, cdrh3, l3_h3 Distance threshold (Å), For PTx structures prediction
model: AB2 vs. NanoNet

Embedding
clustering

For heavy + light: None, cdrh3, all_cdr For
heavy-only: None, cdrh, cdrh3

For heavy + light: all, cdrs_all, l3_h3, cdrh3 For
heavy-only: all, cdrh3, cdrhs_all

Embedding dimension: 144 vs. 768 Transformer type
(768 dimension): heavy-only vs. heavy + light

“cdr” - complementarity-determining regions numbered by IMGT, “l3_h3” - residues selected from CDR-H3 and CDR-L3 IMGT regions, “cdrh” - residues selected from all cdr IMGT regions

of heavy chain, and “cdrs_all” - residues selected from all cdr IMGT regions.
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which performs all-vs-all structural alignment, and SPACE
(Robinson et al., 2021; Spoendlin et al., 2023) that introduces a
greedy algorithm, reducing the number of calculations.

Embedding clustering
Antibody sequences can be vectorized into more efficient

representation (embedding) in latent space learned by self-
supervised methods (Wilman et al., 2022). We employed the
BERT architecture, with the Masked Language Modelling (MLM)
objective that was successfully used in general proteins (Rives et al.,
2021; Lin et al., 2023) and subsequently in AntiBERTa (Leem et al.,
2022) and AntiBERTy (Ruffolo et al., 2021). We checked two sizes of
transformers: small, with an embedding size of 144, and large, with
an embedding size of 768. Further to that, we checked two variations
of transformers, namely, paired and unpaired (Burbach and Briney,
2023). The paired transformers were trained on 1.3 million paired
sequences from a recent study by Jaffe et al. (Jaffe et al., 2022). The
unpaired transformer was trained on 23 million high-quality
sequences from our cleaned, corrected, and updated version of
the Observed Antibody Space (OAS) dataset (Kovaltsuk et al.,
2018). The embeddings were taken as the last layer.

Accuracy metrics

Binding prediction metrics
The PTx, OVA, and Pure Biologics datasets consist of binders

and non-binders. The only exception here is that the OVA dataset
consists of lineages where binders were detected. In each case,
though, we assume that we have two disjoint sets of antibody
binders and non-binders. Subsequently, we employ a probe-
mining approach (Richardson et al., 2021), wherein we select one
known binder and occlude the label of all other sequences. The
sequences that cluster with the probe are marked as ‘binders’, all
others as non-binders. On this basis, we can calculate the precision,
recall, and derivative metrics for all grouping methods.

Epitope binning metrics
When grouping antibody sequences suspected to target different

epitopes, the desirable property of the antibody grouping method is
to place antibodies against a single epitope in a single cluster
(Robinson et al., 2021; Spoendlin et al., 2023). For this reason,
we employed a measure called multiple occupancy consistent
clusters members fraction (MOCM), introduced by Spoendlin
et al. (Spoendlin et al., 2023). If a non-singleton cluster only
consists of antibodies known to target a single epitope, it is
counted as a consistent cluster, otherwise it is not.

Results

Parameter exploration of the grouping
methods on PTx and OVA datasets

We defined five similarity metrics by which to perform
clustering, namely, clonotyping, sequence-based, paratope-based,
structure-based, and embedding-based (Figure 1). We benchmarked
each of the methods on the OVA and PTx datasets with the aim to

characterize their parametrizations and maximum performance.
Ideally, a method would have similar parametrization across
different datasets, otherwise the behavior between datasets would
be unpredictable.

The basic threshold we employed for sequence-based clustering
was the sequence identity cutoff. Variations included whether we
were stratifying by CDR-H3 length and which region the sequence
identity was calculated on (combined CDR-L3+CDR-H3, only
CDR-H3, heavy sequence, or light sequence). In both PTx and
OVA datasets, stratification by CDR-H3 length does not appear to
offer a large benefit in terms of the best F1 (Supplementary Table
S1). Stratification appears to increase the bottom interval, in that for
both datasets, the bottom F1 is better with stratification rather than
without stratification. The best-performing parametrizations for
both datasets are distinct - L3+H3 identity and no CDR-H3
stratification for PTx (F1 = .83) and CDR-H3 identity with CDR-
H3 length stratification for OVA (F1 = .93). Since the region on
which one calculates identity is different, thresholds are not directly
comparable. We conclude that in the case of sequence identity, the
parametrizations can be largely dataset-dependent.

A facet of sequence clustering that is typically used in antibody
grouping is clonotyping. Though there is no set definition of
clonotyping, it by and large includes grouping by the assigned
genes, and further by CDR-H3 identity (Briney et al., 2016;
Briney et al., 2019; Soto et al., 2019; Jones et al., 2020). In
principle, sequence-based clustering operates in a similar fashion
to clonotyping whence the entire variable region is grouped.
Nonetheless, for completeness, we also benchmarked the
clonotyping on PTx and OVA datasets with results presented in
Table 3; Supplementary Table S2. In clonotyping, we employ two
gene-based stratifications, by combination of V-J gene calls and
V-only. Sequence identity can be calculated on the entire variable
regions, CDR-H3+L3, or CDR-H3 only (which is canonical to
clonotyping). Grouping by V-gene only appears to achieve
marginally better results, with the best F1 for PTx being 0.80 for
the V-J combination and 0.82 for V-only, and both close to 0.9 in the
case of OVA. Calculation of identity by CDR-H3+CDR-L3 achieves
the best F1 scores on the PTx dataset (F1 = 0.82), but the canonical
CDR-H3 only approach works better in lineage annotation of OVA
(F1 = 0.9). The best F1 values are comparable between sequence and
clonotyping approaches, on PTx 0.83 vs. 0.82 and on OVA 0.93 vs.
0.9 for sequencing and clonotype respectively. Given that in both
cases we do not note uniform parametrizations, this further
indicates that there might not exist an optimal parametrization,
the solution being data-driven.

The cognate method of clonotyping and sequence clustering is
paratope clustering. Here, the sequence identity is calculated solely
on the residues that are predicted to be in contact with an arbitrary
antigen. The paratope predictions are performed in the absence of
the antigen as it was demonstrated to still produce satisfactory
results (Liberis et al., 2018), making application to large sets of
antibodies with unknown antigen-binding properties possible.
Constraining the predictions only to the paratope residues was
hypothesized to only focus the grouping on the residues most
pertinent to antigen recognition (Richardson et al., 2021). For
paratope clustering, we employed a transformer-based paratope
predictor (Leem et al., 2022). The only parametrization here was
the stratification of CDR-H3 length. Grouping the sequence by the
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FIGURE 1
Methods used to group antibody sequences. (A). Sequence-based clustering groups antibodies on the basis of sequence identity. The identity can
be taken over the entire variable region or be focused only on certain elements, such as CDR-H3. A variation of sequence clustering, called clonotyping,
groups sequences by their assigned genes (e.g., IGHV3-23), CDR-H3 length, and further stratifies on CDR-H3 identity. (B). Clonotype-based clustering.
Sequences with the same V or V/J calls are grouped and sequence identity is calculated on length-matched CDR-H3s (C). Paratope-based
clustering predicts residues likely to be part of the paratope. The sequence identity is computed only on such residues. (D) Structure-based clustering
groups antibodies by calculating the Root Mean Square Deviation of their 3D representations. (E). Embedding-based clustering changes the sequence
representation into vectors (embeddings) that are efficient representations of sequences trained by a transformer model.

TABLE 3 Best parametrizations.

Dataset Clustered by f1 Threshold cl_res cl_len method_specific

PTx

sequence 0.831625 0.772632 l3_h3 none none

clonotype 0.822485 0.617368 l3_h3 cdrh3 genes: V

embedding 0.821229 0.070041 l3_h3 cdrh3 transformer: 768

paratope 0.801737 0.620000 paratope cdrh3 none

structural 0.794521 1.051020 cdrs_all cdrh3 none

OVA

embedding 0.945114 0.013184 cdrs_all cdrh3 transformer: 144

sequence 0.935864 0.648421 cdrh3 cdrh3 none

clonotype 0.909091 0.648421 cdrh3 cdrh3 genes: V

paratope 0.906915 0.660000 paratope cdrh3 none

structural 0.891583 0.530612 cdrs_all cdrh3 none

For each of the five clustering methods, we report the best parametrization that was obtained on either the PTx or OVA datasets. “f1” - harmonic mean of the precision and recall,

“cl_res” - clustering by residues selected from IMGT regions of sequence, “cl_len” - stratification by length of residues in selected IMGT regions.
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same CDR-H3 length appears to achieve better F1 scores, with
0.80 vs. 0.77 in the case of PTx and 0.9 vs. 0.87 in the case of OVA
(Supplementary Table S3; Table 3). The best F1 scores for both
datasets are achieved for thresholds 0.62 for PTx and 0.66 for OVA.

Sequence and paratope clustering aim to group antibodies by
their antigen-recognizing features. Though sequences and paratope
predictions are useful proxies, the antigen-complementarity is
ultimately defined by structure. We thus benchmarked the
structural clustering. Here, one needs to obtain a 3D model of
the variable regions to be grouped. We employed two methods to
contrast their speed - NanoNet (Cohen et al., 2022) in its
unoptimized form (Kończak et al., 2022) and AbodyBuilder2
(Abanades et al., 2023), the state of the art in antibody modeling.
The methods represent two opposites of the spectrum, with
NanoNet being very fast (milliseconds per prediction) but
performing slightly worse than the slower (seconds per
prediction) AbodyBuilder2, which is based on AlphaFold2
(Jumper et al., 2021).

When models are created, RMSD between these is calculated
using various schemes (length stratification, constraining to specific
regions) to use as a distance measure for clustering. If one were to
perform it in an exhaustive manner than for clustering a
1,000 sequence, this starts to be a computational challenge in
performing 499,500 pairwise RMSD calculations. We
benchmarked an exhaustive method of mTm-Align (Dong et al.,
2018b) and greedy algorithm SPACE (Robinson et al., 2021). We
found that the SPACE algorithm is not only faster because of its
greedy nature but also achieves much better results, so we opted for
it in our protocol.

We compared the performance of clustering on PTx between
NanoNet and ABodyBuilder2 (ABB2) using the SPACE method.
NanoNet achieves marginally worse F1, which is outweighed by its
running time (milliseconds to seconds per structure). Therefore, in
our protocols, we opted for our implementation of the NanoNet
architecture as it achieves similar results but in realistic timelines.
AbodyBuilder2 was failing on a number of structures in OVA and
reducing the dataset size would be statistically incorrect in
comparing all the other similarity methods, so it was left out.

Further to the modeling method, we employed two parameters -
length stratification and region where the RMSD is calculated.
Stratifying by all CDR lengths and calculating the RMSD on the
CDRs produces the best values of F1 (Supplementary Table S4;
Table 3). The RMSD cutoff that produced the best results is radically
different between the OVA and PTx datasets, with 0.53 and
1.14 respectively, suggesting sensitivity to the method to the
input parameters which might not be reproducible across datasets.

The final clustering regime that we explored was based on
embeddings from transformers. We trained two versions of
transformers - a heavy transformer with an embedding size of
768 (heavy_768) and two paired transformers. The heavy-only
transformer was trained on 10 m high-quality heavy chain
sequences similar to AntiBERTa and AntiBERTy (Ruffolo et al.,
2021; Leem et al., 2022) The paired transformers were trained on the
1.3 m paired NGS dataset (Jaffe et al., 2022). Such models take a long
time to train on powerful machines and thus, for the smaller paired
dataset, we opted for training a smaller transformer as well for
comparison. The clustering was performed on the embeddings from
the last layer of the transformer. We picked either the entire CDR-

H3, all CDRs, or the entire sequence. The length stratification was
performed either on CDR-H3, CDRs, or the entire supplied
sequence (only the heavy chain for the heavy transformer).

We plotted the embedding benchmarking results on PTx and
OVA in Supplementary Table S5; Table 3. It is evident that, despite
the larger number of sequences used for training, the paired
transformers achieve better results than the single sequence
transformer. For PTx the best F1 for heavy_768 is 0.8 whereas
for paired transformers it is 0.82. For OVA the best F1 for heavy_
768 is 0.91 whereas for the paired transformers it is 0.94. Within the
paired transformers, it is not evident whether calculating the
distance on the CDR-H3-CDR-L3 is better than all CDRs as the
maximal F1s are comparable. The distance threshold values were
taken on the interval 0.001 to 0.2. Therefore, the cutoffs achieving
maximal F1s are substantially different between PTx (0.07, 0.07,
0.04) and OVA (0.03, 0.02,0.01). indicating that this method might
be very sensitive to input, requiring dataset-specific
threshold selection.

Comparing the performance on the binding
on PTx and OVA datasets - All methods
achieve comparable performance

Having tested all the parametrizations for individual methods on
PTx and OVA datasets, we compared their overall behavior with
one another.

In Figure 2, we plot the best F1 scores achieved for all the
parametrizations. It is evident that the best F1 performance is
dataset-specific, with best values for OVA above 0.9 and for PTx
just below 0.8. Our earlier analysis showed that in most cases the
thresholds achieving best F1 for each method are dataset-specific as
well. Therefore, unsurprisingly, there does not appear to exist a
universal parametrization for any single method.

Some methods appear to have a much broader spread of best
F1 scores, depending on parametrization. For instance, sequence
clustering has the biggest variance within its test results.
Clonotyping, which can be thought of as a constraint on
sequence clustering, has lower variance. In case of paratope
clustering, there were only two parametrizations, which were
close to each other and which results in smaller variance.
Therefore, care should be taken when interpreting the variance as
a different number of parameterizations could have affected it.

Even though we were measuring the maximal F1 a method can
achieve on the two datasets, there does not appear to be a method
that universally outperforms the others. Conventional sequence-
based methods such as sequence clustering and clonotyping are not
outperformed by the seemingly more advanced methods. In case of
PTx the best F1 are in fact achieved by clonotype and sequence-
based clustering. The structural clustering achieved the worst
performance. It is difficult to say whether the modeling method
is to blame, as crystal structures of the sequences in PTx and OVA
datasets are unavailable and two independent modeling algorithms
achieved similar performance on both datasets.

Performance appears to be associated with the choice of
threshold and, for each method, we picked an optimal
parameterization, given in Table 3. For the best parametrization
we plotted the Precision-Recall curve to show the behavior of each
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method, mitigating the impact of imbalanced datasets on
visualization, but at varying thresholds (Figure 3). It appears that,
regardless of the threshold, the methods are capable of producing
very similar results. It was noted previously that paratope and
structural clusterings are not in fact better than sequence-based
ones (Richardson et al., 2021; Spoendlin et al., 2023). Here we
demonstrated this on a wider range of methods and datasets in a
constant benchmarking environment.

Structure, paratope, and embedding clusterings do not appear to
bring a noticeable advantage over traditional sequence/clonotype-based

clustering in terms of better identification of binders. To investigate this,
we studied to what extent they produce the same results.

For any two methods, using their best parametrizations for a
specific dataset, we calculated how many sequences were placed in
the same cluster by virtue of Jaccard index. If the index is 100%, the
two methods produce identical groupings and completely dissimilar
ones when it is 0%. We plot the pairwise Jaccard indices in Figure 4
on the PTx and OVA datasets. It is evident that the clusterings do
not produce radically different groupings, with Jaccard indices in the
region of 85%–90% for most clustering method combinations.

FIGURE 2
Comparison of best performance achieved by the methods. Each point corresponds to the similarity threshold (e.g., RMSD for structural or
sequence identity for sequence) achieving best F1, according to a specific configuration of other parameters, such as length stratification or region where
the similarity is calculated. The spread between different methods is given for both the OVA and PTx datasets.“seq” abbreviation means clustering
by sequence.

FIGURE 3
Precision-Recall curve for best parametrizations. Each point corresponds to the precision and recall calculated for the range of similarity thresholds
(e.g., RMSD for structural or sequence identity for sequence) for each benchmarkedmethod calculated for the best parametrization. “seq” abbrev. means
clustering by sequence. Overlaps between the different clustering methods on OVA and PTx datasets.
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The similarities between clusterings are not reflected perfectly
between OVA and PTx datasets. Though CDR-H3 stratified
sequence clustering and clonotyping are the most similar
methods (92.78%) in PTx, in OVA it is embedding and sequence
clustering at 96.78%. Paratope prediction noted the highest
dissimilarities in the PTx dataset with the lowest against
structural clustering at 84.64%. In the OVA dataset, structure-
based clustering had the lowest similarity to the clonotype based
methods at 80.99% Jaccard similarity. Therefore, though the
methods produce similar results to a large extent, we do not
identify anything that would indicate a better complementarity
between any pair of these in the form of greater orthogonality.

We also checked to what extent combining the results from two
different clusterings would reveal alternative binders. We calculate
this as the percent of all the binders that the method returned for
the best parametrization, plotted in Figure 4 for PTx and OVA
datasets. Here, we note that in each case, combining the results
reveals more binders than would be the case if only a single method
were used. The result is much more pronounced for PTx than for
OVA, but the pattern is visible between the two. Therefore, despite
producing similar grouping results, the methods are sufficiently
distinct to reveal alternative binders, which we note as the one
benefit of other clustering methods over the sequence ones in
binder detection.

FIGURE 4
Differences in clustering measured by Jaccard index (top) and percentage of binders identified (bottom).
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Benchmarking the performance of binder
calling on blind test sets reveals underlying
data and parametrization challenges

Our constraint of the performance on validation sets OVA and
PTx reveal that cluster-based binder identification might suffer from
parametrization issues. To study the issue further in a realistic
discovery scenario, we performed a test on binders from two
targets provided by Pure Biologics.

In both cases, there was an initial set of known binders
followed by a blind set. The initial set served as templates of
known binders (train set) to cluster the blind test set with these. We
first benchmarked the best parametrization on the training
datasets with the results given in Table 4. The only method that
we could not apply to this dataset was clonotyping, as the number
of sequences was too small to provide meaningful groupings. In
both cases, embedding clustering achieved the best performance
with a comfortable margin away from other methods, as opposed

to OVA and PTx datasets (Figure 5), where the differences were
not pronounced. In both cases the paired transformers with
embedding 768 achieved the best performance. The thresholds
were substantially different (0.049 for Pure_ Target1 versus
0.033 for Pure_Target2), as was the difference it was calculated
on (cl_res).

We then employed the training set antibodies as probes on the
test sets from the two targets with the Precision-Recall curves for all
the methods given in Figure 5. In the case of Pure_Target1, no
method achieved better accuracy than a random baseline. In the case
of Pure_Target2, the random baseline was already very high as a
result of the large number of binders in the dataset, and all the
methods were capable of producing values above it. Nonetheless, in
an actual drug discovery scenario one requires a particular
parametrization that produces the results. We checked the
performance of all the parameterizations that achieved best
results, both on the Pure training set as well as on PTx and
OVA previously (Supplementary Table S6). For both targets, the

TABLE 4 Performance of top method parameters on training datasets.

f1 Threshold cl_res cl_len method_specific

dataset clustered_by

Pure_Target1

embedding 0.822222 0.049735 l3_h3 none transformer: 768

structural 0.764706 1.448980 cdrs_all cdrh3 none

paratope 0.750000 0.280000 paratope none none

seq 0.725664 0.865789 heavy none none

Pure_Target2

embedding 0.725275 0.013184 cdrs_all none transformer: 768

paratope 0.666667 0.648421 paratope none none

seq 0.666667 0.648421 heavy none none

structural 0.666667 0.530612 cdrh3 cdrh3 none

“f1” - harmonic mean of the precision and recall, “cl_res” - clustering by residues, “cl_res”-clustering by length.

FIGURE 5
Performance on the Pure Biologics test set. The best parametrization obtained on the training set is used for each clustering algorithm (excluding
thresholds). For a full range of threshold values, the precision and recall values are calculated for each grouping method, providing a Precision-Recall
curve. Benchmarking grouping method performance on epitope binning dataset.
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‘prior’ parametrizations did not produce results better than random
baseline. The baseline F1 for Pure_Target 1 was .89 whereas for
Pure_Target2 it was .29.

This blind test set indicates that clustering is not a universal
solution to picking good candidates and producing any value is fully
dependent on the underlying datasets and parametrization.

Previous results focused on datasets where known binders are to
be distinguished on the basis of known ones. This approach is
assessed only on its ability to calculate similarity between the probes
and the dataset with unknown binders. A cognate problem is to sort
the antibodies in a dataset a priori based on their antibody-
recognition abilities without resorting to the probes. This can be
done in epitope binning, where antibodies against known antigen
binding sites are to be grouped based on their paratope
features alone.

To check the performance of our methods in this scenario, we
employed the dataset by Cao et al. (Cao et al., 2023). This dataset
consists of 3,501 antibodies against RBD of SARS-COV-2 sorted
between 12 epitope groups. The task here is to employ any of our
clustering methods and calculate which one performs the best
separation of antibodies by their epitopes. The separation is
measured using a metric employed from (Spoendlin et al.,
2023) - multiple occupancy consistent cluster members
(MOCM). According to a particular parametrization of a
clustering scheme, we calculate the number of members in
clusters with more than one element where antibodies belong to
a single epitope. This number is then divided by the number of
clustered sequences.

We applied all of our clustering methods to the Cao dataset
using the best parametrizations from PTx and OVA datasets as well
as optimizing for Cao, with the results in Table 5. As expected,

optimization directly on the Cao dataset yielded best results and
acted to show the best possible performance of each method. The
PTx and OVA dataset parametrizations achieved radically different
results, with PTx results being in an acceptable range of the optimal
Cao with OVA parametrization heavily underperforming. This
shows once again the challenge and data-dependency on
clustering any particular dataset.

TABLE 5 Performance of epitope binning efficiency measured by fraction of multi-occupancy-consistent clusters members on clustering parameters
selected by various datasets.

Clustered by Threshold source MOCM fraction Threshold cl_res cl_len method_specific

space2

Cao 0.275082 1.416667 cdrs_all cdrh3 none

PTx 0.253115 1.051020 cdrs_all cdrh3 none

OVA 0.089836 0.530612 cdrs_all cdrh3 none

seq

Cao 0.340656 0.620000 l3_h3 cdrh3 none

PTx 0.313115 0.772632 l3_h3 none none

OVA 0.295082 0.648421 cdrh3 cdrh3

paratope

Cao 0.414754 0.410000 paratope cdrh3 none

PTx 0.362623 0.620000 paratope cdrh3 none

OVA 0.322951 0.660000 paratope cdrh3 none

embedding

Cao 0.297049 0.086286 cdrh_all cdrh3 transformer: heavy

PTx 0.345902 0.070041 l3_h3 cdrh3 transformer: 768

OVA 0.101967 0.013184 cdrs_all cdrh3 transformer: 144

clonotype

Cao 0.417049 0.524211 l3_h3 none genes: V

PTx 0.365902 0.617368 l3_h3 cdrh3 genes: V

OVA 0.328197 0.648421 cdrh3 cdrh3 genes: V

“MOCM” - multiple occupancy consistent cluster members, “cl_res” - clustering by residues from defined IMGT regions, “cl_len” - stratification by length of residues from defined IMGT

regions.

FIGURE 6
Epitope binning using different clustering methods. The best
parametrization was picked for each method, keeping the threshold
variable and normalizing it between all methods. We plotted the
multiple occupancy consistent clusters, which indicates how
many of the final non-singleton clusters consisted only of one
epitope. Abbreviation “mocm_frac” means multiple occupancy
consistent cluster members fraction.
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Furthermore, we contrasted the capacity of the different
similarity measures on the Cao dataset by plotting their MOCM
performance against normalized thresholds in Figure 6. It is clear
that clonotype and paratope clustering outperform all the other
methods, with the embeddings in second place. In line with results
from Spondelin et al., structural clustering achieved a mediocre
performance. Therefore, unlike in previous analyses that relied on
the probes, where the results were broadly comparable, in this case
we see clear distinction between the performance of the methods in
clonotype, paratope, and embeddings generating the best epitope
binning splits.

Web app to study distance distributions

Our analysis indicated that the chief advantage between all the
clustering methods is their ability to provide alternative groupings,
especially with respect to established methods based on sequence
clustering. To facilitate such analyses, we make available a web app
that performs the similarity calculation and subsequent grouping
using the different schemes introduced here.

The user inputs a set of amino acid sequences in fasta format.
The sequences are paired heavy/light sequences without any
separation symbol. Users are asked to choose two similarity
measures (for instance, structural and embedding) and their
parametrizations. In the first step, clustering is performed on the
dataset using both methods. Users can then see the results of both
clusterings on distance matrix-heatmaps with dendrograms,
t-distributed stochastic neighbor embedding (t-SNE) plots of the
data side by side for comparison, and a Sankey plot showing the
correspondence between clusterings. Since we have shown that the
datasets are highly dependent on the choice of threshold for a given
dataset, the t-SNE plots, the Sankey plot, and the results of
clusterings can be modified using thresholds to provide
alternative groupings. The lists resulting from both clusterings
are given.

To facilitate selection of candidates using both clusterings, we
provide a second step to the clustering that is supposed to enrich the
diversity of picks using the novel similarity measures. In the second
step, representatives of clusters from one method in step 1 are
clustered using the other method. In this fashion, one can reduce
redundancy in picks using any clustering (e.g., structural) method,
by adding another dimension in the second step (e.g., embedding).

Discussion

Here we explored the capacity of novel similarity measures made
possible by advances in machine learning to group antibody
sequences. Machine learning has been applied to many
applications in therapeutic antibody discovery and antibody
engineering processes. Although a few approaches have been
proposed for rapid antibody clustering, still no reasonable
consensus or “road map” has been reached in this area. In our
studies we checked two main schemes: binder identification via a
probe and epitope binning.

In probe-based binder mining, the method is tasked with
assessing the similarity of a known binder to those within a

sample with unknown specificity. Clearly, if there are binders in
the query dataset, but they are not sufficiently similar by any
metric, the method would yield no results. Sequence-based
similarity is the simplest metric but requires very similar clones
in the binding set to work. The machine learning schemes held a
promise that they could capture more distant dependences, such as
structural composition or even more abstract features
encapsulated in the embedding schemes. Our results on the
PTx, OVA, and blind test set indicate that, in terms of
identifying binders, these methods do not outperform
traditional sequence-based schemes.

The opposite is true for the epitope binning exercise. Here one is
not dependent on a probe that might not have a close relative in a
dataset but rather on the ability to carve the initial dataset in a
meaningful way. Here we noted a separation of performance with
clonotype, paratope, and embedding schemes surpassing sequence
and structure groupings. Therefore, the methods are perhaps more
suited in separating a given dataset, as is typically the case in display-
type workflow (Erasmus et al., 2023), rather than to perform data-
mining experiments.

This is potentially a positive observation, because in realistic
drug-discovery exercises one rarely focuses on the scenario of probe-
based data mining - the scheme was rather introduced as a way to
benchmark bioinformatics methods. However, it could certainly be
applied to a biosimilar search. A typical discovery campaign would
have produced a large volume of sequences from either
immunization or phage display. These then need to be grouped
and assessed for similarity to identify enriched clones. Selecting
representatives on the basis of sequence identity only runs the risk of
picking candidates that are, in reality, not that different from one
another (Erasmus et al., 2023).

Our results show that, though there are benefits in using novel
clustering methods, they do not offer a universal solution to
improving selection campaigns. They should act rather as a tool
for diversity exploration that is very much dataset-dependent
(Smakaj et al., 2020). By means of rule of thumb of employing
the methods, we note that they appear to be well suited to cases
where one is faced with a relatively diverse sample. In such a
scenario, the task is to provide a sorted list of candidates where
diversity is maximized. Having the diversity assessed on several
orthogonal levels allows for exclusion of picks that look dissimilar by
one metric but are similar according to another. What constitutes a
‘diverse’ sample according to those metrics will also become
quantifiable as more discovery-grade datasets reach the public
domain on which these can be benchmarked.

Employing public datasets, in line with previous paratope
(Richardson et al., 2021), structural (Spoendlin et al., 2023), or
embedding (Friedensohn et al., 2020) studies we demonstrated here
to what extent the alternative antibody grouping methods provide
alternative choices with respect to both sequence-based methods
and to one another. To facilitate studying diversity of antibody
sequences using different methods, we have created an app (https://
clap.naturalantibody.com) that allows one to explore similarity
across sequence, embedding, structural, and paratope dimensions
of a small sample of antibodies. We are strongly convinced that our
analysis of different similarity-based methods sheds light on realistic
advantages and provides actionables in terms of better and faster
lead candidate selection.
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