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Structure-based drug design (SBDD) has gained popularity owing to its ability to
develop more potent drugs compared to conventional drug-discovery methods.
The success of SBDD relies heavily on obtaining the three-dimensional structures
of drug targets. X-ray crystallography is the primary method used for solving
structures and aiding the SBDDworkflow; however, it is not suitable for all targets.
With the resolution revolution, enabling routine high-resolution reconstruction
of structures, cryogenic electron microscopy (cryo-EM) has emerged as a
promising alternative and has attracted increasing attention in SBDD. Cryo-EM
offers various advantages over X-ray crystallography and can potentially replace
X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery,
understanding the strengths and weaknesses of this technique and noting the
key advancements in the field are crucial. This review provides an overview of the
general workflow of cryo-EM in SBDD and highlights technical innovations that
enable its application in drug design. Furthermore, themost recent achievements
in the cryo-EMmethodology for drug discovery are discussed, demonstrating the
potential of this technique for advancing drug development. By understanding
the capabilities and advancements of cryo-EM, researchers can leverage the
benefits of designing more effective drugs. This review concludes with a
discussion of the future perspectives of cryo-EM-based SBDD, emphasizing
the role of this technique in driving innovations in drug discovery and
development. The integration of cryo-EM into the drug design process holds
great promise for accelerating the discovery of new and improved therapeutic
agents to combat various diseases.
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1 Introduction

The number of newly approved drugs has not notably increased recently, with an
average of 49 drugs approved annually in the last 5 years and only 13 drugs approved in the
second quarter of 2023 by the United States Food and Drug Administration (FDA)
(Mullard, 2023; Urquhart, 2023). Moreover, newly approved drugs tend to focus on a
limited range of diseases including oncological, neurological, and infectious diseases
(Mullard, 2023). Approximately 40% of drug targets are G protein-coupled receptors
(GPCRs), kinases, and ion channels, further narrowing the scope of potential drug targets
(Santos et al., 2017). To address this limitation, the repertoire of drug targets should be
expanded to cover a wider range of diseases including rare and genetic conditions (Smith
et al., 2022). The reason for the limited number of new drug approvals lies in the extensive
resources required for drug discovery, including time, expenses, interdisciplinary
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knowledge, and advanced technologies (Simoens and Huys, 2021;
Van Norman, 2016; Wagner et al., 2018). Drug repositioning is one
of the solutions for reducing risk factors and saving resources;
however, further improvements are still required (Pushpakom
et al., 2019). Drug discovery is a complex and risky process, with
a high likelihood of failure, and overcoming these challenges and
managing the risk of failure are essential for successful drug
development (Sun et al., 2022). Several approaches have been
applied to pursue low-risk and effective paths in drug discovery
as following: 1) a target-based approach, which is screening
chemicals on an in vitro system (e.g., the identified target
molecules) (Terstappen et al., 2007; Croston, 2017); 2) a
phenotype-based approach, which is screening chemicals on an
in vivo system (e.g., cells, tissues, and animals with a reporter system
or endogenous phenotype) (Moffat et al., 2017); 3) a ligand-based
approach, using 3D structure-activity relationships (3D-QSAR) and
pharmacophore models of ligands (Acharya et al., 2011); and 4) a
structure-based approach, using the structure of the target molecule
(Batool et al., 2019) (see Figure 1 for the drug development
procedure). Among them, the structure-based approach, also
known as the structure-based drug design (SBDD), offers several
advantages, including rapid target identification/validation/lead
identification, and efficient lead optimization, by focusing on
drug-binding sites (Anderson, 2003; Kalyaanamoorthy and Chen,
2011). Moreover, by integrating computer-aided drug design
techniques such as molecular docking-based virtual screening
(Maia et al., 2020), molecular dynamics simulations (De Vivo
et al., 2016), and machine learning (Bajorath, 2022), the SBDD

workflow can be further accelerated (Sabe et al., 2021). Including
computational tools, the specific processes and techniques requested
in each step of the SBDD workflow are also described in Figure 1.

In SBDD, obtaining high-resolution protein structures is crucial
for identifying new ligand-binding sites and understanding
molecular interactions between ligands and proteins (Lee et al.,
2023). The traditional methods for obtaining high-resolution
structural models include crystallography and nuclear magnetic
resonance (NMR) spectroscopy. However, advancements in
electron microscopy (EM) around the 2013 revolutionized
research on structural biology, leading to the emergence of
cryogenic EM (cryo-EM) (Fernandez-Leiro and Scheres, 2016;
Herzik, 2020) (Figure 2: EM timeline). Cryo-EM has rapidly
gained popularity and become a powerful tool for studying
structures at near-atomic resolution (Callaway, 2020). As of
2 August 2023, almost 24,000 single-particle EM maps and
15,000 structural models have been deposited in the Electron
Microscopy Data Bank (EMDB) and Protein Data Bank (PDB),
respectively (Figures 3A,B). Furthermore, cryo-EM was successfully
used to solve the structures of 52 antibody– and 9212 ligand–target
complexes, including those of the small sized proteins (Figures
3C,D). It is critical to drug design for ligand-induced
conformational changing targets. As shown in Figures 3A,C, the
released number of EMmaps has been increased annually with their
model structures, and the number of ligand-binding complexes also
has been increased in every year. The resolution of total EM maps
was mainly distributed in the range of 2–5 Å (approx. 90% EM map
coverage) (Figure 3B) and of approximately 80% of the complex EM

FIGURE 1
Workflowof drug design. The workflows of target-, phenotype-, ligand-, and structure-based drug designs are compared. The same color is used to
describe the steps in the same category. For SBDD, the main focus of the review, we describe applicable tools in each step highlighted in the light blue
box. In the SBDD section, the methods and tools applied in each step are listed in the boxes near each step.
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maps were below 4 Å, a sufficient resolution for SBDD (Figure 3D).
Currently, the highest reported resolution obtained using cryo-EM
is 1.15 Å with human apoferritin (Figure 2) (Yip et al., 2020).

The critical advantages of cryo-EM over NMR or X-ray
crystallography lie in several key aspects, such as, 1) cryo-EM
allows the study of samples under near-physiological conditions,
preserving the native state of the biomolecules; 2) Single-particle
cryo-EM data provide structural heterogeneity of the target
molecule, inferring its possible motions in native-like conditions;
and 3) cryo-EM is applicable to a wide range of drug targets with
different modes of action, making it a versatile tool for drug
development. The features of cryo-EM are compared with those
of X-ray crystallography, the dominantly applied approaches to

determine structures for drug development in the aspects of specific
advantages and disadvantages in Table 1. These indicated that cryo-
EM has the potential to provide different views not covered by
crystallography in drug development. Various technical
advancements, including functionalized grids to resolve preferred
orientation problem (Wang et al., 2020a; Fan and Sun, 2022; Lu
et al., 2022), more powerful microscopes including sensitive
detectors (Peplow, 2020; Frechin et al., 2023), and image
processing software to remove noise (Sanchez-Garcia et al., 2021;
Vilas et al., 2022), have enabled drug development using high-
resolution cryo-EM. Furthermore, new techniques for the sample
preparation of drug–protein complexes or drug screening using
cryo-EM have been developed (Zhu et al., 2023). The advancements

FIGURE 2
Electron microscopy (EM) timeline. The critical events in the development of techniques and software (top part) and determination of structures of
critical biomacromolecules (bottom part) in EM research are marked by year. References and additional information on events are as follows: first EM 3D
structure (sample: bacteriophage T4, 35 Å) (De Rosier and Klug, 1968) and first field emission gun (FEG) (Crewe et al., 1968) in 1968; first EM (sample:
humanwart virus, 60 Å; tomato bushy stunt virus, 28 Å) in 1970 (Crowther et al., 1970), first cryo-EM (diffraction image using the hydrated and frozen
condition) (sample: catalase) in 1974 (Taylor and Glaeser, 1974); first cryo-EM 3D structure (sample: Halobacterium halobium rhodopsin, 7 Å) in 1975
(Henderson and Unwin, 1975); particle image classification in 1981 (van Heel and Frank, 1981); aqueous solution vitrification in 1981 (Dubochet and
McDowall, 1981); random conical tilt and angular reconstitution (sample: 50S ribosomal subunit of Escherichia coli, 30 Å) in 1987 (Radermacher et al.,
1987a); bacterial rhodopsin (cryo-EM structure at the highest resolution from diffraction data, 3.5 Å) in 1990 (Henderson et al., 1990); 3D projection of
matching and angular refinement (sample: 70S E. coli ribosome, 37 Å) (Penczek et al., 1994); first time resolved cryo-EM (using on-grid mixing method)
(sample: droplets) in 1994 (Berriman and Unwin, 1994); the first single particle cryo-EM (sample: 50S and 30S with tRNA, 25 Å) in 1995 (Frank et al., 1995);
SPIDER and WEB in 1996 (Frank et al., 1996); maximum likelihood 2D alignment in 1998 (Sigworth, 1998); EMAN in 1999 (Ludtke et al., 1999); first direct
electron detector (DED) as active pixel sensor chip in 2004 (Xuong et al., 2004); time-resolved cryo-EM as ms level (using microfluidic mixing-spray)
(sample: E. coli ribosome 70S) in 2009 (Lu et al., 2009); RELION (the most popular software) (Scheres, 2012) and cold field emission gun (CFEG) for cryo-
EM (Ricolleau et al., 2012) in 2012; TRPV1 (first membrane channel, 3.4 Å) in 2013 (Cao et al., 2013; Liao et al., 2013); 20S proteosome (Thermoplasma
acidophilum, 3.3 Å) in 2013 (Bai et al., 2013); 80S ribosome (Saccharomyces cerevisiae, 4.5 Å) in 2013 (Li et al., 2013); Volta phase plate (VPP) in 2014
(Danev et al., 2014); glutamate dehydrogenase (GDH; the first achievement at a resolution below 2 Å, 1.8 Å) in 2016 (Merk et al., 2016); cryoSPARC
(software using stochastic gradient descent and branch-and-bound maximum likelihood optimization algorithms) in 2017 (Punjani et al., 2017); α1β3γ2L
γ-aminobutyric acid [GABA]A receptor (target–scaffold complex structure using cryo-EM, 3.2 Å) in 2019 (Laverty et al., 2019); apoferritin (cryo-EM
structure at the highest resolution, 1.15 Å) in 2020 (Yip et al., 2020); cyclin-dependent kinase (CDK)-activating kinase (CAK: a target for fragment-based
drug discovery using cryo-EM) in 2023 (Cushing et al., 2023); 70S ribosome (E. coli, 1.55 Å) in 2023 (Fromm et al., 2023). The events for technical
advancement are highlighted using purple and the cryo-EM structures are highlighted green.
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have paved the way for the utilization of cryo-EM in the drug
discovery process and hold great promise for accelerating the
development of new therapeutics.

Accelerating the practical and frequent application of cryo-EM for
SBDD requires a comprehensive review of technical improvements in
this field and successful case studies using cryo-EM for drug
development. Recently, several papers have reviewed cryo-EM-based
drug development from various perspectives (Subramaniam et al., 2016;
Venien-Bryan et al., 2017; Garcia-Nafria and Tate, 2020; Van Drie and
Tong, 2020; Wigge et al., 2020; de Oliveira et al., 2021; Lees et al., 2021;
Aplin et al., 2022; Robertson et al., 2022a; Zhu et al., 2023). One review
introduced the potency of cryo-EM applicable to drug development
using protein structures with inhibitors (Subramaniam et al., 2016).
Similarly, Renaud et al., 2018 summarized the crucial milestones in the
cryo-EM timeline, including advancements in structure and technical
development. A review by Skiniotis and colleagues mentioned new
types of structures using cryo-EM, the advantages of cryo-EM, and
technical improvements (Robertson et al., 2022a). Their comprehensive
review highlighted the progressmade in cryo-EM and its applications in
SBDD. Furthermore, the workflow in cryo-EM studies, ranging from
sample preparation to model building, was discussed. Research cases
that focused on the structures of small molecules identified in
protein–drug complexes using cryo-EM have also been reviewed
(Subramaniam et al., 2016). However, despite the growing number

of applications of cryo-EM in drug discovery (Figure 3), most previous
reviews have mainly focused on considerable improvements in EM
resolution in SBDD, whereas discussions on the technical achievements
in drug discovery using cryo-EM are lacking.

In addition, considering the rapid growth of experimental
research improvements in high-resolution cryo-EM and the
accumulated examples of cryo-EM-based drug development,
updated information on cryo-EM data-based drug design and
practical aspects that aid in the acquisition of high-resolution
images is required. In this review, we describe the general
concepts and procedures of SBDD (Section 2), advanced
techniques for cryo-EM-based structure identification (Section 3),
and recently developed techniques for drug discovery (Section 4). In
Section 5, the successful cases of cryo-EM-based drug design are
presented. Finally, future perspectives and conclusions are
discussed. This review contributes to enhancing the utility of
cryo-EM in drug discovery and may lead to breakthroughs in the
development of therapeutics.

2 Structure-based drug design

The origin of SBDD dates back to the 1970s (Brown and
Shotton, 2015). The first target of SBDD was hemoglobin

FIGURE 3
The annually released number and resolution distribution of EMmaps in EMData Bank (EMDB). The number of all released single-particle EMmaps in
the EMDB and structural models in the Protein Data Bank (PDB) from total samples are shown per year (A) and resolution range (B). Ligand–target
complex samples are also described per year (C) and resolution range (D). The number of EMmaps in EMDBwith and without structural models in PDB is
depicted in green and pink, respectively. All data for 2023 have been collected up to 2 August 2023.
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(Beddell et al., 1976). Based on the known structure of
hemoglobin, artificial hemoglobin ligands were designed to
bind and stabilize deoxyhemoglobin, thereby promoting
oxygen release similar to that of its natural ligand, 2,3-
diphosphoglycerate. Other well-known FDA-approved drugs
that were developed using SBDD include dorzolamide (Biollaz
et al., 1995), imatinib (Kantarjian et al., 2002; Szczepanek et al.,
2022), and vemurafenib (Chapman et al., 2011; Flaherty et al.,
2011). Subsequently, the first molecular docking algorithm was
developed to understand ligand–target interactions (Kuntz et al.,
1982). SBDD refers to the utilization of structural information of
macromolecules acquired using either experimental or
computational modeling methods (Ferreira et al., 2015).
Understanding how ligands bind, activate, or inhibit their

targets has great potential in the pharmaceutical industry,
enabling the design of more efficient therapeutics (Whitesides
and Krishnamurthy, 2005).

The typical drug development process comprises five main
stages: 1) discovery and development, 2) preclinical research, 3)
clinical trial, 4) FDA review and 5) FDA post-market safety
monitoring (The United States Food and Drug Administration,
2018). With focus on the discovery and development phase,
discovery and development can be further divided into five
steps after target identification: 1) determination of the target
structure, 2) identification of the target-binding sites/pockets, 3)
identification of the hit compounds by de novo design or docking
of existing virtual libraries, 4) in vitro validation, and 5) hit/lead
optimization (Anderson, 2003; Shaker et al., 2021; Rakshit et al.,

TABLE 1 Comparison of techniques for structure determination.

X-ray crystallography Cryo-electron microscopy

Sample Sample size No size limit Sample size limit (>100 kDa)a

Sample homogeneity Homogeneous samples with high purity Heterogeneous samples possible

Sample amount 0.2–2.0 μL of 5–50 mg/mL sample/well (total
1–100 μg)b

3 μL of 0.5–2 mg/mL sample/grid (total 5–15 µg)c

Sample Preparation Sample type Crystalline Vitrified sample on the grids

Method to obtain sample Mixing samples with the optimal solution and
incubation

Drop and vitrification of sample on the grids

Time required to obtain sample 1 day–1 month for the crystal growth Immediately after sample vitrification

Screening method to obtain sample High-throughput screening of crystal growth
condition (e.g., solution component, temperature,
pH and incubation time)

Grid screening for optimal distribution of single
particles, various orientations, and optimal ice
thickness

Screening scale 1,000 < conditions of solution <10 conditions of grid

Time required for screening 2 min/96-well plate 1 h/grid

Time-resolved analysis Using X-ray free electron lasers (XFEL) (~20 fs <) Using microfluidic mixing injector (~5 ms <)

Data Collection Beam type X-ray Electron beam

Data type Diffraction data from the crystal Magnified image of specimen

Radiation damage Crystal distortion, thermal vibration, generation of
radicals, and covalent bond-breakage of sample

Beam-induced sample motiond, generation of
radicals, and covalent bond-breakage of sample

Time periods for data collection 10–60 min/sample at a synchrotron 1 h–1 day/sample

Data Processing Duration 5–30 mine Time-consumingf

Data processing steps Data indexing and scaling Particle-picking, 2D classification, and 3D
classificationg

Resolutionh Highest distribution of 1.5–2.0 Å in PDB Highest distribution of 3.0–3.5 Å in PDB and
3.0–4.0 Å in EMDB

Technique limitations Model-building limitation from flexible conformation Model-building limitation from flexible
conformation

Data file size <3 GB >1 TB

aThe size limitation is occurred by the low signal-to-noise ratio. Scaffolds (e.g., fabs, megabodies, and symmetric proteins) and Volta phase plates (VPPs), have been used to overcome this

limitation.
bThis amount is corresponded to one drop in each well.
cThis amount is estimated as the preparation of a 100 kDa macromolecule on a grid.
dThis can be reduced by the motion-correction algorithm and grid screening.
eData processing was performed using automated software.
fDeep learning-based software was developed.
gMultiple conformations were obtained during data processing.
hStatistical parameters were obtained from the data since 2020.
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2022) (Figure 1). All these steps are described in the SBDD
section of Figure 1. The first step in the SBDD workflow involves
the determination of high-resolution structures of targets and/or
target-ligand complexes after potential target identification and
is considered the most important step (Batool et al., 2019).
Protein structure can be determined using experimental or
predicted using computational techniques. Experimental
techniques include X-ray crystallography and NMR, which
were widely used until the “resolution revolution” of cryo-EM,
which has since gained popularity among structural biologists
(Kuhlbrandt, 2014a; Kuhlbrandt, 2014b; Shoemaker and Ando,
2018). Especially, structures of membrane proteins, almost 30%
of the human genome, are difficult to be determined using X-ray
crystallography, as only approximately 2% of the deposited
crystal structures in PDB are membrane proteins (Overington
et al., 2006; Arinaminpathy et al., 2009; Kozma et al., 2013; Yin
and Flynn, 2016; Jelokhani-Niaraki, 2022). However, with
advancements in cryo-EM, the number of membrane protein
structures solved using cryo-EM has increased annually,
surpassing the number of crystal structures of membrane
proteins in 2019 (Choy et al., 2021). If obtaining the target
protein structure using experimental methods is challenging
or unsuitable, computationally predicted models such as
homology modelling and protein threading are applicable
(Sliwoski et al., 2014; Leelananda and Lindert, 2016). Artificial
intelligence-based software has also been used for model
prediction, such as AlphaFold (Jumper et al., 2021; Bryant
et al., 2022) by DeepMind, RoseTTAFold (Baek et al., 2021)
by Baker’s group, and ESMFold (Lin et al., 2023) by Meta-AI.
After obtaining the structural information, the second step
involves the identification of binding pockets, which are areas
that allow ligand binding, leading to the desired effect or action.
Target–ligand interaction is identified by analyzing the
interaction energies, electrostatic forces and van der Waals
forces using algorithms or experimental data (Du et al., 2016).
The third step is hit discovery, which is mainly performed using
two methods: de novo design and virtual screening (Chávez-
Hernández et al., 2023; Stanley and Segler, 2023). In the virtual
screening approach, millions of drug-like compounds are docked
to a target using computer algorithms and ranked according to
their binding affinity (Lionta et al., 2014). Highly ranked
compounds are then tested in vitro. In contrast, de novo drug
design involves rationally designing chemical compounds with
high affinity and target specificity using the receptor/target
structure (Mouchlis et al., 2021). In the next step (step 4), the
selected hits with the best scores are experimentally analyzed for
functional activities in vitro to determine the most potent
molecule. Their potency as drugs must be validated by
measuring their target–hit affinities. The functional regulation
of targets by hit molecules is also evaluated using cell-based
assays. Finally, the hit molecules are optimized based on
biophysical, biochemical, and cellular verification. In this
process, the initial hits are optimized and developed into
leads. In particular, repeated cycles of four steps are required
for optimization: 1) identification of target–lead complex
structures, 2) structure-based 3D-QSAR and pharmacophore
analyses, 3) chemical synthesis of the newly designed
molecules, and 4) activity assays.

In the next section, we describe the key technical achievements
in high-resolution structural determination of drug targets using
cryo-EM (Figure 2).

3 Technical advancements in cryo-EM
for high-resolution structural
determination

The initial EM was used to collect micrographs using electron
beam. As shown in Figure 2, using micrographs obtained from the
negatively stained T4 phage, its helical model was reconstructed in 1968
(DeRosier andKlug, 1968). Beyond the helical structure, which requires
a single view for three dimensional model construction (De Rosier and
Klug, 1968), in 1970, the three-dimensional structures of icosahedral
(non-helical) viruses, negatively stained, were reconstructed using
combining of micrographs acquired by using EM (Crowther et al.,
1970). After these achievements, it was necessary to determine the
structure of the biological samples without chemicalmodifications, such
as fixation and staining. To overcome radiation damage caused by
electrons and keep the biological sample intact, in 1974, the cryo-EM
method was proposed (Taylor and Glaeser, 1974), and the following
year, the structure of the rhodopsin protein was determined at 7 Å
resolution from 18 micrographs and 15 diffraction images using cryo-
EM (Henderson and Unwin, 1975). After 2 years, single particle EM
analysis was developed, and the structure was identified from negative-
stained E. coli 50S subunit at 30 Å resolution (Radermacher et al.,
1987b). Finally, in 1990, Henderson et al., 1990 successfully determined
the structure of bacteriorhodopsin using 72 micrographs of the near-
atomic level of resolution (3.5 Å). In 1995, the potential of the single-
particle analysis (SPA) method of cryo-EM to obtain asymmetric
structural models using Escherichia coli 70S ribosome sample was
validated (Frank et al., 1995).

After the first success in structure determination using the SPA
technique, the continuous development of cryo-EM allowed the
following applications: 1) SPA, pertaining to purified samples, 2)
cryo-electron tomography (cryo-ET), which allows sample
visualization in native environments (in situ), and 3) electron
crystallography, such as microcrystal electron diffraction
(microED) and 2D electron crystallography (Nannenga and
Gonen, 2019). Especially, various revolutionary technical
innovations have been developed for high-resolution structural
determinations in SPA. In-ine with the overall workflow for
structure determination using cryo-EM, this section consists of
four subsections: 1) sample preparation, 2) grid optimization, 3)
data collection, and 4) data processing, model building, and
refinement. In each section, key representative technical
improvements are explained, and structures determined using
cryo-EM that are deemed important in historical, scientific, or
resolution-related contexts are introduced in Figure 2 (cryo-EM
structures).

3.1 Sample preparation

Sample preparation is the first and most important step in cryo-
EM because the purity and quality of the sample directly affect the
cryo-EM map quality (Passmore and Russo, 2016). In Section 3.1,
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three applicable techniques are described in the sample preparation
step: 1) sample condition screening, 2) techniques for membrane
proteins, and 3) techniques for small (<50 kDa) proteins.

Owing to limited instrument accessibility and time-consuming
nature of ensuring good data quality in cryo-EM, it is necessary to
evaluate the sample quality before collecting and analyzing cryo-EM
data. Various factors influence the quality of single particles, such as
pH, salt concentration, storage conditions, sample concentration,
and purification steps (e.g., size exclusion chromatography)
(Kampjut et al., 2021). For this reason, classical methods such as
gel electrophoresis, size exclusion chromatography and dynamic
light scattering (DLS) are required to scan and evaluate sample
quality at the points of purity, sample heterogeneity of oligomeric
states, sample aggregation and stability of complex state.
Additionally, the analysis of sample quality using negative
staining transmission electron microscopy (TEM) is a powerful
and fast tool to estimate the adsorbed conditions of samples on
the grids visually for parameters such as particle distribution (Scarff
et al., 2018; Gonen, 2021).

Membrane proteins comprise a protein class that has benefited
most from improvements in cryo-EM. To stabilize the membrane
proteins, detergents and membrane mimetics are required. Autzen
et al., 2019 mentioned various approaches in their review. One
approach, introduced in the review, involves using detergents such
as n-dodecyl-β-D-maltopyranoside, maltose neopentyl glycols,
digitonin and glycol-diosgenin. Cholesterol derivatives, including
cholesteryl hemisuccinate and CHAPSO, are also widely used in
studies on membrane proteins. Another membrane-mimetic
approach involves the use of amphipols, short hydrophilic
protein polymers with hydrophobic side chains that cover the
hydrophobic sites of membrane proteins (Tribet et al., 1996). The
membrane proteins with amphipols are free from the thick belt near
the transmembrane domain formed by detergents and nanodisc, one
of the obstacles to determine membrane protein structure (Venien-
Bryan and Fernandes, 2023). In that point, using amphipol is
beneficial in the refinement process, the last stage of structure
determination using cryo-EM. In addition to the detergents and
amphipols, membrane scaffold proteins have been used to stabilize
lipid bilayers by forming various lipid nanodiscs with membrane
proteins (Denisov and Sligar, 2016; Efremov et al., 2017). Nanodiscs
are prepared as follows: 1) incubation of detergent-solubilized
proteins, lipids, and membrane scaffold proteins and 2) removal
of detergents. In the procedure, selection of appropriate membrane
scaffold proteins is critical to mimic the physiological status of
membrane proteins. In 2019, Ognjenovic et al. published a review in
which almost 50 structures of membrane proteins including ion
channels, transporters, receptors, and others were determined using
detergents, amphipols, and nanodiscs at a resolution above 4 Å
(Ognjenovic et al., 2019). One of the recent cases with high
resolution is the structure of the SARS-CoV-2 3a, a non-selective
cation channel and a regulator of viral pathogenesis, determined at
2.1 Å resolution using lipid nanodiscs (Kern et al., 2021).

Although many advancements have been made in the field of
structural biology in recent years, small protein structures remain
challenging targets because of their inadequately distinguishable
structural characteristics and low signal-to-noise ratios (Yeates et al.,
2020; Zhang et al., 2022). By 2 August 2023, 9,872 EMmaps released
in the EMDB were from targets over 100 kDa, but only 117 (≈1.1%

of the total) were from targets below 50 kDa. The 117 EM maps
included models that were obtained by focused refinement of large
molecules; the number of targets below 50 kDa was lower. To
overcome this challenge, the strategy of increasing the molecular
weight of target proteins is widely applied using scaffolds composed
of an adaptor-specific scaffold core (or platform base) and a target-
specific adaptor (Yeates et al., 2020). Two approaches have been
reported for the development of adaptors: 1) designing a selective
target-binding adaptor and 2) designing a fusion protein of an
adaptor and target protein (Wentinck et al., 2022). Target-binding
adaptors include antibodies and small antibody fragment-based
proteins, such as antigen-binding fragments (Fabs) and
nanobodies. The development of a fusion protein containing an
epitope that the known antibody/nanobody/Fab recognizes with
high specificity is another approach. By introducing the sequence
from apocytochrome b562RIL (BRIL, ≈11 kDa) (Mukherjee et al.,
2020; Tsutsumi et al., 2020), the glycogen synthase domain of
Pyrococcus abyssi (PGS, ≈20 kDa) (Zhang et al., 2022) and the
third intracellular loop from the kappa opioid receptor (κOR-
ICL3) (Robertson et al., 2022b) to GPCRs, the target structures
were determined using their specific nanobodies and Fabs
(Wentinck et al., 2022; Zhang et al., 2022). The inserted regions
such as BRIL, PGS, and κOR-ICL3 were developed as crystal
chaperones, and also have been used for structure determination
by cryo-EM (Chun et al., 2012; Mukherjee et al., 2020; Zhang et al.,
2022; Miyagi et al., 2023). For instance, the BRIL sequence was
inserted into the N-terminal region of solute carrier family
19 member 1 (SLC19A1) (65 kDa) with its substrate 5-
methyltetrahydrofolate (5-MTHF) (Dang et al., 2022). The
structure of the BRIL-containing SLC19A1–5-MTHF complex
was determined at 3.5 Å resolution. In addition to adaptor
proteins, scaffold cores, such as glutamine synthetase
(dodecamer, D6), have been applied together with adaptors to
increase the size by oligomerization of adaptor–target complexes
(Coscia et al., 2016).

3.2 Grid optimization

After obtaining high-quality purified specimens, grid
optimization is required to obtain vitrified samples on an EM
grid with an appropriate ice layer thickness, the most time-
consuming process (Benjin and Ling, 2020; Xu and Dang, 2022).
Generally, on the gold or copper grid containing open holes, 3 µL of
a purified sample is placed to form a thin layer ideally <100 nm
thickness in the holes (Chua et al., 2022). The excess sample on the
grid surface is then gently blotted using filter paper, and the grid is
rapidly frozen in liquid propane or ethane cooled with liquid
nitrogen for vitrification (Liu and Wang, 2023). Following this
procedure, the optimal single-particle grid for cryo-EM is
prepared as a single-particle state in the holes but away from the
air–water interface (AWI). The adsorption of single particles on the
AWI results in an orientation bias and/or partial or full denaturation
of the drug targets by exposure of less hydrophilic sites to the AWI
(Klebl et al., 2020).

In the grid preparation, various factors affect a single-particle
grid, such as the grid material, glow discharge process, incubation
conditions of proteins, and blotting protocols (Weissenberger et al.,
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2021). After blotting, the residual liquid layer on the grid bar or film
is recruited, which affects the sample behavior (Glaeser, 2018). In
some cases, these factors lead to disassembly, denaturation, and
aggregation of macromolecules, particularly proteins, during sample
preparation on the grid (Drulyte et al., 2018).

The ice thickness and AWI of single-particle cryo-EM grids are
crucial in two respects: the orientation and the overlap of particles
(Noble et al., 2018). Ice, which is thicker than the major axial length
of a single particle or the minor axial length with at least an
additional space of 20 nm, is required for the random orientation
of particles. Otherwise, the particles are aligned near the AWI with a
biased orientation distribution. In contrast, sufficiently thin ice is
required to eliminate the overlap of multiple particles in the beam
direction. Several methods have been developed to prepare ideal
single-particle cryo-EM grids, such as the use of additives to form a
protective layer during AWI (Chen et al., 2019), on-grid supports
(Han et al., 2020), and vitrification devices to shorten the freezing
time (Ravelli et al., 2020).

First, amphipathic molecules are the most common additives
that naturally block AWI and enable the formation of randomly
oriented particles. For example, CHAPSO, a zwitterionic detergent,
solves problems related to the destabilization, aggregation, and/or
preferential orientation of most specimens (Chen et al., 2022). For
example, Ye et al., 2022 solved the structure of SARS-CoV-
2 omicron spike protein ectodomain at 3 Å resolution using, but
not being limited to, CHAPSO. They showed that the trimeric
receptor binding domains (RBDs) of omicron spike proteins were
mainly in the open (“standing up”) conformation, one of three RBDs
up and the others down, as ready state for receptor binding.

Second, to overcome the AWI issue, the use of grids with carbon
supports is suggested as another strategy in the grid preparation step
to enhance image quality. Generally, two major supports are used:
amorphous carbon-based and graphene-based supports (Han et al.,
2020; Glaeser, 2021; Patel et al., 2021). Coating method with
continuous thin films on grids can provide separate interaction
surfaces, rather than AWI in “open hole” grids, for the target
molecules. Instead of holes, the particles are distributed on the
supports coated on a copper or gold grid as the film-water interface.
Amorphous carbon films are commonly used to coat grids of large
macromolecules (>300 kDa) (Grassucci et al., 2007). The
amorphous carbon films are typically the first choice for
challenging samples and may cause notable levels of background
noise during imaging (Russo and Passmore, 2014). Graphene is a
thin 2D nanomaterial that has been demonstrated to be an effective
solution to reduce background noise, uneven particle distribution,
and ice thickness (Naydenova et al., 2019a; Han et al., 2020).

The development of the vitrification process began in the 1980s
with water (Dubochet and McDowall, 1981) (Figure 2). Using
vitrification devices, rapid freezing (on the scale of millisecond or
less) is expected to minimize the interaction of molecules with AWI
by reducing the diffusion of particles to inhibit AWI (Klebl et al.,
2020). Vitrobot (Thermo Fisher Scientific) and GP2 (Leica
Microsystems) are commonly used plunge freezers. VitroJet,
developed by Ravelli et al., 2020, enables the vitrification time to
decrease to as low as 80 ms by automating grid preparation by
placing samples on grids for freezing. VitroJet requires sub-nanoliter
amounts of sample to be applied onto a grid using the pin-printing
method, which is then immediately cooled with a cryogen,

eliminating the blotting step. Similar to the VitroJet, the Spotiton
is another grid-preparation device that has been shown to decrease
sample vitrification time to approximately 10 ms by combining
voltage-assisted spraying and vitrification (Jain et al., 2012;
Razinkov et al., 2016; Kontziampasis et al., 2019).

3.3 Data collection

The next stage in the cryo-EM workflow is data collection using
a cryogenic TEM (cryo-TEM). Electron microscopes are composed
of five main parts: 1) an electron-beam-producing source, 2) a group
of magnetic lenses, 3) a vacuum system, 4) a cryogenic sample
holder, and 5) a detector for image capture (Chua et al., 2022). Since
their introduction into the cryo-EM field, these microscope
components have undergone major changes and have been
developed to enable the collection of high-resolution structural
data (Figure 2).

With the development of EMs, electron energy sources have
improved to enhance the spatial and temporal coherence of electron
beams from the initial energy sources such as tungsten filaments and
LaB6 crystals (Joy, 2019). As LaB6 cathodes have narrower tips than
tungsten filaments, they generate smaller radius electron beams with
better coherence (Tang et al., 2021). Subsequently, the advanced
electron guns, field-emission guns (FEGs) were developed in
scanning electron microscope (Figure 2) (Crewe et al., 1968;
Tonomura, 2011). Then, TEMs equipped with cold FEGs
(CFEGs) were developed (Ricolleau et al., 2012). The CFEGs
produced electron beams with an energy spread of approximately
0.3 eV, maintaining beam brightness when operating near room
temperature (Hamaguchi et al., 2019). This energy spread is almost
half that of the general FEG, resulting in a better signal-to-noise ratio
owing to the improved coherence of the electron beam (Ricolleau
et al., 2012; Kato et al., 2019).

With the development of the CFEGs, an ultrahigh vacuum
(10−8–10–9 Pa) system is required for cryo-EM (El-Gomati et al.,
2021). The ultrahigh vacuum system removes vaporized water from
the vitrified sample and contaminants near the tip and prevents
interference from the electron beam and induces electron diffraction
by the contaminants and water molecules (Kogure, 2013;
Cheng, 2015).

A phase plate introduces a phase shift in the diffraction plane of
a microscope, resulting in phase contrast (Danev and Baumeister,
2016). Therefore, it improves the signal-to-noise ratio by providing
enhanced image contrast and in-focus data acquisition (Glaeser,
2013). The phase plates have been used in light microscopes for a
long time but were unavailable for use in electron microscopes until
recently (Danev and Baumeister, 2016). The Zernike phase plate, a
thin material film with a central hole and a phase shift of ~π/2, has
been used in cryo-EMs, although it has the disadvantages of a short
lifespan and fringe artifact creation (Danev et al., 2009; Glaeser,
2013). Moreover, the difficulty in aligning the beam center to a small
hole is a barrier to the use of Zernike phase plate. Therefore, a new
phase plate, the Volta phase plate (VPP), was introduced in the field
of EM for biological samples in 2014 (Danev et al., 2014). The VPP is
a continuous amorphous carbon film with working conditions of
approximately 25 mA and 200°C to prevent contamination. It has no
fringe artifacts, a long lifespan, and no alignment requirements.
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Using the VPP, the full-length calcitonin receptor (CTR), a class B
GPCR was reconstructed in a complex with peptide agonist and
Gαβγ heterotrimeric protein, as a therapeutic target for several bone
diseases (Liang et al., 2017). In addition to thin film-based phase
plates such as Zernike phase plate and VPP, two new types of phase
plates, magnetic phase plates using a magnetic field and laser phase
plates using photon–electron interactions, have been developed
(Wang and Fan, 2019). Very recently, the laser phase plates was
applied to cryo-EM; however, it has not yet been commercialized
(Axelrod et al., 2023).

Aberration correctors are another critical component for
improving the power of cryo-EM for high-resolution structures.
(Evans et al., 2008). There are two major aberrations: spherical
aberration caused by failure of convergence of the paraxial ray and
marginal ray passing through the objective lens, and chromatic
aberration caused by various wavelengths of the electron beam. The
spherical aberration was removed using correctors and aspherical
lenses (Fan et al., 2017). To remove chromatic aberration with a FEG
and a monochromator, a chromatic aberration correctors composed
of an electromagnetic hexapole or quadra/octa-pole was also applied
(Leary and Brydson, 2011). Eliminating these aberrations using
correctors enhances the image quality of the focused beam
(Freitag et al., 2005).

Photographic films, charge-coupled device (CCD) detectors,
and complementary metal oxide semiconductors (CMOSs) were
routinely used for image detection and recording in EMs.
Photographic films have the advantage of collecting images of a
large size, but require additional processes, such as digitizing the
acquired images for further processing and analysis. Compared with
films, CCD and CMOS detectors offer automated data acquisition
and immediate image access for analysis. Usually, to collect images
in these detectors, a single instant electron is scattered by
scintillators, releasing photons. The photons passing through the
optical fibers are then detected by a CCD or CMOS. In this
procedure, photons generated from scattered single instant
electrons reduce the resolution of spatial information and
decrease signal-to-noise levels by noise generation (Meyer and
Kirkland, 1998). Additionally, the image quality obtained from
detectors coupled with scintillators and fiber optic plates is
appropriate at 100 keV, whereas the noise increases at high
powers, such as 200 and 300 keV, which are the general energies
of cryo-EM (Bammes et al., 2012; McMullan et al., 2014). Although
CMOS detectors have advantages over CCD detectors, such as faster
frame rates and lower blurriness, problems caused by using
scintillators and optic fibers remain. A new technique, the direct
electron detector (DEDs), was designed in 2004 and applied to cryo-
EM (Xuong et al., 2004; Bai et al., 2015). There are two types of
DEDs: 1) monolithic active pixel sensors (MAPS) (Peric, 2007) and
2) hybrid pixel array detectors, including Medipix sensor-based
detectors (Jakubek et al., 2004) and electron microscope pixel array
detectors (Tate et al., 2016). Among these, MAPS exhibited the best
performance at high electron beam energies. Therefore, MAPS are
widely used in cryo-EM at 200 and 300 keV. In DEDs, unlike
previous detectors, MAPS rather than scintillators and optic
fibers, transfer electrons to detectors directly, and DEDs enable
the detection of electrons with high resolution and high signal-to-
noise ratio by reducing noise and reducing the loss of signal in the
electron-counting mode (Levin, 2021). Moreover, DEDs exhibit a

high frame rate when collecting images. This improvement in
detectors leads to the resolution revolution in cryo-EM.

Using high-voltage (300 keV) cryo-TEMs routinely, protein
structures were determined at high resolution. With other
technical advancements, including FEGs and DEDs, the low-
voltage microscopes such as Glacios (Thermo Fisher Scientific,
MA, United States) and CRYO ARM 200 (JEOL Ltd., Japan) are
also used for structure determination (Merk et al., 2020; Wu et al.,
2020; Koh et al., 2022; Thangaratnarajah et al., 2022). Various
studies have shown membrane protein structures at 2–4 Å
resolution using 200 keV microscopes (Fan et al., 2020;
Oosterheert and Gros, 2020; Cao et al., 2021; Budiardjo et al.,
2022; Zarkadas et al., 2022). As an example, the inhibited and
the active states of human mitochondrial calcium uniporter
(MCU) holocomplex structure, comprised of four main proteins:
MCU, mitochondrial calcium uptake 1 and 2, and an essential MCU
regulator were determined at 3.6 Å resolution (Fan et al., 2020). The
more advanced 100 keV cryo-EM was also developed and applied to
determine several structures with diverse sizes in 2019 (Naydenova
et al., 2019b). They reported structures of macromolecules in the
range of 64 kDa–4.5 MDa size within 3.4–8.4 Å resolutions. Later,
using the 100 keV cryo-EM, macromolecules with size range
between 140 kDa and 2 MDa such as 70 S ribosome and GABAA

receptor were structurally determined within 2.7–4.5 Å resolution
range (McMullan et al., 2023). The development of low energy cryo-
EM enhanced the user accessibility to cryo-EM while increasing the
number of available cryo-EM and reducing costs associated with the
equipment and its installation andmaintenance (A low-cost electron
microscope maps proteins at speed, 2023). Thus, it is expected that
the lowered accessibility barriers will accelerate determination of
targets structures for SBDD.

3.4 Data processing, model building,
and refinement

Cryo-EM is differentiated from X-ray crystallography by using
“images” instead of diffraction patterns as primary data (Wang and
Wang, 2017). A typical image-processing workflow for cryo-EM
data can be divided into five steps: 1) data pre-processing, 2) particle
picking and extraction, 3) 2D classification, 4) 3D reconstruction,
and lastly 5) 3D refinement (Lyumkis, 2019; Chung et al., 2022).
After releasing SPIDER and WEB in 1996 (Frank et al., 1996),
several software packages are available for the processing steps,
including EMAN (Ludtke et al., 1999; Tang et al., 2007; Bell et al.,
2016), RELION (Scheres, 2012; Zivanov et al., 2018), cryoSPARC
(Punjani et al., 2017), and cisTEM (Grant et al., 2018).

After collecting the images, data pre-processing is initiated by
correcting the images of particles moved by electron beam exposure.
Most particle movement occurs for a very short time in the early
period of beam exposure, after which the movement decreases
spatially and temporally (called stable but not fixed) (Li et al.,
2013). Therefore, rejection of the images obtained during the
early period was suggested as a solution to remove the blurriness
of the images due to beam-induced particle motion. However, this
strategy was not always welcome because the longer the exposure to
the sample, the more radiation damage accumulated in the samples,
as shown in Table 1. This dilemma has been solved through the
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development and advancement of DEDs, as mentioned in Section
3.3. The high frame rate (10–400 frames/s) of DEDs allows images to
be captured as multi-frames, such as a movie, in a single exposure.
Although it produces a low signal and low-resolution contrast by
short exposure at the millisecond level, high-resolution images can
be obtained. Moreover, a high frame rate enables the collection of
images that are stable and undamaged by beam exposure (Li et al.,
2013; Zivanov et al., 2019). Therefore, using images collected from
the least damaged particles in the early frames is more advantageous
despite the blurriness caused by the high movement of particles
(Cheng et al., 2015). Software has been developed in addition to
cameras. Software such as MotionCor2 (Zheng et al., 2017) and
alignframes_lmbfgs (Rubinstein and Brubaker, 2015) were
developed to estimate and correct frame motion using motion
correction algorithms, resulting in motion-corrected images. To
assess the quality of the micrographs, contrast transfer function
(CTF) estimation is performed. CTF obtained using software such as
CTFFIND4 (Rohou and Grigorieff, 2015) and Gctf (Zhang, 2016) is
required to curate micrographs based on the estimated defocus and
astigmatism levels.

The particle-picking step to locate the target molecules in
micrographs is challenging for several reasons, such as low signal-to-
noise ratios, impurities on the micrograph, non-uniform distributions,
preferential orientations, and undistinguishable structural
characteristics (Chua et al., 2022). Several groups suggested the
required number of collected particles from micrographs to obtain
high resolution EMmaps, as “themore, the higher.” In 2016, Danev and
Baumeister reported 5,000–10,000 particles were required to achieve
below 3.5 Å resolution with Fourier shell correlation (FSC) =
0.5 criterion (Danev and Baumeister, 2016). However, Chua and the
colleagues suggested that ≈1,000,000 particles were required to obtain
structures at 3.5 Å or higher resolution with FSC = 0.143 criterion
(Chua et al., 2022). They estimated the total number of requested
micrographs as 5,000–10,000, which was acquired from division
of ≈1,000,000 particles by the average number of analyzable particles
per micrograph, ≈100 particles/micrograph.

The initial software for particle picking used user intervention,
which was a time-consuming approach. The semi-automated pickers
were developed based mainly on template-base method (applied into
the particle picker in RELION-1.3 (Scheres, 2012; 2015)), feature-based
method (applied to DoG Picker in Appion (using difference of
Gaussian) (Voss et al., 2009), and Laplacian of Gaussian-applied
picker in RELION (Kimanius et al., 2021) and Blob Picker in
cryoSPARC (Punjani et al., 2017; Chung et al., 2022; Wu et al.,
2022). The results obtained using semi-automated pickers were
more efficient than those obtained using manual pickers, but the
selected input images or features induced a bias. To avoid this bias,
the convolutional neural networks-based particle pickers has been
raised such as DeepPicker (Wang et al., 2016), DeepEM (Zhu et al.,
2017), Topaz (Bepler et al., 2020), Warp (Tegunov and Cramer, 2019),
crYOLO (Wagner et al., 2019; Wagner and Raunser, 2020), PIXer
(Zhang et al., 2019), andDeepCryoPicker (Al-Azzawi et al., 2020). Their
algorithms are composed of two steps: 1) a training network using
manually selected sets of micrographs, and 2) picking particles
automatically using trained algorithms.

In the third step, 2D classification is the process of discriminating
and refining clearly aligned images of particles from other images, and
grouping the particles based on conformation and composition for 3D

classification. To cluster the similar particle images in the 2D
classification step, the maximum-likelihood (Sigworth, 1998) or
cross-correlation (CC) (Radermacher and Ruiz, 2019) approach is
applied to align and average particles (Figure 2). Using the CC
approach, images are aligned to acquire the maximum CC
coefficient value between two images or between a single image and
the average of the images. However, the CC approaches can generate
high but false correlation coefficients, particularly in the images with
low signal-to-noise ratios, which are usually obtained from the DED
images. Unlike CC approaches, the maximum-likelihood approach
calculates the probability-weighted averages of all possible
orientations of images (Sigworth et al., 2010). With the hidden
variables assumption, the maximum-likelihood algorithm has been
broadly applied to software packages such as FREALIGN (Grigorieff,
2007), RELION (Scheres, 2012), and cryoSPARC (Punjani et al., 2017).
The representative images acquired after 2D classification are again
used as a training set for particle picking, and then picking particles and
2D classification followed as an iterative process to sort particles more
thoroughly into a set of high-quality particles (McSweeney et al., 2020).

Three steps are required to obtain optimally estimated 3D EM
maps from 2D particle images: 3D reconstruction, 3D classification,
and refinement. Therefore, the three steps are integrated as
described in the previous paragraph. Three-dimensional
construction is performed using a known reference structure or
Ab initio model (Joubert and Habeck, 2015). References can be
obtained from databases (PDB and EMDB) or RandomConical Tilt-
applied 3D models from negative-stained EM images. Ab initio
models are constructed using various algorithms, such as the
common-lines-based model, random-model methods, stochastic
hill climbing, stochastic gradient descent, and Bayesian approach
(Joubert and Habeck, 2015). For example, the stochastic hill
climbing algorithm was used in SIMPLE/PRIME (Reboul et al.,
2016; Reboul et al., 2018) and the stochastic gradient descent
algorithm was implemented in the 3D reconstruction step in
cryoSPARC (Punjani et al., 2017) and RELION (Scheres, 2012).
One or more initial models are constructed from the reference
structure by using a projection-matching algorithm (Nogales and
Scheres, 2015). Using the initial models, an unbiased 3D
classification is performed, consequently helping to identify
multiple conformations or separate junk particles. Although the
process of 3D classification is the same as that of 2D classification, it
is critical to distinguish between the various conformations of the
target molecules or the different complex structures with subtle
differences (Murshudov, 2016).

Three-dimensional refinement is the final step in refining a 3D
EMmap to a high resolution, finding the optimal orientation for 2D
particles using the initially reconstructed map in the previous step as
a reference. The branch-and-bound algorithm (Lawler and Wood,
1966; Punjani et al., 2017; Zhong et al., 2021) and the adaptive
expectation-maximization algorithm (Tagare et al., 2010; Scheres,
2012) have been applied to image alignment. Because refinement of
the entire structure has the disadvantage of averaging 2D images
from various conformations, several additional refinement methods
for determining the structure of flexible parts have been proposed.
Multibody refinement in RELION considers complexes as a group of
independent rigid bodies and calculates the sum of the rigid bodies
as a flexible complex (Nakane and Scheres, 2021). The 3D variability
analysis (3DVA) implemented in cryoSPARC fits a high-resolution
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subspace model to a flexible map (Punjani and Fleet, 2021).
CryoDRGN reconstructs 3D maps into the several classes using
deep neural networks (Zhong et al., 2021; Kinman et al., 2023).
Murshudov et al., 2011 reviewed software for model fitting (e.g.,
Coot (Emsley et al., 2010), Jiggle Fit (Casanal et al., 2020), and
Morphing (Casanal et al., 2020)) and refinement (e.g., ProSMART
(Nicholls et al., 2014) and REFMAC (Brown et al., 2015). To evaluate
the model, a FSC curve is obtained by calculating the correlation
between two subsets, each including an independent half of the
complete image set (Murshudov, 2016). In the FSC curve, the
resolution at FSC values of 0.143 and rarely 0.5 is defined as the
resolution of the model (Rosenthal and Henderson, 2003). An
additional sharpening step that specifies the B-factor value
improves the EM map interpretability (Fernandez et al., 2008).
The local resolution of the map is processed and visualized using
UCSF ChimeraX (Goddard et al., 2018; Pettersen et al., 2021).

4 New techniques for cryo-EM–based
drug design

The main bottleneck in the SBDD studies is the insufficient
number of high-resolution structures of drug targets such as

membrane proteins, which constitute 60% of all drug targets
(Overington et al., 2006; Yin and Flynn, 2016). Most SBDD
studies rely on X-ray crystallography, which makes it difficult
to determine the structure of every molecule because of the
difficulty of crystallization (Grey and Thompson, 2010). With
the resolution revolution in cryo-EM, solving the high-resolution
structures of difficult targets has become possible in the last
decade. In this section, we discuss new techniques applied to
SBDD using cryo-EM, including 1) scaffolds used for the
determination of the cryo-EM structure of small-sized targets,
2) rapid determination of the structure of protein/ligand
complexes, 3) functionalized grids for cryo-EM studies of drug
targets at low concentrations, 4) fragment-based drug design
(FBDD), and 5) antibody design (Figure 4).

4.1 Scaffolds used for determination of the
cryo-EM structure of targets

As mentioned in Section 3.1, the use of scaffolds is an effective
solution for increasing the size of biological samples and overcoming
the problem of indistinguishable signals from noise in small targets.
Early methods that used scaffolds in sample preparation for cryo-

FIGURE 4
Modern techniques for cryo-EM–based drug discovery. The newly emerged techniques of cryo-EM for drug discovery are scaffolds (A), rapid
structure determination (B), functionalized grids (C), fragment-based drug design (D), and antibody design (E), described in Section 4.1, 4.2, 4.3, 4.4 and
4.5, respectively. Examples using each technique are displayedwith individual EMmaps and structuralmodels. The following are representative examples:
(A) α1β3γ2L GABAA receptor (6HUJ:EMD-02779) (Frommet al., 2023); (D) PKM2 (6TTI:EMD-10577, 6TTF:EMD-10575, 6TTH:EMD-10576, and 6TTQ:
EMD-10584) (Saur et al., 2020); and (E) the trimer of the heterodimer of gp120 (BG505 SOSIP MD39) and gp41 (BG505 SOSIP MD3) with antigen-binding
fragment (Fab) (Rh.33104 polyclonal antibody class C (7I8A:EMD-23227) (Antanasijevic et al., 2022a). Rapid structure determination is described using a
scatter graph, comparing the resolution and the number of particles from 39 samples, collected for 1 h (n = 26) (green) and 4 h (n = 13) (pink) (B) (Cushing
et al., 2023). The scaffold in (A), fragments-binding sites in (D) and antibody in (E) are marked using red open circles.
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EM were the same as those used in crystallography: inserting a
known epitope sequence into the target and forming an antibody/
nanobody/Fab–target complex. However, improvements in
antibody engineering techniques using computational approaches
have allowed for the efficient design of target-specific antibody/
nanobody/Fab and their application to the structural determination
of target molecules. Recently, the use of the megabodies and
Legobodies has been proposed as the most promising approach
for cryo-EM studies. Additionally, ankyrin repeats are used in cryo-
EM to prepare the target-specific scaffolds, called designed ankyrin
repeat proteins (DARPins), by forming oligomers with scaffold
cores. Scaffolds affect not only the target size but also the
diversity of the orientation of the samples, and comprehensively
enhance the resolution. In this section, we describe scaffolds and
their applications in structural determination.

A BRIL-based scaffold was designed to reveal different states of
GPCRs by various regulators using cryo-EM (Bernhard and Che,
2024). The mBRIL, the less flexible version of BRIL, was developed
to reduce idiosyncratic behavior in BRIL-inserted GPCR (Guo et al.,
2024). With the mBRIL, the extended cytosolic helix at C-terminus
using ALFA tag (Gotzke et al., 2019) and the scaffolds between
ALFA tag and mBRIL were applied to identify the complex
structures of β2-adrenergic receptor with FDA-approved drugs,
olodaterol and formoterol (Guo et al., 2024).

Laverty et al., 2019 developed the first megabody Mb38, the
chimeric protein comprised two parts: 1) a specific nanobody to the
α1-subunit of the γ-aminobutyric acid receptor subtype-A (GABAA

receptor) and 2) the scaffold protein from the extracellular adhesin
domain of Helicobacter pylori HopQ. By using Mb38, the structure
of the full-length human α1β3γ2L GABAA receptor was determined
at 3.2 Å resolution in the lipid bilayer. Masiulis et al. also reported
the five complex structures of the full-length human α1β3γ2L
GABAA receptor with picrotoxin, bicuculline, GABA, alprazolam,
and diazepam in separate lipid nanodiscs using Mb38 (57 kDa)
(Figure 4A) (Masiulis et al., 2019). In 2020, using the variant of
Mb38, Mb25 (56 kDa), the structure of the human
β3 homopentameric GABAA receptor was identified at 1.7 Å
resolution (Nakane et al., 2020). Later, the megabodies targeting
homopentameric GABA receptors were further improved to
increase the bulkiness of samples and reduce the biased
distribution of orientation of membrane proteins (Uchanski
et al., 2021). Other types of the megabodies have been developed
to target small size of membrane proteins. The human sodium/bile
acid cotransporter (NTCP, 36 kDa) was structurally identified using
Mb91, a fusion protein of the nanobody with E. coli glucosidase YgjK
(89 kDa) at 2.88 Å resolution (Goutam et al., 2022). Mb177, similar
to Mb91, was also developed and used to determine the structure of
human Hedgehog acyltransferase (HHAT, 58 kDa) at 2.7 Å
resolution (Coupland et al., 2021).

Another approach for solving this problem is to use Legobodies.
Legobody is an assembly of three components: 1) target-specific
nanobody (≈14 kDa), 2) the nanobody-binding Fab (≈49 kDa), 3)
the maltose-binding protein (MBP)-based fusion protein (MBP with
nanobody-binding protein A domain C (PrAC); VH (in Fab)-
binding protein A domain D (PrAD); and CH (in Fab)-binding
protein G (PrG)), called MBP–PrAC–PrAD–PrG (59 kDa) (Wu and
Rapoport, 2021). The MBP–PrAC–PrAD–PrG protein reduces the
flexibility of target–nanobody–Fab trimer in solution and increases

its size. By binding to the heterotrimeric Legobody, the target
protein obtains approximately an additional 120 kDa of its
original size. Wu and Rapoport, 2021 used this system to solve
the structures of both endoplasmic reticulum (ER) lumen protein-
retaining receptor 2 (KDELR2, ≈30 kDa) and SARS-CoV-2 spike
protein receptor-binding domain (RBD, ≈25 kDa). The Legobody
was also used to determine the structure of the inner mitochondrial
membrane protein uncoupling protein 1 (UCP1). UCP1 is activated
by fatty acids and small molecules such as 2,4-dinitrophenol, and
negatively regulated by purine nucleotides, ATP, and GTP (Kang
and Chen, 2023). Using Legobodies including newly screened
UCP1-specific nanobody (called sybody 12F2), Kang and Chen
identified the structures of UCP1 (32 kDa) as three different
states: nucleotide-free, 2,4-dinitrophenol-bound, and ATP-bound.
Although the model structures of the Legobodies are not shown in
the models deposited in the PDB (8HBV, 8HBW, and 8J1N), their
maps are clearly described in the EM maps in EMDB (EMD-34644,
EMD-34645, and EMD-35928).

In addition to antibody-like proteins, engineered ankyrin
repeats have been used to design target-specific binding partners
(Li et al., 2006). Initially, based on the ankyrin repeat, a target-
specific DARPin was screened from the DARPin library and used as
a crystal chaperone and biosensor (Pluckthun, 2015; Boersma,
2018). Due to the small size of DARPin, it should be used with
scaffold cores such as aldolase in structure determination using
cryo-EM (Liu et al., 2019; Yao et al., 2019). The use of the
DARPin–scaffold core fusion increases the sample size by
binding of the DARPin–scaffold core to the target and by
forming oligomers of targets, mediated by the scaffold core. The
structure of green fluorescent protein (GFP, 26 kDa) was identified
using aldolase-fusion DARPin (tetramer, D2) at 5–8 Å resolution
(Yao et al., 2019). Later, improvement of the DARPin–nanocage
fusion scaffold (called DARP14, heterotetracosamer as a
dodecameric heterodimer of DARP14 subunit A (DARPin-
conjugated form, 34 kDa) and subunit B (DARPin-free form,
14 kDa)) enhanced the resolution of GFP to 3.8 Å (Liu et al.,
2018a; Liu et al., 2019).

4.2 Rapid determination of the structure of
protein/ligand complex

SBDD studies require the screening of several designed drugs.
Hence, cost-effective and rapid methodologies are important to
render the process more efficient. As shown in Table 1, to
overcome the disadvantages of the cryo-EM workflow, such as
lower throughput of processes compared to crystallography,
methodologies have been developed for more efficient processes,
such as automation of sample preparation (Koning et al., 2022), data
collection steps (Tan et al., 2016) and minimization of required
image numbers for structure determination (Cushing et al., 2023).

One of the recent achievements is automation of data
acquisition. Smart EPU Software is available for high-throughput
data acquisition with autoloader-equipped cryo-TEMs (Drulyte
et al., 2022). Using the autoloader, screening and collecting
images from maximum 12 grids were available. It decreases the
time consumed for sample loading and environment setting such as
vacuum condition and temperature. The EPU software also contains
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a rapid data acquisition mode that allows unattended screening of
multiple grids. The “Fast Acquisition” mode in EPU utilizes beam
tilt instead of stage movement to each point. Neutralizing SARS-
CoV-2 antibodies specific to the RBD domain were generated, and
12 Fabs with spike proteins in complex forms were selected and
subjected to data collection for structure determination using the
EPU software in 48 h. After data processing, twelve sub-3 Å
structures of Fabs with spike protein were reconstructed. As well
as EPU, SerialEM also uses beam-tilt compensation algorithm for
fast image collection (Takaba et al., 2020). EPU, SerialEM and
Leginon (Cheng et al., 2021) provide condition of holes and
squares of sample grids, and allow to screen and collect data in
promising area of grids, and finally reduce the time for data
acquisition. Ptolemy software brought the full process of data
collection by automation using machine learning and computer
vision algorithms (Kim et al., 2023).

Cushing et al., 2023 tested the correlation between the number
of images for 3D model reconstruction and resolution to determine
the structures for SBDD. The cyclin-dependent kinase (CDK)-
activating kinase (CAK) heterotrimeric protein complex was
formed by CDK7, MAT1, and cyclin H and affected cell division
and cell growth by regulating transcription initiation (Sava et al.,
2020). Owing to its important role in cellular pathways, the CAK
complex is a potential target for cancer drugs and antivirals
(Hutterer et al., 2015). Cushing et al., 2023 recently reported the
complex structures of CAK complex with 12 different inhibitors
using the rapid sample screening strategy. They initially
collected ≈500 particles/grid from 26 grids using protein
complexes with 12 inhibitors for 1 h and selected 13 grids among
them based on processed results including refinement. The selected
13 sets were subsequently used to collecting ≈2,000 particles/grid for
4 h. This strategy suggested that a small number of particles was
enough to screen and select the samples for further process. Using
the fast-screening strategy, they determined a dozen of structures at
3.5–4 Å resolution daily using only a 200 kV cryo-TEM (Figure 4B).

4.3 Functionalized grids for cryo-EM studies
of drug targets at low concentration

In cryo-EM, samples are selected using the particle-picking
process and used as input data. To exploit this advantage, the
desired samples are selected and enriched using functionalized
grids. For example, the grid was coated with affinity ligands and
antibodies to capture samples (Llaguno et al., 2014; Yu et al., 2016).
Functionalized grids successfully enrich the number of target
proteins on the grid surface, enabling the use of low-
concentration samples such as viral particles or membrane
proteins, which are the main targets in SBDD studies, without
the need to increase expression levels (Yu et al., 2016; Wang
et al., 2020b).

For this purpose, high-affinity selective ligands, such as
nickel–nitrilotriacetic acid (Ni–NTA) to His-tag, biotin to
streptavidin, and antibodies to Protein A/G, have been
successfully used as functional groups coated on the grid
(Llaguno et al., 2014; Earl et al., 2017) (Figure 4C). Yu et al.,
2016 used antibody-based affinity grids to solve the Tulane virus
structure at 2.6 Å resolution using a low concentration of the virus.

Using this approach, researchers detected the target sample bound
to antibody–coated grids, suggesting that this approach is useful for
target samples that are difficult to prepare and have low yields.
Recently, Cheng et al., 2023 introduced dual-affinity graphene grids
prepared with two ligands of different affinities: Ni-NTA and
polyethylene glycol–biotin. By targeting different sites using dual-
affinity graphene grids, they obtained 20S proteasomes. They also
solved the spike protein of SARS-CoV-2. Dual-functionalized grids
have higher specificity and affinity for target sample molecules than
single-affinity-functionalized grids, leading to their balanced
distribution on the grids. Therefore, the dual-affinity graphene
grid has been claimed to be an effective approach for preparing
ideal grids for structural determination of drug targets using
cryo-EM.

More generally, functional groups were used to modify cryo-EM
grids. Agard’s group applied amino/PEG-amino graphene oxide in
their research (Wang et al., 2020b). Multifunctional graphene for
cryo-EM grids, functionalized with amine, carboxyl, thiol and
phenyl groups, were also developed (Naydenova et al., 2019b).
Using the functionalized grids, Naydenova and colleagues
successfully enhanced randomness of particles orientation, and
determined structures of ribosome and apoferritin at high-
resolution. In addition to non-covalent functionalization, Nickl
et al., 2023 developed graphene-based grid employing covalent
bonding to stabilize specimens.

4.4 Fragment-based drug design

SBDD studies rely on the identification of drug-binding pockets
in proteins and ligands in the binding pockets (Figure 1). However,
identification of ligand-binding pockets is difficult if the protein has
undefined pockets (Shelke et al., 2010). To overcome this limitation,
fragment-based approaches have been widely used in SBDD studies
(Murray and Rees, 2009). Therefore, FBDD is effective for
identifying novel ligand-binding pockets and developing potent
drugs. In this approach, drug-like molecules are generated from
small chemical fragments that bind to drug target proteins with low
affinity (Li, 2020). Through structural studies of target proteins
complexed with small compound libraries, target-bound fragments
and their binding sites can be identified (Wang et al., 2023).

This method was initially developed for X-ray crystallography
but was soon used in NMR-based drug screening. Cryo-EM has
become a powerful tool for FBDD studies owing to technical
advancements that allow the high-resolution of structures. In a
recent study, Saur et al., 2020 showed that cryo-EM can be utilized
for FBDD studies by identifying two different target proteins, β-
galactosidase and pyruvate kinase M2 (PKM2) (Figure 4D). β-
galactosidase is a homotetrameric protein with 465-kDa
molecular weight that plays a role in the hydrolysis of lactose to
glucose and galactose (Bartesaghi et al., 2015). The cryo-EM
structure of β-galactosidase at a resolution between 2.2 and 2.3 Å
was determined using three different fragment-sized ligands. The
ligand structures at the binding site and the conformational changes
were clearly detected in the density maps, indicating that cryo-EM
has the potential to guide FBDD research. In another study, the
capacity of cryo-EM for fragment screening was demonstrated using
an oncology target, PKM2, which is involved in the conversion of
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phosphoenolpyruvate to pyruvate. PKM2 is a potential therapeutic
target because of its involvement in cancer development (Zhu et al.,
2021). To demonstrate the applicability of cryo-EM for fragment
screening, 68 different ligands were used at high concentrations to
form complexes with PKM2. The structures of these complexes were
solved after 68 days of data collection, followed by 2–3 days of data
acquisition depending on the sample. By preparing these structures,
they indicated that a 3.2 Å resolution was adequate for determining
the binding modes of fragment-sized molecules and clearly showed
that the fragments were easily differentiated from noise in the
density maps. After separately determining the protein-ligand
structures, the structures of the protein-ligand complexes were
determined using fragment cocktails consisting of four different
ligands. Therefore, the use of compound cocktails for fragment
screening with cryo-EM is an efficient and timesaving method for
increasing throughput.

4.5 Antibody design

Antibodies have been used as therapeutic tools using various
approaches, such as blocking the binding interface and inhibiting
activity (Carter and Rajpal, 2022). In particular, antibody–drug
conjugates and antibody-based proteolysis-targeting chimeras
(AbTACs) are emerging fields of antibody therapy (Fu et al.,
2022; Zhao et al., 2022). A critical step in antibody-based
therapeutic strategies is the acquisition of appropriate antibodies
with high target specificity and affinity. The most popular approach
for developing new antibodies is to screen antigen-binding
complementarity-determining region (CDRs) sequences using a
phage library (Alfaleh et al., 2020). Other approaches include
analyses of genomic sequence information from target-
responding B cells extracted from infected samples and direct
peptide sequence information of antibodies in the serum using
mass spectrometry (Ionov and Lee, 2022). Methodologies for
computer-aided antibody design have also been developed, such
as antibody–antigen docking (Hummer et al., 2022). Although
diverse approaches in antibody design have accelerated
development speed, structural validation of the designed antibody
on-target, as expected, is still a rate-limiting process using
crystallography. Owing to the lack of a crystallization step, the
cryo-EM approach is advantageous for determining the structures
of the target–antibody complex at high resolution. Moreover, after
acquiring the initial structure of the target–antibody complex,
further improvements based on structural information are easily
achieved. In this subsection, we describe new techniques for
supporting the design of antibodies using cryo-EM: epitope
mapping and the direct determination of antibodies (Nilvebrant
and Rockberg, 2018; Schardt et al., 2022).

The cryo-EM-based polyclonal epitope mapping (cryo-
EMPEM) method was developed in the late 2010s for screening
purposes. Cryo-EMPEM determines the sequence of polyclonal
antibodies from the electron density map of the antibody-target
complex, unlike previous approaches such as B cell sequence
analysis or mass spectrometry analysis of polyclonal antibodies.
This approach integrates antibody selection and structural
determination. As a recent example of cryo-EMPEM, a novel
approach was described for antibody discovery in early 2022,

targeting human immunodeficiency virus-1 (HIV-1) envelope
glycoprotein (Figure 4E) (Antanasijevic et al., 2022a). Serum-
derived antigen-bound polyclonal antibody sequences were
identified using cryo-electron microscopy density maps. For this
purpose, the animals were immunized with labeled antigens to
produce antigen/antibody complexes that were then analyzed
using cryo-EM to identify epitopes. After reconstruction, the
amino acid sequences of the antibodies were determined from
density maps using a novel algorithm developed by the same
research group. The main aim of this algorithm is to match
density maps with the antigen-binding-specific B-cell next-
generation sequencing database to rapidly obtain epitope
information that can be used for the rational design of
therapeutics. By the end of 2022, the same research group
adapted this approach to analyze polyclonal antibody responses
using whole viral particles for non-enveloped viruses with
icosahedral capsids, indicating that this method is an effective
way to identify antibodies and map epitopes (Antanasijevic
et al., 2022b).

5 Examples of cryo-EM in
structure-based drug design

To the best of our knowledge, none of the currently approved
drugs have been designed using cryo-EM structures, although we
have noted studies and ongoing efforts to design drugs/inhibitors
aided by available cryo-EM structures, or using cryo-EM to solve the
binding modes of newly designed drugs or target protein structures.

Recently, Garibsingh et al., 2021 designed inhibitors of
alanine–serine–cysteine transporter 2 (ASCT2), a sodium-
dependent neutral amino acid transporter, for SBDD. ASCT2 is
responsible for amino acid homeostasis in peripheral tissues (Liu
et al., 2018b). Unlike under physiological conditions, the
ASCT2 protein is upregulated in various cancer types, such as
leukemia, prostate cancer, and breast cancer, by the c-MYC
transcription factor and increases the transport of glutamine into
cells, thus stimulating proliferation (Scalise et al., 2018). Several in
vivo studies have shown that the inhibition of ASCT2 decreases
intracellular glutamine levels and, hence, tumor size (Wang et al.,
2015; Ni et al., 2019). Thus, ASCT2 is a valuable pharmaceutical
target. However, clinical inhibitors are still unavailable because of
the lack of understanding of their pharmacological features.
Garibsingh et al., 2021 combined computational modeling with
cryo-EM structures of ASCT2 to design several effective
inhibitors. They then selected a high-potency inhibitor, Lc-BPE,
to solve the cryo-EM structure of the ASCT2–inhibitor complex,
which showed the binding mode of the inhibitor to the protein. This
study not only described the rational design of inhibitors, but also
led to the design of more potent inhibitors by revealing the binding
modes of inhibitor/protein complexes, showing that this
combinatorial approach may be effective for designing drugs
against challenging proteins in the same family.

Two nonpeptide glucagon-like peptide-1 (GLP-1) agonists, 1)
orforglipron (LY-3502970) and 2) danuglipron (PF-06882961),
developed by Eli Lilly and Company and Pfizer, respectively, are
other examples of the contribution of cryo-EM in drug discovery.
The development of these drugs was not initiated by following
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SBDD procedures, but the structures of GLP-1 receptor (GLP-1R)–
drug complexes revealed an unknown mechanism of action for
orforglipron and danuglipron (Kawai et al., 2020; Griffith et al.,
2022). Activated GLP-1R, a class B GPCR, upregulates Ca2+-induced
insulin secretion in pancreatic β cells through the GLP-1R–adenylyl
cyclase–cAMP signaling axis (Zhang et al., 2017; Wen et al., 2022).
Therefore, GLP-1R is a candidate of the drug target for patients with
type 2 diabetes and obesity. Although small-molecule agonists are
available to treat obesity and diabetes, there is still a desire to design
and develop small molecules as an oral therapy that makes the
treatment easier (Donnelly, 2012). Initial studies have shown that
orforglipron effectively lowers glucose levels in both the humanized
GLP1-R transgenic mice and the non-human primates (Kawai et al.,
2020). The high-resolution structure (≈3 Å) of GLP-1R with
orforglipron using cryo-EM revealed a unique binding pocket
and showed the binding mechanism of the compound.
Danuglipron was discovered using high-throughput screening,
and its structure in the GLP-1R complex was determined using
cryo-EM at 2.5 Å resolution (Griffith et al., 2022). Both drugs
interacted with human/primate-specific W33 residues in the
extracellular domain of GLP-1R, but not in the GLP-1-binding
domain, and activated the GLP-1R downstream signals. The binding
modes of the two drugs were not identical (Wan et al., 2023);
however, both stabilized extracellular domain and formed structures
similar to the active form of the GLP-1-GLP-1R complex. In a recent
report after phase 2 clinical studies (ClinicalTrials.gov ID:
NCT05048719 and NCT05051579), orforglipron showed
pharmacodynamic and safety profiles similar to those of already
approved injectable drugs and promising results for phase 3 studies
(Frias et al., 2023; Wharton et al., 2023). Similarly, phase 2 studies
(ClinicalTrials.gov ID: NCT03985293) on danuglipron for the
treatment of patients with type 2 diabetes have shown promising
results (Saxena et al., 2023) and phase 2 studies on obesity treatment
are still ongoing (ClinicalTrials.gov ID: NCT04707313). Although
the drug compounds have not been designed using SBDD, the
binding modes of both orforglipron and danuglipron have been
shown using a cryo-EM structure, which may lead to the design of
more effective GLP-1R agonists in the future.

Another case is immunomodulatory drugs (IMiDs) and
cereblon (CRBN) E3 ligase modulatory drugs (CELMoDs).
Thalidomide was reported as an effective drug for erythema
nodosum leprosum patients in 1965, and received FDA approval
in 1998 (Bartlett et al., 2004). After reported as an inhibitor of TNF-α
production (Moreira et al., 1993), it was discovered that thalidomide
and its analogues including lenalidomide and pomalidomide,
functioned as the immunomodulator (Davies et al., 2001). In
2010, CRBN was revealed as a direct target of thalidomide (Ito
et al., 2010), and in 2014, complex structures of CRBN and damage
specific DNA binding protein 1 (DDB1) with IMiDs (thalidomide
and its analogues) were identified (Fischer et al., 2014).
Subsequently, the potency of IMiDs was reported as a degrader
by connecting between CRBN–DDB1 and neosubstrates, which
were named because it is not original substrates but IMiDs-
mediated new substrates (Gandhi et al., 2014; Kronke et al., 2014;
Lu et al., 2014). In 2016, the mechanism of selectivity of
CRBN–DDB1 to neosubstrates was unveiled in the structural
aspects using X-ray crystallography (Petzold et al., 2016). In the
same year, CC-885 was identified as a new degrader targeting

GSPT1 with a GSPT1–CC-885–CRBN–DDB1 complex structure
using X-ray crystallography (Matyskiela et al., 2016). The updated
information of structures provided insights to design a novel or
optimized degrader. In 2022, the binding modes of two CELMoDs
CC-92480 in recruiting phase I/II (mezigdomide, ClinicalTrials.gov
ID: NCT03989414) and CC-220 in recruiting phase II (iberdomide,
ClinicalTrials.gov ID: NCT05199311), the enhanced version of
IMiDs, to CRBN–DDB1 were unveiled using cryo-EM as well as
structures of CRBN–DDB1 apo and complex forms with
pomalidomide (Watson et al., 2022). By using cryo-EM, a sensor
loop structure in the open state of CRBN was newly identified, and
the neosubstrate-recruiting process was also inferred. The
CRBN–DDB1 complex structures with IMiDs and CELMoDs
aided to design novel or more efficient degraders with lowered
toxicity targeting disease-related molecules, as well as understand
the mechanism as modulators and degraders.

In addition to the drug development, structure of antibody-antigen
complex is also applicable in the vaccine developement (Kwong et al.,
2020). The process is opposite to the structure-based antibody design.
Recently, Pfizer rationally designed an antigen against the respiratory
syncytial virus (RSV) for vaccine development (Che et al., 2023). The
RSV is a life-threatening virus that causes severe bronchiolitis and
pneumonia in infants and older adults. Currently, no vaccine is available,
although efforts have been ongoing for almost 60 years (Mazur et al.,
2018). The key antigen in vaccine research is the RSV fusion (F)
glycoprotein, which plays a role in the fusion of the viral and host
cell membranes during cell entry. The metastable pre-fusion
conformation of RSV F has been proposed as a target for potent
neutralizing antibodies (Ngwuta et al., 2015). Therefore, the Pfizer
team generated a stabilized version of the prefusion conformation of
the RSV F antigen for vaccine development, based on the following
hypothesis: neutralizing antibodies are elicited more effectively if the
stability of the prefusion conformation is high under stress conditions.
They engineered the ectodomain of RSV F and generated almost
400 constructs using the crystal structure of the RSV F protein in
complex with D25, a pre-fusion-specific antibody. After analyzing the
stability and immunogenicity of the engineered constructs, the most
potent stabilized pre-fusion RSV F (847A) was selected, and the crystal
structure of 847A alone was solved to confirm its pre-fusion structure.
The cryo-EM structure of 847A was also reconstructed using two
different pre-fusion conformation-specific Fabs (AM14 and AM22),
confirming the integrity of the pre-fusion epitopes. The RSV vaccine
candidate is currently undergoing clinical trials (ClinicalTrials.gov ID:
NCT04424316 and NCT05035212) with promising preliminary results
(Kampmann et al., 2023;Walsh et al., 2023). This study shows that cryo-
EM can not only be used in the first step of SBDD, but is also useful for
determining engineered drug/target protein structures, helping
researchers understand binding modes and/or confirm structural
characteristics.

6 Conclusion and future perspectives

SBDD has emerged as the most common and effective approach
for designing therapeutics and optimizing potent and efficient drugs.
Initially, SBDD relied heavily on crystal structures because of the low
resolution of cryo-EM structures. However, recently, advanced
techniques in cryo-EM have led to high-resolution determination
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of the structures of various membrane proteins and drug targets that
were previously inaccessible using other biophysical methods. The
increasing number of cryo-EM structures of drug-target proteins
and their near-atomic resolution is expected to drive the popularity
of this approach in SBDD. This review highlights the considerable
potential of cryo-EM in drug development, with the atomic
resolution of cryo-EM structures providing crucial insights into
ligand–target interactions and activation/inhibition mechanisms of
drug-target proteins. Moreover, ongoing developments in
specialized techniques required for cryo-EM-based drug discovery
are continually enhancing its applicability and efficiency. Although
many current SBDD studies use both cryo-EM and X-ray
crystallography, cryo-EM is expected to lead SBDD efforts within
the next few years, producing innovative and highly effective
therapeutics. The capacity of cryo-EM structures to provide
atomic-level details of drug–target interactions and activation
mechanisms makes them powerful tools for drug discovery. As
cryo-EM technology continues to evolve and the number of high-
resolution structures increases, the impact of this method on drug
development is expected to increase considerably. In conclusion, the
combination of cryo-EM structures at atomic resolution and newly
developed techniques makes cryo-EM an invaluable tool for SBDD.
With its potential to reveal intricate details of drug–target
interactions and activation mechanisms, cryo-EM is poised to
become the leading method for designing innovative and potent
therapeutics in the near future.
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Glossary

3D-QSAR three-dimensional quantitative structure-activity relationship

3DVA 3D variability analysis

5-MTHF 5-methyltetrahydrofolate

AbTAC antibody-based proteolysis-targeting chimera

ACST2 alanine–serine–cysteine transporter 2

AWI air-water interface

BRIL apocytochrome b562RIL

CAK cyclin-dependent kinase-activating kinase

CC cross-correlation

CCD charge-coupled device

CDK cyclin-dependent kinase

CDR complementarity-determining region

CELMoDs cereblon E3 ligase modulatory drugs

CFEG cold field-emission gun

CMOS complementary metal oxide semiconductor

CRBN cereblon

cryo-EM cryogenic electron microscopy

cryo-EMPEM cryo-EM-based polyclonal epitope mapping

cryo-ET cryo-electron tomography

cryo-TEM cryogenic transmission electron microcopy

CTF contrast transfer function

CTR calcitonin receptor

DARPin designed ankyrin repeat protein

DDB1 damage specific DNA binding protein 1

DED direct electron detector

DLS dynamic light scattering

E. coli Escherichia coli

EM electron microscopy

EMDB Electron Microscopy Data Bank

EMPIAR Electron Microscopy Public Image Archive

ER endoplasmic reticulum

Fab antigen-binding fragment

FBDD fragment-based drug design

FDA the United States Food and Drug Administration

FEG field-emission gun

FSC Fourier shell correlation

GABAA γ-aminobutyric acid receptor subtype-A

GDH glutamate dehydrogenase

GFP green fluorescent protein

GLP-1 glucagon-like peptide-1

GLP-1R glucagon-like peptide-1 receptor

GPCR G protein-coupled receptor

HHAT human Hedgehog acyltransferase

HIV-1 human immunodeficiency virus-1

IMiDs immunomodulatory drugs

KDELR2 ER lumen protein-retaining receptor 2

κOR-ICL3 kappa opioid receptor

MAPS monolithic active pixel sensor

MBP maltose-binding protein

MCU mitochondrial calcium uniporter

microED microcrystal electron diffraction

Ni-NTA nickel–nitrilotriacetic acid

NMR nuclear magnetic resonance

NTCP sodium/bile acid cotransporter

PDB Protein Data Bank

PGS glycogen synthase domain of Pyrococcus abyssi

PKM2 pyruvate kinase M2

PrAC protein A domain C

PrAD protein A domain D

PrG protein G

RBD receptor-binding domain

RSV respiratory syncytial virus

RSV F respiratory syncytial virus fusion glycoprotein

SBDD structure-based drug design

SPA single-particle analysis

TEM transmission electron microscopy

UCP1 uncoupling protein 1

VPP Volta phase plate

XFEL X-ray free electron laser
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