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In laboratory medicine, measurement results are often expressed as proportions
of concentrations or counts. These proportions have distinct mathematical
properties that can lead to unexpected results when conventional parametric
statistical methods are naively appliedwithout due consideration in the analysis of
method validation experiments, quality assessments, or clinical studies. In
particular, data points near 0% or 100% can lead to misleading analytical
conclusions. To avoid these problems, the logit transformation—defined as
the natural logarithm of the proportion/(1-proportion)—is used. This
transformation produces symmetric distributions centered at zero that extend
infinitely in both directions without upper or lower bounds. As a result, parametric
statistical methods can be used without introducing bias. Furthermore,
homogeneity of variances (HoV) is given. The benefits of this technique are
illustrated by two applications: (i) flow cytometry measurement results expressed
as proportions and (ii) probabilities derived from multivariable models. In the first
case, naive analyses within external quality assessment (EQA) evaluations that
lead to inconsistent results are effectively corrected. Second, the transformation
eliminates bias and variance heterogeneity, allowing for more effective precision
estimation. In summary, the logit transformation ensures unbiased results in
statistical analyses. Given the resulting homogeneity of variances, common
parametric statistical methods can be implemented, potentially increasing the
efficiency of the analysis.
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Introduction

Achieving harmonization and improving the quality of measurements are central
goals within the laboratory medicine community. Often, there are a number of
measurement methods available for a given measurand from different
manufacturers and laboratories. In addition, for methods such as flow cytometry,
different experimental settings are used to assess the same measurand. This includes
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the use of different antibodies and gating strategies that vary
from laboratory to laboratory.

In view of this situation, method developers and clinical
laboratories are highly motivated to evaluate their measurement
methods in internal method validation to gain knowledge about
systematic and random errors [Lambert et al., 2020, CLSI guidelines,
e.g., EP05]. In addition, external quality assessments (EQAs) are
routinely performed.

Method validation typically includes method comparison and
precision assessment. It is also important to demonstrate detection
capability, robustness to interferences, etc. These experiments are
typically analyzed using parametric statistical methods that rely on
estimates of the mean and standard deviation (SD) for calculations.
However, these methods assume that the data distribution should
not deviate significantly from the normal distribution (ND) and that
homogeneity of variances (HoV) is maintained over the
measurement range, implying that precision is not concentration-
dependent. In terms of ND, a visual inspection would be expected to
show a symmetrical, bell-shaped distribution with no outliers. In
this context, ISO 13528, which guides the design and analysis of
EQA, specifies the need for symmetrical distributions.

In the context of EQA, a distinction is made between methods
that use reference material and those that do not. If no reference
material is available, samples supplied by a service provider are
measured by all participating laboratories. The distribution of
measurement results is considered, and an assigned
value—calculated as a robust mean (ISO, 2022; Appendix C,
Algorithm A)—is derived directly from the measurements of the
participating laboratories. Such assigned values are then used as the
basis for individual pass/fail assessments. The establishment of
specific pass/fail criteria often involves a balance between
observed measurement variability, quality requirements, and the
clinical relevance of potential differences. We focus on the common
scenario where acceptance criteria are defined by a relative or
percentage difference around the assigned value.

For example, a typical EQA scenario might assess whether
individual laboratories pass if their measurement values for a
particular sample are within ± 30 percent of the robust mean
(ISO, 2022; Section. 9.3).

The assumptions regarding ND (symmetry) and HoV should be
met in such assessments. Although typical laboratory measurands
measured in concentrations usually satisfy these assumptions,
measurands related to inflammation or tumor incidence are often
skewed to the right. In such cases, logarithmic transformation (or,
more generally, Box–Cox transformation of the measured values)
can help achieve a distribution that does not deviate significantly
from the normal distribution and maintains homogeneity of
variances. For count data, such as cell counts, square root
transformation is often beneficial.

In this context, we consider measurands measured as proportions
(0%–100%) or probabilities (0–1) that represent relative measures of
specific subgroups within an entity. In flow cytometry, such measurands
are exemplified by the evaluation of CD3+ cell subsets, specifically alpha/
beta T cells and gamma/delta T cells, both quantified as a percentage of
CD3+ cells. Since their combined values add up to 100%, the measured
values are inherently correlated.

Another example is the use of probabilities as metrics, such as
calculated measurands resulting from multivariable analysis of

measured values from a variety of measurands. These
probabilities may be generated by logistic regression or other
classification methods, such as machine learning or artificial
intelligence.

In both scenarios, EQA and combined markers, proportions,
and probabilities are bounded between 0% and 100%. Note that in
this article, we also use 0 and 1 (representing percentages divided by
100), depending on the context. Because the data are constrained by
0% and 100%, the assumptions regarding ND and HoV are no
longer valid, especially for values approaching the limits (<20%
and >80%). Consequently, describing, analyzing, or statistically
testing experimental data using parametric methods—such as
calculating mean and standard deviation, performing t-tests and
ANOVA for group differences, and estimating variance components
(precision) or using ordinary regression techniques—will yield
invalid results. This is because these methods assume ND and
HoV. In addition, the use of symmetric power limits
becomes untenable.

Nevertheless, the naive application of parametric methods to
proportions or probabilities is often observed, often due to the
convenience of ready-to-use software packages in daily routine and
the seemingly straightforward interpretation of results.

Although nonparametric methods could be an alternative, they
are less powerful, often require larger sample sizes, and may not
provide well-known estimates of bias and precision.

Therefore, we propose to logit transform measured values prior
to statistical analysis with parametric methods whenmeasurands are
measured as proportions (or probabilities). This article highlights
the differences between naive analysis and analysis using logits and
provides guidance for interpreting the results.

Materials and methods

EQA data

Simulated data (26 laboratories) from an EQA for alpha/beta
T cells (% of CD3+) with an assumed true measured value of 95%
and gamma/delta T cells (% of CD3+) with an assumed true
measured value of 5% are used. The simulation generates a
random number for each laboratory by adding normally
distributed noise with an SD of 0.2944, distributed around the
assumed value on the logit scale (95% → 2.944). The simulated
distribution reflects typical scenarios encountered in the INSTAND
program for flow cytometry. In our considerations, we assume that
both measurands are highly correlated. For the sake of simplicity, we
have assumed a direct relationship between the variables, ensuring
that the percentages add up to 100%. Thus, the negative values of
measurand A are used as values for measurand B. We have assumed
the absence of outliers in this simulation, as outlier detection is
beyond the scope of this report.

Precision data

In this simulation study, we generated data representing the
results obtained as probabilities from an automated biomarker
measurement procedure. Specifically, we measured these
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probabilities on five different days, with triplicate measurements
performed on six different samples. The aim of the experiment is to
determine repeatability and overall precision, following the
methodology outlined in CLSI (2014).

However, due to the small sample size (15 measurements instead
of the recommended 80 measurements for one sample), we chose to
estimate repeatability and overall precision pooled over the samples,
as suggested by Lambert et al. (2022). This pooling approach
assumes the homogeneity of variances.

Within the simulation, the samples were assigned the following
values: 4.7%, 14.2%, 37.4%, 64.6%, 85.8%, and 95.3%. The
simulation was designed to start with homogeneous variances on
a logit scale and then illustrate how the data would be represented on
the original probability scale. Within the simulation, the
components of imprecision are addressed by adding noise using
normal distributed random numbers with the following standard
deviations. Within the logit scale, the repeatability (the variability
within 1 day) was set at 0.20 for all samples, expressed as the
standard deviation. At the same time, the between-day variability
was set at 0.12 for all samples. The resulting reproducibility is 0.233
(the square root of the sum of the squared SDs).

To illustrate the impact of using probabilities versus logits, we
present variability plots and analyze the precision experiment both
naively (per sample) and using logit-transformed values pooled
across samples.

The precision components were estimated using random effects
ANOVA, as described in CLSI (2014).

Results

Logit transformation

In the logit transformation of a proportion (or probability) p, the
following formula is used:

logit p( ) � ln
p

1 − p
( ), (1)

where ln is the natural logarithm.
Table 1 contains selected probabilities and their corresponding

logit values that are often encountered in daily work.
For the back transformation, the following formula is used:

p � antilogit x( ) � exp x( )
1 + exp x( ), (2)

where x is a value on the logit scale.
Supplementary Material includes an Excel tool for these

calculations (Supplementary Material S2).

Application in the context of EQA

In the EQA experiments described above, naive analysis
typically involves (i) the calculation of the mean and (ii) the
symmetric setting of limits, which is flawed when the
underlying distribution is asymmetric. The bias is evident in the
calculation of limits, such as the mean ± 30% of the mean, for

related percentages, such as 5% and 95%. In a naive analysis, the
bounds would be 3.5% . . . 6.5% for the 5% mean and 66.5% . . .

100% for the 95% mean.
To calculate accurate limits using the logit scale, the following

formula (in conjunction with Eqs 1, 2) is used:

± LimitLogit−based � antilogit logit p( ) ± logit LimitOrig( )( ). (3)

Figure 1 illustrates the difference between the limits derived
from the naive analysis and those obtained using the logit
transformation, using the example mean ± 30% x mean. For the
5% and 95% percentages, the ranges between the limits become
identical: 3.5% . . . 6.5% for 5% and 93.5% . . . 96.5% for 95%.

Supplementary Material S3 contains an Excel tool for deriving
limits on the logit scale.

The following example illustrates the consequences of EQAs.
Figure 2 shows simulated data against limits derived naively (left)
and after logit transformation of the data and back transformation of
the means and limits (right). Supplementary Table S1 lists all values
and the EQA results.

TABLE 1 Examples for logit transformation.

p Percentage (%) Logit(p)

0.01 1 −4.60

0.05 5 −2.94

0.1 10 −2.20

0.5 50 0

0.9 90 2.20

0.95 95 2.94

0.99 99 4.6

FIGURE 1
Comparison of limits derived within naive EQA analysis (blue/red)
and analysis via logit-transformed values (green). The red color refers
to the limits >100%, which are not meaningful and are set to 100%.
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The simulation yields skewed distributions with mean values of
95.4% for measurand A and 4.6% for measurand B. In a naive
analysis, the limits are between 66.8% and 100% for measurand A
and 3.2% and 6.0% for measurand B (Figure 2, left). The span of the
ranges defined by these limits varies considerably. Using these limits,
all results for measurand A were considered valid, while six results
for measurand B were considered invalid.

Conversely, when logit-transformed values are used, the means are
nearly identical (see Supplementary Table S1 for details). The limits
(calculated according to Eq. 3) are 91.8%–97.5% for measurand A and
2.5%–8.2% for measurand B. Notably, these limits are not symmetric
with respect to themean, but the width of the range defined by the limits
is the same (5.7%), as shown in Figure 2 (right). Using these limits, one
value for each measurand was identified as invalid.

FIGURE 2
Comparison of EQAs (measured values and limits) based on naive analysis (left) and improved analysis (right) using simulatedmeasured results of two
measurands [A, alpha/beta T cells (% of CD3+); B, gamma/delta T cells (% of CD3+)]. Themeasured values are shown as dots and related to the naively (left:
proportions) and correctly (right: logit-scaled values) calculated limits. Green dots, passed; red stars, failed.

FIGURE 3
Variability plots for originally scaled (left) and logit-scaled (right) measured values of a precision experiment showing homogeneity of variances
(homoscedasticity) when logit-transformed values are used for analysis, whereas inhomogeneity of variances is observed when originally scaled
proportions are used. The measured values result from a simulation of a 6-sample, ×5-day, ×3-replicates’ precision experiment with given values for
repeatability and reproducibility on the logit scale (0.20, 0.12). Each circle represents one measurement; pink, mean of the replicates within 1 day;
blue, mean of the sample.
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Application for precision evaluation

In a simulated precision experiment conducted over 5 days,
6 samples were measured in triplicate.

As mentioned earlier, the simulation starts with a given level of
repeatability and between-day precision on the logit scale. The
associated standard deviations (SDs) in the simulation results
show little variation due to random error, as shown in Figure 3
(left). The standard deviations derived from the naive analysis on the
probability scale, which represents the scale on which the values
would be measured, vary (Figure 3, right). Heterogeneity of the
standard deviations is observed, ranging from 0.010 to 0.041
(Table 2, left column; see below for further explanation).

It is important to note that the pooled standard deviations
SDpooled derived from logit-transformed values require back
transformation. The back-transformed standard deviation based
on the logit transformation is now expressed as the lower and
upper bounds of the standard deviation. The calculation is
performed using the following formula:

p ± SDlogit−based � antilogit logit p( ) ± SDpooled( ). (4)
From Eq. 4, it follows that there are asymmetric “standard

uncertainty ranges” [of 1 x SD width] obtained for “above” (see
Eq. 5a) and “below” (see Eq. 5b) nominal p ranges.

SDLogit−based � antilogit logit p( ) + SDpooled( ) − p, (5a)
SDLogit−based � p − antilogit logit p( ) − SDpooled( ). (5b)

Appendix 4 provides an Excel spreadsheet that can be used for
these calculations.

Table 2 shows these details of the precision analysis, comparing
the naive analysis based on probabilities (left) with the analysis based
on logit-scaled scores. In addition, the table shows the back-
transformed results. Comparing the SDs from the naive and
logit-based analyses at the probability level, it can be seen that
the naive analysis leads to biased results.

Most important is the pooled precision across all samples, which
is highlighted in the gray cells. This pooled analysis across samples is
possible due to the homogeneity of the SDs on the logit scale (as
shown in Figure 3, left).

The results of the pooled analysis can be presented in three ways:
first, the pooled repeatability and reproducibility are expressed as
standard deviations on a logit scale. Second, the back-transformed
mean−SD and mean + SD at 50% probability are used. Since the
mean−SD and mean + SD are equidistant from 50%, the standard
deviation can be presented as a single value. This result can be used as an
overall measure of the precision of the measurement procedure. Third,
the back transformation of the mean−SD and mean + SD is performed
at each sample level; here, the lower and upper SD are presented since
the distribution of the measured values is not symmetric.

The results include 95% confidence intervals (CIs), which
indicate the uncertainty of the repeatability and reproducibility
estimates. The CIs for the pooled analysis are significantly narrower.

The back transformation of the pooled values of repeatability
and reproducibility to the logit scale, as performed above for the 50%
probability, is possible for any probability. Figure 4 illustrates this
calculation. The curves allow the precision for each probability to be
determined based on the pooled precision. In Figure 4, the results are

compared with the results of the naive analysis, highlighting the
discrepancies in the SDs and the wider CIs of the naive analysis.

Discussion

We report on the use of the logit transformation to handle
measured values given as proportions or probabilities before
applying statistical analyses.

Our results indicate that naive analyses can lead to biased results,
especially when the probabilities are close to the limits of 0 (0%) or 1
(100%). In these sub-ranges, the distributions of the values exhibit
skewness, as shown in Figure 2 (left). To address these limitations,
we suggest using the logit transformation. Analyses are then
performed on the logit-transformed probabilities or proportions.

It is important to note that logit transformation is not a novel
approach. The literature on predictive models often recommends the
use of logit values instead of probabilities (Steyerberg, 2019), such as for
model calibration (Ojeda et al., 2023). Furthermore, logit
transformation is a special case for transforming data in beta
regression, a suggested method for analyzing data observed in (0, 1)
intervals (Kischinck and McCullough, 2003; Geissinger et al., 2022).

The use of the logit transformations, among other possible
transformations (arcsin (square root), probit, and Fisher’s
transformation), is also justified by its application in the statistical
modeling of binary test results (numbers 0 and 1). One of the most
effective methods for this purpose is logistic regression. As internal
continuous outcomes, one obtains values on the logit scale, which are
then transformed into probabilities to make the results more
interpretable. In this context, the application of the logit
transformation is straightforward; it is simply the inverse of the
transformation. Calculated parameters expressed as probabilities
could just result from this or similar classification procedures, so
their relationship to logit values, the values calculated in the logistic
regression model function, is quite obvious.

It should be noted that differences based on logits can be interpreted
as odds ratios, but this is not of interest in the context of this paper,
which focuses on the internal and external validation of a measurement
method. However, when used in clinical research (e.g., clinical outcome
studies), logit transformation provides additional and familiar ways of
reporting results.

The use of logit-transformed probabilities is even mentioned in
statistical textbooks for medical research (Bland, 2015; Armitage et al.,
2015). However, we found no examples of its use in the laboratory
medicine literature. This may be because the benefits of the logit
transformation are fully realized when the entire range of
probabilities, both below and above 50%, as well as near the 0% and
100% limits, is utilized by the measurand. Single measurands typically
do not cover this range. However, the two examples in this publication
illustrate this scenario. In the case of EQA, the results of the analysis of
two corresponding measurands with readings close to 0% for the first
and close to 100% for the second become consistent when the simple
analysis is replaced by an analysis using the logit-transformedmeasured
values. Another example of measurands that cover the entire
measurement range is calculated parameters that reflect classification
results based on multiple measurands (Keller et al., 1998; Klocker et al.,
2020). Again, the advantage of the logit transformation is highlighted. In
addition to providing unbiased estimates of precision, this scale ensures
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TABLE 2 Results of precision analysis [repeatability and reproducibility expressed as the standard deviation (SD)/95% confidence intervals (CIs)] calculated by random effects ANOVA as described in CLSI EP05A3. Left:
naive analysis per sample on the probability scale; right: analysis pooled across samples on the logit scale, which is possible if homogeneity of variances across samples is given. The results of the pooled analysis are
presented on the logit scale and back-transformed to the probability scale for each sample. Since the distribution of the measured values is not symmetric, except for a probability of 0.5, the lower and upper SDs are
presented. For a probability of 0.5, only one SD is reported.

Sample Analysis based on

Probability (naïve analysis)
analysis per sample

Logit values, pooled analysis

Pooled (on the logit scale) Pooled analysis back-transformed on each sample level

Mean Repeatability
95% CI

Reproducibility
95% CI

Repeatability
95% CI

Reproducibility
95% CI

Repeatability Reproducibility

Lower SD
95% CI

Upper SD
95% CI

Lower SD
95% CI

Upper SD
95% CI

n.a 0.2042
0.1733–0.2486

0.2232
0.1956–0.2728

1 0.049 0.012
0.009–0.022

0.013
0.010–0.028

0.009
0.007–0.010

0.010
0.009–0.013

0.009
0.008–0.011

0.012
0.010–0.014

2 0.143 0.019
0.013–0.034

0.025
0.019–0.060

0.023
0.020–0.028

0.027
0.023–0.033

0.025
0.022–0.030

0.030
0.026–0.037

3 0.345 0.034
0.024–0.060

0.051
0.037–0.125

0.045
0.038–0.054

0.047
0.040–0.058

0.049
0.043–0.059

0.052
0.045–0.064

n.a 0.5 The pooled results can be back-transformed
and reported as the mean ± SD for a probability of 0.5

0.051
0.043–0.062

0.056
0.049–0.068

4 0.656 0.041
0.029–0.072

0.049
0.037–0.108

0.047
0.040–0.058

0.045
0.038–0.054

0.052
0.045–0.064

0.048
0.043–0.059

5 0.861 0.028
0.020–0.049

0.028
0.023–0.046

0.026
0.022–0.033

0.023
0.019–0.027

0.029
0.025–0.036

0.025
0.022–0.030

6 0.954 0.010
0.007–0.018

0.010
0.008–0.017

0.010
0.008–0.012

0.008
0.007–0.010

0.011
0.009–0.014

0.009
0.008–0.011
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the homogeneity of variances, i.e., the random error does not
systematically depend on the measured value. This allows the use of
parametric statistical methods such as regression, ANOVA, or even
pooling of precision across samples. The latter leads to a significant
increase in statistical power or a reduction in the sample size required
for the precision experiment.

Finally, we demonstrate the methodology on two examples from
these areas: EQA of flow cytometry data measured as proportions
and a method validation experiment (precision) on values expressed
as probabilities. Figure 4 summarizes the advantages of logit-based
precision analysis: it provides unbiased and more precise estimates
of the precision components.

It is important to note that the analysis of other method
validation experiments, such as method comparisons, can benefit
significantly from our proposed approach.

Instead of using real data, we chose to use simulated data. Although
this may be seen as a limitation of our study, it is important to note that
these simulations were directly inspired by real examples from our daily
work. In addition, we initially encountered naive analyses that had
previously been used for statistical evaluations in the EQA program.
Based on the considerations reported here, the EQA-related analyses are
currently modified. In the case of the precision data of a calculated
parameter, the precision is often found to be suboptimal and not meet
the acceptance criteria. In that case, the variances of the contributing
measurands add up due to error propagation. It is not the purpose of
this article to report on these specific problematic data sets.

Moreover, real-world data often present their own challenges. In
addition to the effect to be demonstrated, there may be other issues
such as outliers, imperfect correlations, or dilution of effects due to

simple imprecision. These complications require a discussion of all
side effects, which can sometimes overshadow the main effects.

For these reasons, we decided to use simulated data.
When data transformations are applied, a thorough discussion

of the back transformation is required. Although an unbiased
analysis with the ability to use all the tools of parametric
statistics is advantageous, it often comes at the cost of more
complex, or at least unusual, handling of the results. For
example, when standard deviations of proportions are evaluated,
the results are more complex and require additional explanation.
One option is to present the results on a logit scale, whichmay not be
practical: this would require the user to be able to conceptualize in
logits, which may not be a realistic expectation. However, when
different values expressed as proportions are evaluated in parallel, it
may be useful to compare the results directly on the logit scale.

Another option is to back-transform the results. It is important
to note that only points (e.g., mean +SD and mean − SD) can be
back-transformed, not a range such as SD. Due to the skewed
distribution of the underlying values (proportions and
probabilities), the resulting mean ± SD will also be asymmetric.
Reporting the precision for a 50% probability as an abstract but easy-
to-read overall measure is then advantageous because it is symmetric
at approximately 50%.

Finally, we strongly recommend the use of logit-transformed
data in statistical analyses of clinical laboratory and quality control
data when the measures are proportions or probabilities. This
approach enhances the interpretability and power of the results,
thereby facilitating their application in the relevant fields.
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