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Introduction: Hepatocellular carcinoma (HCC), which is closely associated with
chronicinflammation, is the most common liver cancer and primarily involves
dysregulated immune responses in the precancerous microenvironment.
Currently, most studies have been limited to HCC incidence. However, the
immunopathogenic mechanisms underlying precancerous lesions
remain unknown.

Methods: We obtained single-cell sequencing data (GSE136103) from two
nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy
samples. Using pseudo-time analysis, we systematically identified five different
T-cell differentiation states. Ten machine-learning algorithms were used in 81
combinations to integrate the frameworks and establish the best T-cell
differentiation-related prognostic signature in a multi-cohort bulk
transcriptome analysis.

Results: LDHA was considered a core gene, and the results were validated using
multiple external datasets. In addition, we validated LDHA expression using
immunohistochemistry and flow cytometry.
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Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD
cirrhosis to HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is the sixth most prevalent
form of cancer and the third most common cause of cancer-related
mortality (Sung et al., 2021). In more than 80% of cases, HCC occurs
on a background of liver cirrhosis (LC) (El-Serag, 2011), indicating
that the precancerous environment of liver cirrhosis plays a crucial
role in HCC (Affo et al., 2017).

The immune-inflammatory process is crucial for the
advancement of LC and the creation of a precancerous milieu.
During LC, the immune function is markedly compromised,
resulting in cirrhosis-associated immune dysfunction (CAID),
which is characterized by systemic inflammation and immune
deficiency. CAID plays a pivotal pathophysiological role in
chronic liver disease (Albillos et al., 2022). Patients with CAID
are more likely to develop hepatic failure or HCC. Systemic
inflammation and immunodeficiency show dynamic changes in
CAID, gradually aggravating in conjunction with the progress of
compensated cirrhosis without a clear critical point. In CAID,
excessive production of reactive oxygen species by neutrophils
induces tissue damage and fibrosis, as well as depletion of
phagocytic cells (Tranah et al., 2017). Circulating CD4+ T cells
decrease because of excessive splenic size and activation of cell death
mechanisms by bacterial translocation (Lario et al., 2013).
Continuous inflammation causes a gradual decline in the effector
function of CD8+ T cells, leading to their transition into a state of
T-cell exhaustion (Franco et al., 2020). The anti-inflammatory
cytokine IL-10 is significantly increased (Clària et al., 2016).
These represent a significant barrier to antiviral and antitumor
immune responses and create a marked state of
immunosuppression. The immune microenvironment in CAID
plays a crucial role in suppressing immune function, promoting
immune evasion, and facilitating tumorigenesis (Tsochatzis et al.,
2014). However, the mechanism of how T cells promote cirrhosis or
tumors in CAID remains complex and unclear.

Viral hepatitis, NAFLD, and alcoholic hepatitis are common
pathogenic factors associated with LC and HCC. Among these, viral
hepatitis is the main cause. However, the prevalence of viral hepatitis
infections has decreased owing to the widespread availability of
hepatitis B vaccines and the development of direct-acting antivirals
targeting the hepatitis C virus. With the increasing incidence of
obesity and diabetes attributed to pervasive lifestyle modifications,
nonalcoholic fatty liver disease (NAFLD) and related HCC have
emerged as prevalent chronic liver diseases globally, imposing a
substantial burden on global health (Golabi et al., 2021). Therefore,
it is imperative to address the urgent clinical issue of effective
prevention of tumorigenesis by identifying potential immune
biomarkers and therapeutic targets.

The emergence of single-cell sequencing methodologies coupled
with next-generation sequencing technologies has facilitated more
in-depth exploration of cellular attributes and subtypes at the

individual cell level. Single-cell RNA sequencing (scRNA-seq)
and transcriptome data were collected from publicly available
databases for subsequent analyses. By analyzing scRNA-seq data,
we identified distinct clusters of immune cells and differentiation-
related genes associated with T-cell differentiation trajectories in
NAFLD-related liver cirrhosis. To enhance prognostic prediction,
81 machine-learning algorithms were employed to construct
prognostic signatures based on T-cell differentiation-related
genes. Finally, we selected the best algorithm for calculating the
risk scores. Among these signatures, lactate dehydrogenase A
(LDHA) stood out as particularly promising and was
systematically analyzed.

LDHA functions as a pivotal enzyme in the terminal phase of
glycolysis. It is actively involved in both anerobic and aerobic
glycolysis, a process known as the Warburg effect. During aerobic
glycolysis, LDHA acts as an enzyme that aids in the
transformation of pyruvate into lactate by oxidizing
nicotinamide adenine dinucleotide dehydrogenase (NADH) to
NAD+ (Ding et al., 2017). LDHA plays an essential role in
tumorigenesis, metastasis, angiogenesis, and immune evasion
(Miao et al., 2013). LDHA also plays an important role in
T-cell differentiation. Aerobic glycolysis is a hallmark of
activated T cells. LDHA promotes T-cell activation,
proliferation, and migration (Xu et al., 2021a). LDHA
deficiency leads to the defective expansion and differentiation
of CD8+ T cells (Xu et al., 2021b). An in-depth explanation of the
potential function of LDHA in the transition from NAFLD-
cirrhosis to HCC within the immune microenvironment at the
single-cell level remains unclear.

In the present study, we compared LDHA expression levels with
clinical characteristics to validate their predictive accuracy and
efficacy. We validated the performance of LDHA using multiple
HCC datasets. Immunohistochemistry and flow cytometry were
performed to validate the efficacy of LDHA. The investigation of
LDHA in the immune microenvironment and its potential impact
on the efficacy of immunotherapeutic interventions will offer new
perspectives on the treatment of NAFLD-related LC
progressing to HCC.

2 Materials and methods

2.1 Materials

LDHA (ET1608-57) antibody was purchased from HUABIO
(Hangzhou HuaAn Biotechnology Co. Ltd., China). Rabbit anti-IgG
(H + L) secondary antibody and FITC (#3003) were purchased from
Report Biotech (Shijiazhuang, China). The CD3+ antibody was
purchased from BD Biosciences (New York, NY, United States).
General-type secondary antibody (PV-6000) and the DAB kit (ZLI-
9018) were purchased from ORIGene (Beijing, China).
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2.1.1 Clinical blood and pathological tissue samples
collection

Blood and pathological tissue samples were obtained from the Fifth
Hospital of Shijiazhuang. In total, six and 17 peripheral blood samples
were collected from healthy and HCC patients, respectively. Twenty-
two HCC tissue samples were obtained from patients at the Fifth
Hospital of Shijiazhuang between 2017 and 2022. These samples
included the tumor and adjacent paracancerous tissue. None of the
patients underwent systemic or local treatment prior to surgery.
Detailed clinical data of the 22 patients, including sex, age, stage of
liver cancer, Edmondson grade, cirrhosis grade, etiology, and viral
replication, are shown in Supplementary Table S1. Twenty-two patients
had virus-related HCC. Pathological tissue samples from two healthy
individuals and four NAFLD-cirrhosis patients were collected from
2017 to 2020. This study was approved by the Medical Ethics
Committee of the Fourth Hospital of Hebei Medical University and
the Fifth Hospital of Shijiazhuang.

2.2 Methods

2.2.1 Acquisition and processing of single-cell
transcriptome data

We obtained raw scRNA-seq data from two cirrhotic liver
samples with NAFLD and five healthy samples. Data were
acquired from the Gene Expression Omnibus (GEO) under dataset
GSE136103 (https://www.ncbi.nlm.nih.gov/gds). Quality control
procedures were conducted within the R environment (version 4.1.
2) following standard single-cell processing steps. To handle the count
matrix, we utilized the Seurat package (version 4.0.4), specifically the
Read10X function, to convert it into the “dgCMatrix” format.
Individual objects are integrated into a collective object using the
merge function, and the RenameCell function provides unique cell
labels. To enhance the integrity of our data analysis, we implemented
specific criteria to filter out cells of lower quality. We excluded genes
expressed in fewer than three cells and removed cells expressing fewer
than 200 genes. To standardize gene expression levels across cells, we
applied global-scaling normalization using the “LogNormalize”
method with a scaling factor of 10,000. For subsequent analysis,
we focused on the top 2000 genes exhibiting the greatest variability in
expression, identified using the FindVariableFeatures function. To
mitigate any undesirable variations, such as unique molecular
identifiers and mitochondrial content percentage, we utilized the
ScaleData function with the “vars.to.regress” option. To streamline
the complexity of our dataset, we performed principal component
analysis (PCA) and selected the first 30 principal components (PCs)
for further analysis. We applied the harmony method (Korsunsky
et al., 2019) to counteract any batch effects between samples. We then
visualized the cells in a lower-dimensional space using the uniform
manifold approximation and projection method, which effectively
preserved the local structure of the data. Clustering analysis was
conducted based on the connectivity between cells using a shared
nearest-neighbor graph generated through the Louvain algorithm.We
systematically adjusted the resolution parameter within the range of 0.
1–1 in the FindClusters function to identify the most suitable
clustering resolutions. Evaluation of clustering trees at various
resolutions using the clustree function led us to select a resolution
of 0.5, resulting in clear and meaningful outcomes. We utilized the

FindAllMarkers function to identify markers that were differentially
expressed across the resulting clusters, employing a default
nonparametric Wilcoxon rank-sum test with a Bonferroni
correction. Cell annotation was performed using cell surface
markers, established genes from relevant literature, and
information from the CellMarker database (http://xteam.xbio.top/
CellMarker/) (Zhang et al., 2019).

2.2.2 Pseudo-time analysis
We utilized the “monocle” package (version 2.24.1) to

conduct pseudo-time analysis as described in our methodology
(Trapnell et al., 2014). To initiate the analysis, we employed the
NewCellDataSet function to generate a new monocle object using
the transcript count data. To define the trajectory progress, we
included signature genes expressed in a minimum of 10% of the
cells within the dataset, with a significance level of p < 0.01, as
calculated using the differentialGeneTest function. Next, we
employed the reduceDimension function to reduce the dataset
to two dimensions for further analysis. The OrderCell function
was then applied to arrange the cells based on their gene
expression profiles. Following the execution of the orderCells
function, T-cell states 1, 2, 3, 4, and 5 became discernible. To
identify genes characteristic of each differentiation state, we
utilized the Seurat package’s FindAllMarkers function. A gene
was considered differentially expressed if the absolute value of the
log2 fold change (|log2FC|) exceeded 0.5 and the adjusted p-value
was less than 0.05.

2.2.3 Acquisition and pre-processing of bulk
transcriptome data

Transcriptome data were obtained from The Cancer Genome
Atlas (TCGA) website (https://portal.gdc.cancer.gov/). Fragments
per kilobase million (FPKM) were converted to transcripts per
million (TPM). The clinical data of all patients were downloaded
for further analysis.

2.2.4 Prognostic model building based on
machine-learning integration framework

In our research, we utilized ten distinct machine-learning
algorithms: random survival forest (RSF), elastic network
(Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least
squares regression for Cox (plsRcox), supervised principal
components (SuperPC), generalized boosted regression
(GBM), and survival support vector machine (survival-SVM).
These algorithms played different roles within our study
framework. One algorithm was tasked with variable screening,
while another was involved in constructing a prognostic
signature. We combined these algorithms in a total of
81 different combinations. To evaluate the performance of
each signature, we calculated Harrell’s concordance index
(C-index). The signature with the highest average C-index
value was identified as the optimal one. Following the
calculation of the T-cell differentiation-related risk score
(TDRS) for each patient using the predict function, we
determined the optimal cutoff value for the TDRS using the
surv_cutpoint function from the “survminer” package. Based on
this cutoff value, patients were categorized into high- and low-
TDRS groups.
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2.2.5 Immunohistochemical (IHC) staining
Primary and secondary antibodies were used to immunostain

sections of tissues embedded in paraffin to measure protein
expression. The liver samples were embedded in paraffin
blocks and sectioned at a thickness of 4 μm on slides. The
sections were deparaffinized in xylene, dehydrated using a
graded alcohol series, and rehydrated in deionized water.
Tissue sections were washed in PBS and incubated in 10 mM
EDTA buffer (pH 6.0) at 100°C for 15 min. The primary antibody
was incubated overnight at 4°C. Non-specific antigens were
blocked for 20 min using the catalase enzyme, followed by
incubating the secondary antibody for 30 min, and then DAB
chromogenic staining was performed. Two seasoned pathologists
examined each portion and performed immunological scoring
without being aware of clinical information. Pathologists
performed histology scoring: tissue sections were scored
according to the degree of staining (0–3 divided into negative
staining, light yellow, light brown, and dark brown) and positive
range (1–4 divided into 0–25%, 26–50%, 51–75%, and 76–100%).
The scores were added at the end of the experiment, and the
results were compared.

2.2.6 Flow cytometry
A 100-µL aliquot of peripheral blood was added to 2 µL of

PE-CD3+, 1 µL of LDHA, and 1 µL of secondary antibody-FITC.
The mixture was then incubated for 15 min at 20°C away from
light. Next, 1 mL of red blood cell lysis solution was added, and

the mixture was further incubated for 15 min. After
centrifugation at 1,000 rpm for 5 min at 4°C, the top fluid
was discarded, and cells at the bottom of the tubes remained.
After washing with PBS, the cells at the bottom of the tubes were
harvested for flow cytometry.

2.2.7 Statistical analysis
All statistical analyses were performed using SPSS (version

23.0.1; SPSS Inc., Chicago, IL, United States) or R (version 4.1.2).
A significance level of p < 0.05 was deemed statistically significant.
Flow cytometry analysis was conducted using a BD FACS Aria and
interpreted using FlowJo software version 10.

3 Results

3.1 Single-cell sequencing analysis reveals
different T-cell differentiation states in
patients with liver cirrhosis

The workflow of this study is illustrated in Figure 1. Healthy (n =
5) and liver cirrhosis samples (n = 2) were obtained from the
GSE136103 dataset. After quality control, we obtained
7,199 single cells from two liver cirrhosis samples and
21,788 single cells from five healthy samples, which were
clustered and labeled based on common cell surface marker
genes and commonly referenced marker genes (Figure 2A). The

FIGURE 1
The workflow of this study.

Frontiers in Molecular Biosciences frontiersin.org04

Wang et al. 10.3389/fmolb.2024.1301099

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1301099


results revealed that non-parenchymal cells were classified into
10 clusters: B cells, dendritic cells (DC), endothelial cells,
fibroblast cells, macrophage cells, mast cells, monocytes, natural
killer (NK) cells, plasmacytoid dendritic cells (pDC), plasma cells,
and T cells (Figure 2B). Because T cells constitute the largest cell
subpopulation (Figure 2C), they were selected for further analysis in
the subsequent study. Pseudo-time and trajectory analysis were
employed to classify T cells into five subsets based on distinct
differentiation states (Figure 2D). In Figure 2E, the colors

represent the degree of differentiation, with darker colors
indicating earlier stages of differentiation. The lower position of
the T-cell subset in Figure 2F indicates an earlier degree of T-cell
differentiation. We conclude that T cells undergo differentiation
from state 1 to states 2, 4, and 5, as well as to state 3. Among these
T cells, 29.08% were observed in state 1, 1.57% in state 2, 27.75% in
state 3, 8.59% in state 4, and 33% in state 5 (Figure 2G). T cells from
healthy individuals were mainly present in state 1, whereas T cells
from NAFLD patients were mainly transformed to states 3 and 5

FIGURE 2
Identification of cells associated with NAFLD-cirrhosis phenotypes. (A) Expression of marker genes used in the cell annotation process. (B) The
landscape of single-cell annotation. (C) Percentage of each cell type in the NAFLD-cirrhosis and healthy groups. (D) T cells were grouped into five subsets
according to different differentiation states. (E) T cell differentiation trajectories. Darker colors indicatemore bias toward the early stage of differentiation;
lighter colors indicate more backward differentiation time sequences. (F) T cell differentiation trajectories. Lower positions indicate earlier
differentiation degrees; higher positions mean later differentiation. (G) Percentage of each T cell differentiation state. (H) Identification of T cell
differentiation states associated with cirrhosis phenotypes. (I) Percentage of T-cell differentiation states in different cohorts. (J) The top and the last five
marked genes of each T-cell differentiation state. (K) Effector pathway activity in each of T-cell differentiation states.
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(Figure 2H). NAFLD patients exhibited a notable increase in T cells
at stage 5 compared to healthy individuals, suggesting disease
progression (Figure 2I). Subsequently, functional analysis was
conducted to assess the impact of the five subsets of T cells. We

identified the top five upregulated and downregulated genes within
the different subsets (Figure 2J). Upregulation of IL7R, LDHB,
GPR183, ANXA1, and TPT1 was observed in T cells in state 5.
These upregulated genes play crucial roles in modulating diverse

FIGURE 3
Machine-learning integration and the accuracy and validity of the prognostic model. (A) Univariate Cox regression identified 50 prognosis-related
genes. (B) Eighty-one machine-learning integrated prognostic models and their C-index values were used to determine the CoxBoost + SuperPC
signature with 18 genes as the best signature. (C) 1-year, 3-year, and 5-year ROC analysis in TCGA-LIHC. (D)OS analysis in TCGA-LIHC: poorer prognosis
for high-risk patients than low-risk patients. (E) 1-year, 3-year, and 5-year ROC analysis in GSE54236. (F)OS analysis in GSE54236. (G) 1-year, 3-year,
and 5-year ROC analysis in GSE14520. (H) OS analysis in GSE14520. (I, J) Meta-analysis of the ROC and OS on three combined datasets.

Frontiers in Molecular Biosciences frontiersin.org06

Wang et al. 10.3389/fmolb.2024.1301099

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1301099


immunological responses, enhancing cell survival, and
suppressing apoptosis. This is primarily achieved by activating
the Janus kinase (JAK), transcription activator 5 (STAT5), and
phosphatidylinositol 3-kinase (PI3K) signaling pathways (Zha
et al., 2011; Daugvilaite et al., 2014; Mishra and Banerjee, 2019;
Wang et al., 2022; Zhang et al., 2023). However, the top five
downregulated genes in state 5 predominantly include members
of the C-C motif chemokine ligand family (CCL3, CCL4L2, and
CCL4), which augment tumor immunity by attracting
lymphocytes and macrophages (Mukaida et al., 2020). A
reduction in the expression of these chemokines impedes
monocyte recruitment and facilitates immunosuppression.

Interestingly, the study found that the downregulated genes
LDHB and TPT1 in T cells in state 1 were upregulated in state 5,
suggesting that state 1 may have contrasting effects on pathways
compared to state 5. Therefore, Gene Set Enrichment Analysis
(GSEA) was used to perform functional analysis of different
T-cell states based on differential gene expression. (Figure 2K).
Red denotes activated pathways, whereas blue signifies inhibited
pathways. Several pathways that were suppressed in state 1 were
activated in states 3 and 5. In contrast to state 1, T cells in states 3 and
5 exhibited enhanced functionality in proinflammatory signaling
pathways, such as the interferon-alpha response, TGF-BETA
signaling, IL2-STAT5 signaling, inflammatory response, TNF
signaling, and IL6-JAK-STAT3 signaling. In addition, some
pathways such as interferon-gamma, allograft rejection,
complement, myc-targets-v1, hypoxia, glycolysis, acid
metabolism, oxidative phosphorylation, p53 pathway, and
angiogenesis pathway were altered from states 1 to 3 and 5. The
sequential progression of these pathways from repression to
activation plays a vital role in disease development, suggesting
that activation of these pathways promotes disease occurrence.

3.2 A prognostic signature linked to T-cell
differentiation in NAFLD cirrhosis patients

To evaluate the variances among T-cell subsets, we compared
differentially expressed genes across groups. Differential gene
expression analysis was conducted to identify genes that were
uniquely expressed in specific T-cell subsets compared to other
subsets. This analysis was based on the criteria of |log2FC| > 0.5 and
adjusted p-value < 0.05. We identified 262 differentially expressed
T-cell differentiation-related genes (Supplementary Table S2).
Prognostic information and transcriptomic data of patients with
HCC from The Cancer Genome Atlas (TCGA) were analyzed.
Through univariate Cox regression analysis, we identified
50 prognosis-related genes, comprising seven protective genes
(HR < 1) and 43 risk genes (HR > 1) (Figure 3A).

Machine-learning integration was performed for these 50 genes.
To build a more accurate prognostic risk model and evaluate the
performance of the machine-learning models, we employed ten
machine-learning algorithms: random survival forest (RSF), elastic
net (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least
squares regression for Cox (plsRcox), supervised principal
components (SuperPC), generalized boosted regression (GBM),
and survival support vector machine (survival-SVM). These
algorithms were applied to TCGA-LIHC datasets and two

external validation sets (GSE 14520 and GSE 54236). When one
algorithm was used to screen the variables, another was employed to
construct a prognostic risk model. Harrell’s concordance index
(C-index) was calculated for all validation datasets, and the
signature with the highest average C-index was considered
optimal. A total of 81 model combinations were successfully
fitted for the analysis. The CoxBoost + SuperPC signature,
comprising 18 genes (Supplementary Table S3), demonstrated the
highest mean C-index value of 0.724, suggesting a superior
prognostic predictive performance (Figure 3B).

Utilizing the CoxBoost + SuperPC combination, a risk score was
computed for each case, denoted as the TDRS. We then analyzed the
risk scores in the TCGA-LIHC, GSE54236, and GSE14520 datasets
to evaluate the effectiveness of the prognostic models. Patients were
categorized into high-risk and low-risk cohorts according to their
individual risk scores utilizing the “srvminer” package for the
identification of the most suitable threshold value. In TCGA-
LIHC, the receiver operating characteristic (ROC) curve analysis
of overall survival (OS) showed area under the curve (AUC) values
of 0.76, 0.614, and 0.67 at 1 year, 3 years, and 5 years, respectively
(Figure 3C). Two additional datasets (GSE54236 and GSE14520)
were used to validate the prognostic impact. In addition, the AUC
values for risk scores were 0.801, 0.652, 0.634 and 0.789, 0.741, and
0.687 at 1 year, 3 years, and 5 years in both the GSE54236 and
GSE14520 datasets. (Figures 3E, G). Kaplan–Meier (K–M) analysis
showed that high-risk patients in the TCGA-LIHC cohort had
significantly poorer OS than low-risk patients (Figure 3D).
Similarly, high-risk patients in the GSE54236 and
GSE14520 datasets showed worse OS than low-risk patients,
demonstrating the effectiveness and accuracy of our prognostic
model (Figures 3F, H). When we combined the three datasets,
we reached the same conclusion: AUC values of 0.71, 0.655, and
0.661 were obtained at 1 year, 3 years, and 5 years, respectively
(Figure 3I), and high-risk patients exhibited a lower OS rate than
low-risk patients, as illustrated in Figure 3J. The findings indicated
that the TDRS consistently exhibited high performance levels across
various groups.

3.3 Characterization of high- and low-risk
groups and screening of hub gene by
integrating the single-cell and bulk-
seq datasets

Subsequently, we examined the expression of 18 genes in both
the high- and low-risk groups. Among the 18 T-cell differentiation-
related genes analyzed, 14 genes, namely, ENO1, PGK1, FTL,
C1orf56, ANP 32 B, ANXA5, PPP1CB, KLRB1, PIP4K2A, CST3,
IL7R, CLIC1, CMPK1, NACA, and LDHA, exhibited significantly
elevated expression levels in the high-risk group, as illustrated in
Figure 4A. Next, the expression levels of 40 immune checkpoints,
such as CTLA4, CD276, and CD274, were notably elevated in the
high-risk group compared to those in the low-risk
group. Divergence in the expression of immune-blocking sites
between the high- and low-risk groups indicated a close
association with immune activity. This suggests that individuals
in the high-risk groups might be sensitive to
immunotherapy (Figure 4B).
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Enrichment analysis was conducted on differentially expressed
genes between high- and low-risk patients. The biological process
analysis identified gene ontology (GO) terms related to “nucleotide
phosphorylation” and the “glycolytic process.” Furthermore, the
GO items “autophagosome” and “blood microparticle” exhibited

the highest level of enrichment in terms of cellular components.
The predominant GO term related to molecular function (MF) was
cadherin-binding activity, as illustrated in Figure 4C. Enrichment
analysis based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Figure 4D) revealed significant enrichment of pathways,

FIGURE 4
Characterization of high- and low-risk patients and examination of 18 genes. (A) Significantly differentially expressed profiles of the 14 signature
genes in low- and high-risk groups. Low-risk patients are shown in blue, and high-risk patients are shown in red. (B) Analysis of correlations between low-
and high-risk groups and immune checkpoints. (C) GO enrichment analysis. (D) KEGG enrichment analysis. (E) Expression of 18 genes in five different
T cell states of single-cell data. (F) Expression of 18 genes in different cohorts. (G) Univariate Cox regression identifying 18 prognosis-related genes.
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including the HIF-1 signaling pathway, glycolysis/
gluconeogenesis, the central carbon metabolism in cancer,
biosynthesis of amino acids, the phosphatidylinositol signaling
system, and inflammatory mediator regulation of TRP channels.
Collectively, these findings indicate a strong correlation between

these genes and phosphorylation, autophagy, and energy
metabolism.

To investigate the roles of the genes in the five unique T-cell
states using scRNA-seq, we analyzed the expression profiles of
these genes in various T-cell subsets. Figure 4E shows a bubble

FIGURE 5
Analysis of the diagnostic and prognostic value of LDHA. (A) Univariate Cox regression analysis of LDHA in TCGA_LIHC, GSE144269, LCGC_LIRI,
GSE27150, GSE54236, GSE1014, and GSE76427. (B) A K–M curve was used to display the 5-year OS rate of LDHA in different datasets. DFS of LDHA in
TCGA_LIHC. DSS of LDHA in TCGA_LIHC. PFS of LDHA in TCGA_LIHC. RFS of LDHA in GSE76427. (C) LDHA expression level among different tumor
stages in ICGC_LIRI and TCGA_LIHC data. (D) Activated pathway of LDHA using GSEA analysis.
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plot illustrating the expression of these genes in each T-cell state.
LDHA, ANP32B, NACA, and IL7R were predominantly
expressed in T cells in state 5. We assessed the expression of
these genes in both healthy individuals and patients with
cirrhosis. ENO1, LDHA, ANP32B, CLIC1, and IL7R were
highly expressed in patients with NAFLD cirrhosis
(Figure 4F). The preceding analysis indicated a close
association between T-cell status and the progression of
cirrhosis. This suggests that LDHA and IL7R may play crucial
roles in the progression of NAFLD cirrhosis. Furthermore,
through univariate Cox regression analysis of the 18 genes,
LDHA emerged as the most significant risk gene, whereas
IL7R exhibited a protective effect (Figure 4G). Additionally,
LDHA is highly expressed in T-cell state 5. The findings of
this study indicate that LDHA plays a role in the progression
of NAFLD-related cirrhosis to HCC and is linked to an
unfavorable prognosis in patients with HCC.

3.4 LDHA showed a stable prognostic value

Univariate Cox regression analysis was performed to validate
LDHA as a causal gene in HCC. We analyzed the ICGC_LIRI,
GSE76427, GSE27150, GSE144269, GSE54236, and
GSE1014 datasets. Among these databases, ICGC_LIRI,
GSE76427, GSE27150, GSE144269, and GSE1014 were all from
Asian Yellow populations, and GSE54236 was from a European
Caucasian population. LDHA was found to be a pathogenic factor
influencing OS in patients with HCC (Figure 5A). In addition,
LDHA acted as a hazard factor and significantly influenced
progression-free survival (PFS), disease-free survival (DFS), and
disease-specific survival (DSS) in patients with TCGA_LIHC.
Similarly, LDHA was correlated with recurrence-free survival
(RFS) in patients with hepatocellular carcinoma (HCC) in the
GSE76427 database (Figure 5A).

Furthermore, the association between LDHA and survival
was evaluated by performing a K–M survival curve analysis in
these databases. OS was significantly longer for patients in the
low LDHA expression group than for patients in the high LDHA
expression group in TCGA_LIHC, GSE144269, ICGC_LIRI,
GSE27150, GSE54236, GSE10141, and GSE76427 (Figure 5B).
The same result was shown that the high LDHA expression had a
worse PFS, DFS, and DSS in TCGA_LIHC patients and a worse
RFS in the GSE76427 database (Figure 5B). In general, LDHA has
shown consistent prognostic value for HCC, and LDHA
overexpression may be associated with disease progression in
patients with HCC.

Based on data from two distinct databases (ICGC_LIRI and
TCGA_LIHC), a comparative analysis of LDHA mRNA expression
levels in liver cancer tissues across various stages was conducted.
Tukey’s honestly significant difference (HSD) method was used for
post hoc testing. In the ICGC-LIRI data, there were significant
differences between stage IV and stages I and II. In the TCGA
data, there were significant differences between stages III and I.
The results are presented in Supplementary Table S4. The findings
revealed a significant correlation between LDHA expression and
tumor stage, indicating that elevated LDHA expression levels are
indicative of more advanced tumor stages (Figure 5C).

Given the important role of LDHA in immunity and the
interesting results we obtained, we performed an enriched gene
set pathway analysis of the role of LDHA dysregulation. Using GSEA
(www.broad.mit.edu/gsea/), the top 18 different activated pathways
(Figure 5D) in which the p-values were less than 0.01 were revealed
corresponding to the LDHA mainly involved in Myc targets,
oxidative phosphorylation, mTORC1 signaling, unfolded protein
response, protein secretion, E2f targets, G2m checkpoint, glycolysis,
adipogenesis, TNF-a signaling via NF-kb, DNA repair, mitotic
spindle, hypoxia, apoptosis, androgen response, UV response up,
and fatty acid metabolism signaling. GSEA analysis demonstrated
that several inflammation-related, energy metabolism-related, and
cancer-associated pathways were hyperactivated under high LDHA
expression. These findings indicate a potential mechanism whereby
the upregulation of LDHA contributes to metabolic disorders and
proinflammatory responses, consequently affecting the prognostic
outcomes of individuals with NAFLD that progresses to HCC.

3.5 Validation of LDHA in clinical samples

To confirm the reliability of our results, we performed
immunohistochemical (IHC) staining of healthy, NAFLD-
cirrhotic, and HCC pathological tissue sections.
Immunohistochemical scores based on the staining intensity and
range were assessed by two qualified pathologists. LDHA expression
was significantly higher in cancer tissues than in the corresponding
adjacent tissues, as observed by IHC (p < 0.0001) (Figure 6A).
Similarly, LDHA in NAFLD-cirrhosis samples was also markedly
overexpressed compared to that in the healthy groups (p = 0.045)
(Figure 6A). Flow cytometry was used to analyze LDHA expression
in CD3+ cells in the peripheral blood of healthy individuals and
patients with HCC. The gating strategies for the CD3+LDHA
subsets are shown in Figure 6B. Compared with the peripheral
blood of healthy individuals, the expression of CD3+ cells in LDHA
was notably upregulated in the peripheral blood of patients with
HCC (p = 0.044). These results were consistent with those of scRNA-
seq and bulk-seq, indicating the accuracy and validity of our
bioinformatics analysis and the significance of LDHA in NAFLD
cirrhosis and HCC.

4 Discussion

HCC represents the most prevalent liver malignant neoplasm
worldwide. On the one hand, due to changes in people’s diets and
lifestyles, the incidence of NAFLD and NAFLD-related HCC has
markedly increased (Younossi et al., 2016). Emerging tumor
immunotherapy methods have recently greatly changed the
treatment prospects of HCC, but the efficacy in HCC patients varies
greatly; there are still many patients who fail to benefit from
immunotherapy (Duffy et al., 2017; Xie et al., 2019). In contrast to
most other malignancies, which are prototypical inflammation-related
cancers, more than 80% of HCC cases are associated with cirrhosis (El-
Serag, 2011; Shlomai et al., 2014;Walker et al., 2016). Immune evasion is
one of the features that occurs during the initiation and evolution of
HCC. The precancerous microenvironment (PME) plays an essential
role in liver cirrhosis (Affo et al., 2017).

Frontiers in Molecular Biosciences frontiersin.org10

Wang et al. 10.3389/fmolb.2024.1301099

http://www.broad.mit.edu/gsea/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1301099


The liver is an immune-tolerant organ and is characterized by a
highly immunosuppressive microenvironment. This restricts
hepatic inflammatory responses, thereby mitigating autoimmune
damage that may arise from persistent immune activation and
exposure to antigens (Fu et al., 2019). Concurrently, this
protective mechanism facilitates immune tolerance toward
tumor-associated antigens and HCC (Makarova-Rusher et al.,
2015). Enhanced immune suppression occurs because of
continuous inflammatory cytokine production and recruitment of
immune cells during the progression of liver disease. During LC, the
immune functions of the liver are significantly compromised

(Tsochatzis et al., 2014), and persistent inflammation and
damage exacerbate cirrhosis and even lead to tumorigenesis
(Albillos et al., 2022). A tolerant liver immunological network is
amplified in HCC.

Single-cell sequencing techniques coupled with next-
generation sequencing have been used to further define the
pathogenesis of PME in cirrhosis. We categorized immune
cells into healthy and NAFLD cirrhosis groups and observed a
significant association between the cirrhosis group and T cells.
T cells represent a predominant subset of lymphocytes within the
immune system and are essential for orchestrating the adaptive

FIGURE 6
LDHAwas used to verify by IHC and flow cytometry analysis. (A) Left panel, representative images of LDHA immunohistochemical staining of healthy
vs. NAFLD cirrhosis and para-cancer vs. HCC cells. Right panel: immunohistochemistry scores. (B) Flow cytometry analysis was used to analyze the
expression of LDHA in the healthy vs. the HCC group. Student’s t-test was used to analyze data. *p < 0.05; ****p < 0.0001.
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immune response. CD4+ T cells have been implicated in the
pathogenesis of NAFLD through the secretion of
proinflammatory cytokines (Her et al., 2020). Th17 cells, a
subset of CD4+ T cells, have been shown to exacerbate liver
inflammation and fibrosis by secreting IL-17 cytokines (Meng
et al., 2012). Regulatory T cells (Tregs) represent a subset of
helper T cells distinguished by the expression of
CD4+CD25 highFoxp3+. Tregs inhibit the activation of various
immune cell types and trigger metabolic dysregulation associated
with obesity (Sakaguchi et al., 2008). CD8+ T cells undergo
dynamic changes during the progression of nonalcoholic fatty
liver disease to hepatocellular carcinoma. An elevation in
activated cytotoxic CD8+ T cells was observed in the early
stages of NAFLD (Ghazarian et al., 2017; Grohmann et al.,
2018). However, as cirrhosis and HCC advance, there is a
notable decrease in the infiltration of CD8+ T cells along with
a reduction in bioactive granule molecules, and CD8+ T cells
change from effector T cells to depleted T cells (Fu et al., 2007).

Using differentiation trajectory and pseudo-time analysis, we
were able to comprehend the role of these T cells in relation to
PME. T cells were divided into five states, of which state 5 was the
most relevant for disease. The differentially expressed genes in
state 5 were enriched in proinflammatory signaling, energy
metabolism signaling, hypoxia, and oxidative signaling. These
activated signaling pathways form an inflammatory environment
and promote disease progression. Next, by screening prognostic
models with multiple machine-learning methods and combining
the data from single cells, we obtained a crucial gene, LDHA,
which is crucial for altered T-cell status in cirrhosis and HCC.

As a crucial enzyme in glycolysis, LDHA contributes to the
production of lactic acid and NAD, which are associated with
various immunological processes (Yan et al., 2023). In cancer
cells, the Warburg effect promotes tumorigenesis and immune
evasion even more (Hsu and Sabatini, 2008). Lactate produced
by LDHA contributes to tumor progression, angiogenesis, and
immunosuppression and is believed to be a vital regulator of
tumor development, maintenance, and metastasis (Chen et al.,
2023). Glycolysis plays an important role in T-cell development,
proliferation, and function (Xu et al., 2021b). Glycolysis significantly
influences the growth, proliferation, and functionality of T cells
(Peng et al., 2016). T cells change their response to antigenic stimuli
when an organism is diseased. Naive T cells rely on oxidative
phosphorylation, whereas effector T cells rely on glycolysis
(Rathmell et al., 2000). This is typically followed by the
modification of LDHA and a change in energy metabolism. In
hypoxic environments, lactate is preferentially converted from
pyruvate by LDHA, which helps T cells quickly satisfy their
energy needs for activation and proliferation (Lunt and Vander
Heiden, 2011; Urbańska and Orzechowski, 2019). Additionally,
LDHA enhances the expression of effector T-cell factors (Xu
et al., 2021b), which mediate immune metabolic reprogramming
and alter T-cell function not only through the glycolysis pathway but
also by producing 2-hydroxyglutarate (2HG) (Peng et al., 2016;
Ansa-Addo et al., 2017; Xu et al., 2021a; Notarangelo et al., 2022). In
NAFLD, activated T cells have been shown to be closely related to
the progression of liver cirrhosis (Zhou et al., 2022), suggesting that
the activation of T cells by LDHA may be part of the reason for the
progression of liver cirrhosis.

In our analysis, the transition of some pathways, including
glycolysis, myc, hypoxia, glycolysis, acid metabolism, and
oxidative phosphorylation from repression to activation,
coincided with the process of NAFLD cirrhosis, indicating the
importance of these pathways in the disease course. Enrichment
analysis of LDHA revealed the abovementioned pathways. These
results demonstrate that LDHA is involved in the pathogenesis of
cirrhosis and liver cancer in both mechanistic and functional
studies. We hope to further analyze the mechanism by which
LDHA in T cells regulates the progression of cirrhosis and the
occurrence of liver cancer.

Finally, to illustrate the prognostic utility of LDHA in PME
and HCC, we conducted a thorough bioinformatics analysis based
on single-cell data from many external bulk RNA sequencing
datasets. The clinical samples provided good support for these
results. Our research offers a useful strategy for predicting liver
cirrhosis and HCC progression and treatment. However, the
results of our study were not perfect. To further demonstrate
the stability of the model, a larger cohort is required to confirm
the established TDRS. Combining the TDRS with more
comprehensive clinical characteristics could further enhance its
prognostic prediction capabilities. Additional fundamental
research is required to validate the regulatory role of LDHA in
the development of cirrhosis in patients with HCC.
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