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Introduction: Aortic dissection (AD) is often fatal, and its pathogenesis involves
immune infiltration and pyroptosis, though the molecular pathways connecting
these processes remain unclear. This study aimed to investigate the role of immune
infiltration and pyroptosis in AD pathogenesis using bioinformatics analysis.

Methods: Two Gene Expression Omnibus datasets and a Gene Cards dataset of
pyroptosis-related genes (PRGs) were utilized. Immunological infiltration was
assessed using CIBERSORT, and AD diagnostic markers were identified through
univariate logistic regression and least absolute shrinkage and selection operator
regression. Interaction networks were constructed using STRING, and weighted
gene correlation network analysis (WGCNA) was employed to identify important
modules and essential genes. Single-sample gene set enrichment analysis
determined immune infiltration, and Pearson correlation analysis assessed the
association of key genes with infiltrating immune cells.

Results: Thirty-one PRGs associated with inflammatory response, vascular
epidermal growth factor receptor, and Rap1 signaling pathways were
identified. WGCNA revealed seven important genes within a critical module.
CIBERSORT detected immune cell infiltration, indicating significant changes in
immune cell infiltration and pyroptosis genes in AD and their connections.

Discussion:Our findings suggest that key PRGs may serve as indicators for AD or
high-risk individuals. Understanding the role of pyroptosis and immune cell
infiltration in AD pathogenesis may lead to the development of novel
molecular-targeted therapies for AD.

Conclusion: This study provides insights into themolecular mechanisms underlying
AD pathogenesis, highlighting the importance of immune infiltration and pyroptosis.
Identification of diagnostic markers and potential therapeutic targets may improve
the management of AD and reduce associated morbidity and mortality.
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1 Introduction

Aortic dissection (AD) is a fatal condition for which there is currently no reliable drug
treatment (Yang et al., 2020). Various risk factors for AD have been identified, including
hypertension, atherosclerosis, and hypercholesterolemia (Hibino et al., 2022). In addition,
smoking, drug abuse (especially cocaine), pregnancy, history of cardiac surgery, history of
AD, aortic constriction, aortic aneurysm, and aortic mitral valve are other factors known to
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predispose an individual to AD (Parve et al., 2017). Typical AD is
characterized by an endoluminal flap that divides the actual lumen
from the fake lumen (Bossone et al., 2018). The Stanford approach
distinguishes between two types of AD, types A and B, based on the
location and degree of the trapping. Type A entrapment involves the
ascending aorta (and may spread to the descending aorta), whereas
type B entrapment exclusively affects the descending aorta. This
classification is essential to determine the appropriate treatment
strategy (Clouse et al., 2004). In the United States and Europe, the
prevalence of AD ranges between 3.5 and 7.2 per 100,000 persons
(Smedberg et al., 2020). The incidence of AD has shown a
continuous increase in recent years, with a 50% and 30%
increase in the annual incidence of AD reported for men and
women, respectively (Olsson et al., 2006). Although the in-
hospital mortality rate for AD has decreased significantly from
31% to 22% and the overall 5-year survival rate increased from
5% to 32%, the median survival of patients with AD is still only
3 days (Clouse et al., 2004; Bossone and Eagle, 2021). The high
mortality rate of AD cannot be disregarded; thus, further research
into the underlying factors affecting the condition will assist in our
comprehension of its pathogenic processes, guiding clinical
diagnosis and treatment and improving clinical prognosis.

Immune infiltration, as a key immune system response, is crucial in
both the formation and remodeling phases of AD. Immune infiltration
has been observed within the arterial wall of AD, and leukocyte cell
adhesion, monocyte migration, and myeloid leukocyte migration are
significantly increased in AD (Li et al., 2022). Themonocyte-macrophage
system plays a critical role in the immunological inflammatory response
during the development ofAD (Gao et al., 2021).Neutrophil infiltration is
currently considered to predominate in the acute phase of the disease
(Yoshida et al., 2019), whereas macrophages appear after 1 day and peak
at 2–7 days (Xu and Burke, 2013). In an immune-high group of patients
with AD, the percentages of infiltrating CD8+ T cells and M1-type
macrophages were found to be considerably higher than those in the
immune-low group (Li et al., 2022). Substantial lymphoplasmacytic
infiltration has also been reported in AD (Uchida et al., 2018).
Activated T cells and macrophages may enhance smooth muscle cell
elimination (He et al., 2006), increased vascular inflammation (Lian et al.,
2019), increased elasticfiber and extracellularmatrix degradation (Gomez
et al., 2016), and vascular smooth muscle cell death (Wu et al., 2022).
These processes eventually lead to aortic dilatation and rupture. In
contrast, immunological responses modulate AD arterial wall
remodeling, which involves complicated interactions between cells and
immune inflammatory factors. As a result, we suspect that immune
infiltration contributes significantly to the onset of AD through
controlling inflammation as well as the deterioration and remodeling
of the artery walls.

Recent evidence has also pointed to a role of pyroptosis, a form of
inflammatory cell death, in the development of AD (Zhang X. et al.,
2020). AD occurs when inflammatory vesicles are activated in response
to a stimulatory danger signal (Duan et al., 2020), leading to the release of
pro-inflammatory factors to ultimately induce pyroptosis (Sun et al.,
2021). Therefore, inhibition of the pyroptosis pathway offers a possible
strategy to rescue AD (Duan et al., 2020). Pyroptosis is common in
immune cells such macrophages, monocytes, and dendritic cells
(Taabazuing et al., 2017). Pyroptotic cells are considered to be more
inflammatory and immunogenic than apoptotic cells (Tsuchiya et al.,
2019) because they release cellular contents such as inflammatory

cytokines and damage-associated molecular patterns (Ruan et al.,
2018). However, there is a lack of research on the potential
correlations between pyroptosis and immune infiltration in AD.

To explore these associations, in this study, we used
bioinformatics to analyze the Gene Expression Omnibus (GEO)
database of genes associated with AD. We combined these datasets
with a pyroptosis-related genes (PRGs) dataset to determine the
probable functional processes and essential genes of pyroptosis.
The link between PRG hub genes and invading immune cells was
further investigated to elucidate the roles of pyroptosis and
immunological processes during AD progression. A flow chart of
the overall analysis process is provided in Figure 1.

2 Materials and methods

2.1 Data acquisition and pre-processing

The GSE1534343 (AD = 10, control = 10) and GSE107844
(AD = 3, control = 3) gene expression profile datasets were obtained
from the GEO database (Barrett et al., 2007) using the R program
GEOquery (Davis and Meltzer, 2007). The species source of both
datasets is human (Homo sapiens); the GSE153434 dataset was
compiled from the HiSeq X Ten microarray sequencing platform
(platform number GPL20795), and the tissue source is the ascending
aorta, whereas the dataset GSE107844 was derived from the Illumina
chip platform (platform number GPL20301), and the tissue source is
the thoracic aorta. Details of the two datasets are provided in Table 1.
For each dataset, platform annotation information was downloaded
to convert probe names to gene names, and multiple expression
results for specific genes were replaced with the mean of the
expression values. The data were normalized using the
normalizeBetweenArrays function (Further details about this
function can be found at: https://web.mit.edu/~r/current/arch/
i386_linux26/lib/R/library/limma/html/05Normalization.html) in
the limma package and merged with batch correction using the
Combat function with the R package sva23 (More information about
the Combat function can be found at: https://rdrr.io/bioc/sva/man/
ComBat.html). After pre-processing and merging, the two datasets
showed a similar distribution of gene expression values (Figures 2A,
B), and the batch effects of the two datasets were corrected (Figures
2C, D). Finally, the GSE153434 and GSE107844 datasets were
merged and used as the combined dataset for further analysis.

2.2 Differential gene expression analysis and
acquisition of PRGs

The GeneCards database (http://www.genecards.org/) (Safran et al.,
2010) incorporates gene-centric data from approximately 150 online
sources, including genomic, transcriptional, protein biology, genetic,
clinical, and functional data. By searching for “pyroptosis” in the
GeneCards database, we obtained a total of 436 PRGs for subsequent
analysis. Based on the grouping information in the combined dataset, we
used the R package limma to obtain genes with differential expression
between AD and controls according to log fold change (FC) > 1
(upregulated expression) or < −1 (downregulated expression) and
adjusted p-value < 0.05.
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2.3 Functional enrichment of PRGs

Gene Ontology (GO) enrichment (The gene ontology, 2019) is
commonly used for large-scale functional enrichment studies of genes
at various dimensions and levels, including biological process,
molecular function, and cellular component (Ashburner et al., 2000).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
popular database containing data related to genomes, biological
processes, diseases, and medications (Kanehisa and Goto, 2000).
The R package “clusterprofiler” (Yu et al., 2012; Wu et al., 2021)
was used to perform GO functional annotation, pathway, and
disease enrichment analyses, and the “pathview” package was used
to display the KEGG pathways with significant alterations in AD
(Luo and Brouwer, 2013). GO terms and pathways with p < 0.05 were
deemed to be significantly enriched.

2.4 Immune cell analysis

CIBERSORT (Newman et al., 2019) is a web-based tool on the R
platform for deconvolution of an expression matrix of human
immune cell subtypes based on the principle of linear support
vector regression. According to a gene expression signature
collection comprising 22 known immune cell subtypes,
CIBERSORT can identify the infiltration status of immune cells
in sequenced samples. The CIBERSORT program was used in this
study to evaluate the status of infiltrating immune cells in the
combined data set, and Spearman correlation analysis was
employed to calculate the interrelationships between different
immune cells.

FIGURE 1
Analysis flow chart. AD, aortic dissection; PRDEGs, pyroptosis-related differentially expressed genes; WGCNA, weighted gene correlation network
analysis; PPI, protein-protein interaction network; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DO, Disease Ontology; ROC, receiver operating characteristic; ssGSEA, single-sample
gene set enrichment analysis.

TABLE 1 Dataset information.

GSE153434 GSE107844

Platform GPL20795 GPL20301

Species Homo sapiens Homo sapiens

Tissue ascending aorta thoracic aorta

Samples in AD
group

10 3

Samples in
Normal group

10 43

Reference Exaggerated Autophagy in Stanford Type A
Aortic Dissection: A Transcriptome Pilot
Analysis of Human Ascending Aortic

Tissues

—

AD, aortae dissectione.
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2.5 Gene set enrichment analysis (GSEA)

GSEA is a computational enrichment method developed at the
Broad Institute (Subramanian et al., 2005) with corresponding analysis
software and a gene set database (MSigDB), which is widely used to
determine whether a set of predefined genes differs significantly between
two biological states and to estimate changes in pathway and biological
process activity in samples of expression data sets. The reference gene set
“c2.all.v2022.1.Hs.symbols.gmt” was downloaded from the MSigDB
database (Liberzon et al., 2015) based on the gene expression profile
dataset, whichwas then enriched and visualized using theGSEAmethod
included in the R package “clusterProfiler” to investigate the differences
in biological processes between the AD and control samples. The
following settings were used in this GSEA: seed number = 2022,

calculations = 1000, at least 10 genes contained in each gene set, and
a maximum number of genes featured of 500. The p-value was adjusted
using Benjamini–Hochberg correction. The screening parameters for
substantial enrichment were p < 0.05 and false discovery
rate (q.value) < 0.05.

2.6 Single-factor logistic regression, least
absolute shrinkage and selection operator
(LASSO), and support vector machine
(SVM) analyses

We used univariate logistic regression analysis, LASSO regression
analysis, and the SVM-RFE technique for feature selection to search

FIGURE 2
Gene expression distribution before and after batch correction for the GSE153434 and GSE107844 datasets. (A) Box plots of gene expression
distribution before normalization. (B) Box plots of gene expression distribution after normalization. (C) Principal components analysis (PCA) before batch
correction. (D) PCA analysis after batch correction.
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for AD diagnostic indicators. Initially, we used univariate logistic
regression analysis to determine the relationship between the
expression level of each differentially expressed gene in patients
with AD, retaining genes with a p-value < 0.05. Subsequently, we
utilized the SVM and LASSO (Friedman et al., 2010) algorithms of the
glmnet package to downscale and select significant variables in the
one-way logistic regression analysis. To assess the diagnostic
performance of the model, we used the R package “pROC” (Robin
et al., 2011) to plot the receiver operating characteristic (ROC) curve
and computed the area under the curve (AUC) values.

2.7 Weighted gene correlation network
analysis (WGCNA)

WGCNA (Langfelder and Horvath, 2008) seeks to find co-
expressed gene modules, investigate the link between gene
networks and phenotypes, and investigate the network’s core
genes. The pickSoftTreshold function calculates the soft
threshold, with 5 being the optimal soft threshold. A scale-free
network is then constructed based on the soft threshold, followed by
construction of a topology matrix and hierarchical clustering. The
gene modules were identified by dynamic cutting using 50 as the
minimum number of genes in the module, and eigengenes were
computed. Inter-module correlations were built using the module
eigengenes and hierarchical clustering, and Pearson correlation
analysis was used to evaluate the relationships between modules
and between modules and clinical characteristics. To identify
important genes associated with pyroptosis in AD, genes from
the most relevant modules for AD were intersected with the
differentially expressed PRGs.

2.8 Construction of interaction networks

The STRING database (Szklarczyk et al., 2019), comprising
9.6 million proteins and 138 million protein–protein interactions
(PPIs) from 2031 species, is used for searching known proteins and
predicting PPIs. STRING includes experimental data, the results of
text mining of PubMed abstracts, a synthesis of other database data
results, and outcomes anticipated using bioinformatics approaches.
The STRING database was used to build PPI networks for intersecting
gene sets of modular and differentially expressed PRGs linked with
AD, which were then visualized using Cytoscape (v3.9.1) software
(Shannon et al., 2003). We also utilized Cytoscape’s Molecular
Complex Detection (MCODE) tool to cluster and identify the
essential modules in the PPI network. The microRNAs (miRNAs)
linked with the identified hub genes were retrieved and intersected
using starBase version 3.0 to investigate the association between hub
genes and miRNAs (Huang et al., 2020). Lastly, Cytoscape software
was used to visualize the mRNA–miRNA regulation network.

2.9 Molecular fractionation

Consensus clustering (Lock and Dunson, 2013) is a resampling-
based algorithm that can be used to identify each member of a cluster
and its subgroup number and for verifying the reasonableness of the

generated clusters. Consistent clustering involves multiple iterations
over subsamples of the dataset, indicating cluster stability and
parameter decisions by using subsampling to induce sampling
variability. We used the R package “ConsensusClusterPlus”
(Wilkerson and Hayes, 2010) to perform consistent clustering of the
dataset using the key genes associated with pyroptosis in AD to facilitate
better differentiation between different subtypes of AD samples. In this
process, 80% of the total samples were drawn in 1000 repetitions with
the following settings: clusterAlg = “hc” and distance = “pearson.”

2.10 Immune infiltration correlation analysis

The quantity of certain infiltrating immune cells and the activity
of specific immune responses can be estimated using single-sample
GSEA (ssGSEA). According to published data of tumor immune
infiltration, ssGSEA identified 28 gene sets for identifying distinct
tumor-infiltrating immune cell types, containing numerous human
immune cell subtypes (e.g., CD8+ T cells, dendritic cells,
macrophages, regulatory T cells). Among ssGSEA methods, the R
package GSVA protocol can yield enrichment scores for assessing
the infiltration of each immune cell type within each sample.
Therefore, we used the “GSVA” R package for ssGSEA on the
immune cell infiltration gene set obtained from the literature (Zhang
B. et al., 2020). The correlation of key genes associated with AD with
infiltrating immune cells was determined by Pearson correlation
analysis. Heat maps were created in R using the “ggplot2”
visualization tool.

2.11 Statistical analysis

All data computations and statistical analyses were carried out
using R programming (version 4.2.0, available at https://www.r-
project.org/). The statistical significance of normally distributed
variables was evaluated using an independent Student’s t-test,
whereas differences between non-normally distributed variables
were investigated using the Mann–Whitney U-test. Statistical
significance was judged with a two-sided p-value < 0.05.

3 Results

3.1 Differential gene expression and
enrichment analysis

We obtained 1398 differentially expressed genes in the AD
group from analysis of the combined dataset (Figure 3A), 31 of
which intersected with the PRGs, including 25 upregulated genes
and 6 downregulated genes (Figure 3B). GO enrichment analysis
showed that the differentially expressed PRGs in AD were mainly
enriched in positive regulation of defense response, positive
regulation of response to external stimulus, regulation of
inflammatory process, and other biological processes;
inflammasome complex, secretory granule membrane, secretory
granule lumen as cellular components, and vascular endothelial
growth factor receptor molecular function (Table 2). PRGs were
linked to biological pathways such as the Rap1 signaling pathway
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(Figures 3D, F), rheumatoid arthritis (Figures 3D, G), and others,
according to KEGG analysis. The PRGs were mostly associated with
periodontal disease, bacterial infectious illness, and lung disease
based on Disease Ontology enrichment (Figure 3E).

3.2 Immune infiltration correlation analysis

The degree of infiltration of 22 immune cell types in different
samples of the combined dataset is presented as a stacked bar graph in

FIGURE 3
Functional enrichment analysis of differentially expressed pyroptosis-related genes. (A) Volcano plot display of the differential gene expression
analysis from the combined aortic dissection (AD) dataset. (B) Differentially expressed pyroptosis-related genes; orange circles indicate differentially
expressed genes (DEGs), green circles indicate pyroptosis-related genes (PRGs), and the intersection indicates differentially expressed pyroptosis-related
genes in AD. (C)GO enrichment pathway circle diagram. The diagram can be divided into two parts: the inner circle and outer circle. Each bar in the
inner circle corresponds to an entry, and the height is inversely related to the adjusted p-value (p.adj). The color of the corresponding filled bar represents
the Z-score value corresponding to the entry. (D) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment
analysis; the horizontal coordinates are differentially expressed PRGs enriched to various entries and the vertical coordinate is the–log10 (p-value). Light
blue indicates biological processes, red indicates cellular components, purple indicates molecular components, and yellow indicates enriched biological
pathways. (E)Disease Ontology (DO) analysis; yellow nodes indicate the type of disease the differentially expressed PRGs are enriched in, and gray nodes
indicate the genes enriched to different diseases. (F) Rap1 signaling pathway. (G) Rheumatoid arthritis pathway visualization results. Each node indicates a
gene that plays an important role in the pathway, and the color of the node is determined by the log2 fold change (FC), with green indicating differentially
downregulated genes and red indicating differentially upregulated genes.
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Figure 4A. Correlation analysis of infiltrating immune cells in AD
revealed that M1 macrophages had a significant positive correlation
with CD4+ memory activated T cells (r = 0.55), but had a significant
positive correlation with naïve B cells (r = 0.64) and follicular helper
T cells (r = −0.58) (Figure 4B). After removing immune cells with an
immune abundance of zero (memory B cells and naïve CD4+ T cells),
the Wilcoxon test showed that four immune cell types, including
M0 macrophages, had significantly different infiltration levels
between the control and AD groups from the combined dataset
(p < 0.05). Neutrophils had considerably greater infiltration levels in
the AD group, whereas B cells and M1 macrophages had significantly
reduced infiltration levels in the AD group (Figure 4C), suggesting that
these immune cells may play a key role in AD.

3.3 Gene set enrichment analysis (GSEA)

Gene Set Enrichment Analysis (GSEA) is conducted to elucidate
the primary signaling pathways involved in Alzheimer’s Disease
(AD). As depicted in Figure 5A, significant enrichment and
upregulation (Normalized Enrichment Score = 1.944, nominal
p-value = 0.031) of the KEGG pathway p53 signaling pathway
are observed, indicating a strong overall association between
apoptotic cell death and Thoracic Aortic Aneurysm and
Dissection (TAAD). Furthermore, GSEA reveals significant
enrichment of gene expression related to the cell cycle
(Figure 5C), JAK-STAT signaling pathway (Figure 5E), and other
crucial physiological pathways in AD (Table 3). Conversely,
pathways such as Wnt signaling (Figure 5D) are downregulated
in the AD group.

3.4 Screening of key genes

Logistic regression of the 31 differentially expressed PRGs in AD is
presented as a forest plot in Figure 6A. A total of 22 genes were screened
as key genes (p < 0.05), including matrix metallopeptidase 1 (MMP1),
basic helix-loop-helix family member E40 (BHLHE40), serpin family B
member 1 (SERPINB1), vitamin D receptor (VDR), nuclear paraspeckle
assembly transcript 1 (NEAT1), triggering receptor expressed on
myeloid cells 1 (TREM1), formyl peptide receptor 2 (FPR2), and
adenosine A3 receptor (ADORA3). The LASSO logistic regression
algorithm was used to identify seven genes from the 22-gene set
that could be used as diagnostic markers for disease control
grouping (Figures 6B, C), and the SVM-RFE algorithm was used to
classify these seven genes (Figures 6D, E). The gene markers generated
by the two algorithms were then superimposed to yield five diagnostic
marker genes (MMP1, BHLHE40, NEAT1, ADORA3, PPARG;
Figure 6F) as candidate essential genes in AD for further investigation.

3.5 Analysis of key genes

We then examined changes in the expression levels of the
candidate key genes associated with AD (MMP1, BHLHE40,
NEAT1, ADORA3, and PPARG) in the combined dataset, and
discovered that MMP1, BHLHE40, NEAT1, and ADORA3 were
all overexpressed in the AD group compared with their levels in
the control group (Figures 7A–C, E), whereas PPARG showed
reduced expression in the AD group as opposed to the control
group (Figure 7D). In addition, ROC analysis showed that MMP1
(AUC = 0.953, Figure 7G), BHLHE40 (AUC = 0.959, Figure 7F),

TABLE 2 GO and KEGG enrichment analysis results of PREDGs.

ONTOLOGY ID Description P-value q value

BP GO:0050727 Regulation of inflammatory response 4.3701E-10 4.1631E-07

BP GO:0032103 Positive regulation of response to external stimulus 2.5777E-08 1.2278E-05

BP GO:0031349 Positive regulation of defense response 3.6163E-07 0.00011483

CC GO:0061702 Inflammasome complex 0.00036483 0.02162214

CC GO:0030667 Secretory granule membrane 0.00141337 0.02162214

CC GO:0034774 Secretory granule lumen 0.00158686 0.02162214

MF GO:0070851 Growth factor receptor binding 7.322E-05 0.00547222

MF GO:0005172 Vascular endothelial growth factor receptor binding 0.00023078 0.00662694

MF GO:0046965 Nuclear retinoid X receptor binding 0.00026601 0.00662694

KEGG hsa05323 Rheumatoid arthritis 0.00188382 0.08307365

KEGG hsa04015 Rap1 signaling pathway 0.00216219 0.08307365

BP GO:0050729 Positive regulation of inflammatory response 3.6817E-06 0.00087682

BP GO:0050673 Epithelial cell proliferation 6.1995E-06 0.0011227

BP GO:0051090 Regulation of DNA-binding transcription factor activity 7.0712E-06 0.0011227

BP GO:0032602 Chemokine production 1.9606E-05 0.00264818

BP GO:0002573 Myeloid leukocyte differentiation 2.2239E-05 0.00264818

GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; PRDEGs, Pyroptosis-related differentially

expressed genes.
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NEAT1 (AUC = 0.923, Figure 7H), and PPARG (AUC = 0.923,
Figure 7J) all have good potential to differentiate AD patients from
controls, and ADORA3 (AUC = 0.888, Figure 7I) also has moderate
potential to distinguish AD, suggesting that these genes could be
used as potential diagnostic markers for AD in the future.

For functional similarity of key genes (MMP1, BHLHE40,
NEAT1, ADORA3, PPARG), we assessed the semantic similarity
of GO terms, sets of GO terms, gene products, and gene clusters
using the R package GOSemSim. Figure 7K shows a box-and-line

graphic of these essential genes. Among the five critical genes,
PPARG exhibited the highest functional similarity score with
other key genes.

3.6 Profile of WGCNA analysis

To investigate the co-expression of genes, we constructed co-
expression modules using the top 25% of the genes in the combined

FIGURE 4
Analysis of immune cell infiltration in the combined aortic dissection (AD) dataset of GSE153434 and GSE107844. (A) Bar graphs of 22 immune cell
types stacked in different samples of the combined dataset, with different colored long bars representing different immune cells. (B) Correlation analysis
between various immune cells in the dataset. The color represents the correlation strength, with darker orange indicating a stronger correlation. (C)
Differences in the abundance of enrichment of 20 immune cells in the dataset; green indicates the control group, orange indicates the ADgroup, the
horizontal axis indicates the 20 immune cells, and the vertical axis indicates the abundance of immune cell infiltration. (ns: p > 0.05, *: p < 0.05, **: p <
0.01, ***: p < 0.001, ****: p < 0.0001).
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dataset mean expression profile using the R package WGCNA. The
data were hierarchically grouped using the average technique in
conjunction with the patients’ clinical information (Figure 8A). The
soft threshold was set to 5 to create a scale-free network (Figure 8B),
with R2 > 0.80 and good network connection. Ultimately, we
identified 14 gene co-expression modules using the dynamic
shear tree algorithm with each module represented by a distinct
hue (Figure 8C). Correlation analysis of various modules with the
AD group (Figure 8D) revealed that the turquoise module was most
strongly and significantly positively correlated with the AD group
(r = 0.94), which was therefore selected for further analysis.

3.7 PPI network

We intersected the genes in the turquoise module of
WGCNA, which was closely related to the AD group, with the
differentially expressed PRGs to obtain seven candidate hub
genes for further analysis: BHLHE40, caspase 4 (CASP4),

platelet and endothelial cell adhesion molecule 1 (PECAM1),
pyruvate kinase M1/2 (PKM), serpin family B member 1
(SERPINB1), Toll-like receptor 2 (TLR2), and vascular
endothelial growth factor A (VEGFA) (Figure 9A).
Construction of the PPI network of these seven genes with the
STRING database and Cytoscape (minimum required interaction
score: medium confidence = 0.400; Figure 9B) revealed
interactions among five proteins (CASP4, PECAM1, PKM,
TLR2, VEGFA). The MCODE plugin identified a critical
module of the PPI network comprising three
proteins (PECAM1, TLR2, and VEGFA), as depicted in red
in Figure 9B.

We used mRNA–miRNA data from the starBase database to
predict miRNAs interacting with the seven hub genes (BHLHE40,
CASP4, PECAM1, PKM, SERPINB1, TLR2, VEGFA) retaining
only reliable mRNA–miRNA data pairs, and the interaction
network was visualized with Cytoscape (Figure 9C). Our
mRNA–miRNA interaction network included three hub genes
(BHLHE40, PKM VEGFA), 30 miRNA molecules, and

FIGURE 5
Gene set enrichment analysis (GSEA). (A) Four main biological features of GSEA of genes among different subgroups in the aortic dissection (AD)
group. The vertical coordinate is the gene set name. (B–E) Genes in the AD group were significantly enriched in the KEGG p53 signaling pathway (B),
KEGG cell cycle (C), WikiPathways Wnt signaling (D), and KEGG JAK-STAT signaling pathway (E). Significant enrichment was assessed at p.adjust <
0.05 and FDR value (q.value) < 0.05.
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38 pairs of mRNA–miRNA interaction connections (see
Supplementary Table S2).

3.8 Immune infiltration correlation

We computed the correlations between major PRGs and
infiltrating immune cells in AD to investigate the
immunological microenvironment in AD. The connections
between important (hub) PRGs (BHLHE40, CASP4, PKM,
SERPINB1, TLR2, VEGFA) and numerous invading immune
cells in AD were generally comparable; however, the
correlations between PECAM1 expression and multiple immune
infiltrating cells differed from those of the other genes
(Figure 10A). There was a significant positive correlation
between the expression of SERPINB1 (r = 0.79, Figure 10B) and
PKM (r = 0.72, Figure 10E) and central memory CD4+ T cells,
PECAM1 (r = 0.74, Figure 10C) had a significant positive
correlation with type 1 T helper cells, and TLR2 (r = 0.74,
Figure 10D) had a significant positive correlation with natural
killer T cells. Furthermore, there was a significant negative
correlation between PECAM1 and CD56dim natural killer cells
(r = −0.73, Figure 10F) and central memory CD4+ T cells
(r = −0.57, Figure 10G), between TLR2 and activated B cells
(r = −0.55, Figure 10H), and between PKM and type 1 T helper
cells (r = −0.54, Figure 10I). These results suggest that CD56dim

natural killer cells, central memory CD4+ T cells, activated B cells,
type 1 T helper cells, and natural killer T cells play a significant role
in the emergence of AD.

3.9 Drug prediction and molecular Docking

We used expression datasets of hub genes related to pyroptosis
in AD (BHLHE40, CASP4, PECAM1, PKM, SERPINB1, TLR2,
VEGFA) to categorize patients using into subtypes using
unsupervised consistent clustering. In cluster 1, including two

AD samples, and cluster 2, including 11 AD samples, we could
distinguish between two distinct subtypes (Figure 11A). The
cumulative distribution function (CDF) plot (Figure 11B) and the
area under the CDF curve delta plot (Figure 11C) demonstrate that
the best consistency clustering results for the AD dataset were
attained when using k = 2 as the number of clusters for
unsupervised clustering. Principal component analysis on the
dataset expression matrix showed that the two subtype samples
of the AD dataset could be clearly distinguished from each
other (Figure 11D).

We also analyzed the differences in expression of the seven
hub genes (BHLHE40, CASP4, PECAM1, PKM, SERPINB1, TLR2,
VEGFA) between the two AD subtypes (cluster 1 and cluster 2)
using the Wilcoxon rank sum test. Grouped comparison
plots presented in Figure 11E show that the expression
levels of BHLHE40, CASP4, and VEGFA were all significantly
different between the two AD subtypes (cluster 1 and
cluster 2), with higher expression in AD subtype 2 (cluster
2) than in AD subtype 1 (cluster 1). The heat maps in
Figure 11F further demonstrate significant differences in
expression of BHLHE40, CASP4, and VEGFA between the two
AD subtypes.

3.10 Analysis of hub genes

Further analysis of the changes in expression levels of hub
genes (BHLHE40, CASP4, PECAM1, PKM, SERPINB1, TLR2,
VEGFA) associated with pyroptosis in AD in the combined
dataset revealed that BHLHE40, CASP4, PKM, SERPINB1,
TLR2, and VEGFA were all more highly expressed in the AD
group compared to the control group, whereas PECAM1 had a
lower expression level in the AD group compared to the control
group (Figure 12A). We calculated the semantic similarity between
GO terms, sets of GO terms, gene products, and gene clusters of the
hub genes using the GOSemSim R package for functional similarity
analysis. The box line diagram of these genes is shown in

TABLE 3 GSEA of differentially expressed genes.

ID NES p.adjust q value

KEGG_P53_SIGNALING_PATHWAY 1.94370564 0.03059695 0.02434096

KEGG_CELL_CYCLE 1.93467922 0.03059695 0.02434096

WP_WNT_SIGNALING −1.65667156 0.03059695 0.02434096

KEGG_JAK_STAT_SIGNALING_PATHWAY 1.3491518 0.04410437 0.03508659

ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER 2.49282735 0.03059695 0.02434096

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 2.44015177 0.03059695 0.02434096

KOBAYASHI_EGFR_SIGNALING_24HR_DN 2.36438409 0.03059695 0.02434096

WHITEFORD_PEDIATRIC_CANCER_MARKERS 2.32871816 0.03059695 0.02434096

BLANCO_MELO_BRONCHIAL_EPITHELIAL_CELLS_INFLUENZA_A_DEL_NS1_INFECTION_DN 2.30704348 0.03059695 0.02434096

CROONQUIST_IL6_DEPRIVATION_DN 2.28660457 0.03059695 0.02434096

KONG_E2F3_TARGETS 2.27610136 0.03059695 0.02434096

GSEA, gene set enrichment analysis.
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Figure 12B, demonstrating that VEGFA had the highest functional
similarity value with other key genes among the seven key genes.

ROC analysis showed that CASP4 (AUC = 1.0, Figure 12C),
PECAM1 (AUC = 1.0, Figure 12D), PKM (AUC = 0.988,
Figure 12E), SERPINB1 (AUC = 0.970, Figure 12F), TLR2

(AUC = 0.994, Figure 12G), VEGFA (AUC = 0.994, Figure 12H),
and BHLHE40 (AUC = 0.959, Figure 12I) all have good potential to
differentiate the AD group from normal controls, suggesting that
these genes could serve as potential diagnostic markers for AD in
the future.

FIGURE 6
Screening of key genes. (A) Single-factor logistic regression forest plot of pyroptosis-related genes from the merged dataset. (B) LASSO regression
analysis. For each gene regression covariate, positive numbers are positively correlated, and negative numbers are negatively correlated. (C) Vertical
coordinates are the evaluation index corresponding to each λ value, and the best covariate (λ) is selected. (D)Number of genes with the highest accuracy
obtained by the SVM algorithm. © Number of genes with the lowest error rate obtained by the SVM algorithm. (E) The minimum number of genes
with the lowest error rate obtained by the E.SVM algorithm. (F) Intersection of the genes screened by the SVM algorithm (green) and the genes screened
by LASSO (orange). LASSO, least absolute shrinkage and selection operator; SVM, support vector machines.
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FIGURE 7
Key genes analysis. (A–E)Differences in expression levels of BHLHE40 (A),MMP1 (B),NEAT1 (C), PPARG (D), and ADORA3© in the control (green) and
aortic dissection (AD, orange). (F–J) Receiver operating characteristic (ROC) curves for BHLHE40 (F), MMP1 (G), NEAT1 (H), ADORA3 (I), and PPARG (J).
The horizontal coordinate is 1—specificity and the vertical coordinate is sensitivity. AUC, area under the curve. (K) Functional similarity analysis of key
genes. (ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001); the closer the AUC of the ROC curve is to 1, the better the diagnosis
prediction (AUC of 0.5–0.7 indicates low accuracy, AUC of 0.7–0.9 indicates moderate accuracy, and AUC > 0.9 indicates high accuracy).
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FIGURE 8
Weighted gene correlation network analysis (WGCNA) based on the expression spectrum dataset. (A) Sample clustering to detect abnormal samples; each
branch indicates one sample and the red box in the sample information below indicates the category to which the sample belongs. (B) Scale-free topological
model fit (left) and average connectivity (right) used to determine the best soft threshold. The horizontal coordinates of the left panel indicate the fitted soft
threshold and the vertical coordinates indicate the level of fit (R2) in the scale-free topological model. The right panel horizontal coordinate indicates the
fitted soft threshold and the vertical coordinate indicates the average connectivity between modules. (C) Dynamic shear clustering tree for different genes. The
upper tree shows gene co-expression; each gene is represented by a leaf in the tree, and eachmodule is represented by a trunk branch. The lower colored bars
indicate the corresponding sevenmodules and are labeledwith the indicatedcolors. (D)Heatmapof correlations betweendifferentmodules and aortic dissection
(AD) patient groups. The x-axis is the sample classification, and the y-axis is the module color name. Red indicates a positive correlation, and dark blue color
indicates a negative correlation. Color blocks indicate the Pearson correlation coefficient in the upper part and the p-value in the lower part.
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4 Discussion

AD is a catastrophic event caused by a tear in the aortic intima
or bleeding within the aortic wall (Nienaber et al., 2016). The
incidence of AD has shown an increasing trend year by year
(Howard et al., 2013). Approximately 20% of the patients
suffering from AD die before reaching the hospital (Golledge
and Eagle, 2008). In the absence of intervention, acute AD has
a 90% mortality rate (YU et al., 2020). Surgery remains the gold-
standard treatment approach (Erbel et al., 2014); however, early
postoperative mortality is still high, at 9%–25% (Smedberg et al.,
2020). Endovascular interventions offer new treatment options for
descending AD (Erbel et al., 2014); however, this approach is also
associated with several possible side effects such as acute lung
damage, acute renal failure, ischemia of the spinal cord, and stroke
(Fattori et al., 2008). Early diagnosis and treatment of AD can

dramatically enhance a patient’s prognosis. Furthermore, research
into the processes contributing to the development and
progression of AD can facilitate earlier detection and treatment.
Recent studies have found that the hallmarks of AD include
infiltration of immune cells, hyperactivation of inflammation,
and degradation of the extracellular matrix, leading to vascular
remodeling and weakening of the aortic wall (Lian et al., 2019).
Pyroptosis and immunological infiltration have also been found to
play important roles in the pathophysiology of AD. However, there
is a scarcity of studies investigating the relationship between
immune cell infiltration and excessive inflammatory
activation in AD.

In this study, we analyzed the GSE153434 and
GSE107844 datasets and performed deep data mining of the AD-
related literature and public databases using bioinformatics tools
with the goal of providing insight into the roles of cellular pyroptosis

FIGURE 9
Protein–protein interaction network analysis based on seven key genes. (A) Intersection of the turquoise module and differentially expressed
pyroptosis-related genes; orange circles indicate genes in the turquoise module, and green circles indicate differentially expressed pyroptosis-related
genes. (B) Key modules identified by MCODE plugin of Cytoscape software; red indicates the key modules found by MCODE. (C) mRNA–miRNA
interaction network constructed based on starBase v3.0 database prediction and visualized by Cytoscape software. Green indicates key genes and
orange indicates miRNAs. MCODE, Molecular Complex Detection; PRGs, pyroptosis-related genes; DEG, differentially expression gene.
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FIGURE 10
Immune infiltration correlations. (A) Heat map of the correlation analysis between key genes associated with pyroptosis in aortic dissection (AD)
(vertical axis) and infiltrating immune cells (horizontal axis); a redder color indicates a stronger correlation between the gene and immune cells. *p < 0.05,
**p < 0.01. (B–I) Scatter plot of the correlations between (B) SERPINB1 and central memory CD4 T cells, (E) PKM and central memory CD4 T cells, (C)
PECAM1 and type 1 T helper cells, (D) TLR2 and natural killer T cells, (E) PKM and central memory CD4 T cells, (F) PCAM1 and CD56dim natural killer
cells, (G) PCAM1 and central memory CD4 T cells, (H) TLR2 and activated B cells, and (I) PKM and type 1 T helper cells. The absolute values of correlation
coefficients (r) in the correlation scatter plots above 0.8 indicate a strong correlation; r= 0.5–0.8 indicates amoderate correlation; r= 0.3–0.5 indicates a
weak correlation; and r < 0.3 indicates a weak or no correlation.

Frontiers in Molecular Biosciences frontiersin.org15

Ge et al. 10.3389/fmolb.2024.1277818

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1277818


and immune infiltration in the development of AD and their
associations. Combining datasets identified 31 PRGs that are
differentially expressed in AD. GO-KEGG enrichment analyses

showed that these PRGs are mainly related to the immune
response, inflammasome completion, and the Rap1 signaling
pathway. Biologically relevant pathways such as the p53 signaling

FIGURE 11
Molecular typing. (A) Plots of consistent clustering (K = 2) for the aortic dissection (AD) dataset. (B,C) Plots of the cumulative distribution function
(CDF) for consistent clustering (B) and the area under the CDF curve delta plot for different numbers of clusters in consistent clustering (C). (D) Principal
component analysis for two AD subtypes (cluster 1 and cluster 2) in the AD dataset. (E) Comparison graph of the grouping of hub genes in different AD
subtypes. (F) Heat map of the expression of hub genes in different AD subtypes. ns, not significant (p ≥ 0.05); *p < 0.05, **p < 0.01, ***p < 0.001.
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pathway, cell cycle, and JAK-STAT signaling pathway were
upregulated in AD, whereas the Wnt signaling pathway was
found to be downregulated. Among the PRGs, we found that
MMP1, BHLHE40, NEAT1, and ADORA3 were highly expressed
in the AD group, whereas the expression of PPARG was reduced
compared with that of controls. These genes therefore have good
potential to distinguish patients with AD from controls. Further
analysis identified seven hub genes associated with AD (BHLHE40,
CASP4, PECAM1, PKM, SERPINB1, TLR2, and VEGFA) that
showed high diagnostic value. Among these hub PRGs, the
expression of BHLHE40, CASP4, and VEGFA could also
distinguish two AD subtypes characterized by dissection of the

ascending aorta and thoracic aorta. Correlation analysis further
showed enhanced infiltration of M0 macrophages and
neutrophils, and decreased infiltration of naive B cells and
M1 macrophages in AD samples compared with controls. The
hub genes (BHLHE40, CASP4, PKM, SERPINB1, TLR2, VEGFA)
were correlated with a variety of invading immune cells, suggesting
the involvement of numerous immune cells, including CD56dim

natural killer cells, central memory CD4+ T cells, activated
B cells, type 1 T helper cells, and natural killer T cells, in the
development of AD.

Our analysis identified multiple genes with good potential to
differentiate AD, suggesting their potential as biomarkers for the

FIGURE 12
Analysis of hub genes. (A)Differences in expression levels of BHLHE40,CASP4, PECAM1, PKM, SERPINB1, TLR2, and VEGFA in the control (green) and
aortic dissection (AD, orange) groups. (B) Functional similarity analysis of key genes. (C–I) Receiver operating characteristic (ROC) curves for CASP4 (C),
PECAM1 (D), PKM (E), SERPINB1 (F), TLR2 (G), VEGFA (H), and BHLHE40 (I). The horizontal coordinate is 1—specificity and the vertical coordinate is
sensitivity; AUC, area under the curve, with an AUC value closer to 1 indicating better diagnostic prediction ability. (ns: p > 0.05, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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diagnosis of AD. Among them, MMP1 is associated with signaling
pathways of immune system cytokines that may promote persistent
destruction of the aortic extracellular matrix and outer membrane
degeneration (Zhang et al., 2014) to promote AD (Liao et al., 2018).
BHLHE40 encodes a transcription factor with known regulatory
effects on immune cells. BHLHE40 interferes with the cytokine
production of CD4+ T cells and with the proliferation of
macrophages and CD8+ T cells, promotes the production of
interferon-gamma by natural killer T cells (Zafar et al., 2021),
increases the recruitment of neutrophils, and promotes
inflammatory and hypoxic responses (Wang L. et al., 2022). We
discovered a positive link between BHLHE40 expression and a
variety of immune cells, including CD4+ T cells, CD56dim natural
killer cells, type 17 T helper cells, and memory B cells, and was
inversely associated with activated B cells and T follicular helper
cells. ADORA3 expression was found to be significantly increased in
AD. ADORA3 has been reported to activate CD4+ T cells to release
interleukin (IL)-10 (Durante et al., 2021), and to promote
inflammatory response, apoptotic phagocytosis (Hodrea et al.,
2012), and cell proliferation. PPARG, the only key gene that was
downregulated in AD, is an anti-inflammatory gene that prevents
the degeneration and death of the aortic stroma by inhibiting NF-κ-
B-mediated pro-inflammatory responses (Wang M. et al., 2022) and
regulates the role of the cardiovascular circadian rhythm (Aicher
et al., 2021). CASP4 is an essential pyroptotic effector that facilitates
the production of IL-1 and cell death, stimulates immune cell
recruitment, and activates and causes mucosal inflammation
(Wang et al., 2020). We found substantial positive correlations
between CASP4 expression and the infiltration of CD4+ T cells,
CD8+ T cells, macrophages, and natural killer T cells in AD. As a
result, we may infer that CASP4 plays a significant role in immune
cell activation in AD and is a crucial factor in pyroptosis. Platelets,
monocytes, neutrophils, and certain subtypes of T cells express
PECAM1 on their surface (Dasgupta et al., 2009), which has been
suggested to play a role in leukocyte motility, angiogenesis, and
integrin activation, thereby inhibiting macrophage-mediated
phagocytosis (Brown et al., 2002). We found substantial negative
correlations between PECAM1 expression and the infiltration of
CD56dim natural killer cells and central memory CD4+ T cells in AD.
TLR2 activation encourages the upregulation of inflammatory
signaling pathways, promoting T cell/natural killer T cell
activation and infiltration (Moonen et al., 2019; Imanishi et al.,
2020), NF-κB activation, cytokine release, and an inflammatory
response (Dutta et al., 2021) and further triggers apoptosis. In
addition, we discovered a substantial negative correlation between
activated B cells and TLR2 and a strong positive correlation between
natural killer T cells and TLR2. VEGFA can induce endothelial cell
proliferation, cell migration, apoptosis inhibition, and vascular
permeabilization as a major contributor to both pathological and
normal angiogenesis. VEGFA increases the amount of angiopoietin
II and facilitates the recruitment of inflammatory cells, hence
promoting inflammation (Glorioso et al., 2007). In the context of
aortic dissection, there may be interactions and functional
associations between VEGFA and PPARG. Regarding
angiogenesis, VEGFA, as a crucial angiogenic factor, regulates
angiogenesis and vascular permeability while inhibiting
endothelial cell apoptosis (Melincovici et al., 2018). As a
transcription factor, PPARG may modulate the expression of

VEGFA (Blitek and Szymanska, 2019), thereby influencing
angiogenesis and vascular permeability, further impacting the
development and progression of aortic dissection. Additionally,
in inflammation and immune responses, VEGFA (Chen et al.,
2023) and PPAR (Toffoli et al., 2017) may mutually influence
each other through the regulation of inflammation and immune
responses, affecting the pathological processes of aortic dissection.
Further research is warranted to deepen our understanding of their
importance and mechanisms of action in this disease context. Our
PPI network of key PRGs in AD showed an important module
comprising interactions among PECAM1, TLR2, and VEGFA. We
found a significant positive correlation between PKM expression
and central memory CD4+ T cells and a significant negative
correlation between PKM expression and type 1 T helper cells.
PKM is engaged in several pathways of the innate immune
system. Finally, SERPINB1 regulates the innate immune response,
inflammation, and cellular homeostasis (Choi et al., 2019) and is
significantly induced in the effector CD4 cell subpopulation (Hou
et al., 2019). We identified a significant positive correlation between
SERPINB1 expression and central memory CD4+ T cells in AD
samples. Overall, our analysis demonstrated that these critical genes
are involved in the control of inflammatory phenotype and immune
cell activity, thereby having a significant impact on the pathogenesis
and progression of AD. In particular, we found that BHLHE40,
CASP4, and VEGFA can discriminate between two subtypes of AD
(involvement of the thoracic or ascending aorta).

Analysis of the AD dataset demonstrated an assembly of
inflammatory vesicles in AD, which stimulates the production of
inflammatory cytokines as well as the death of inflammatory cells
(i.e., pyroptosis) (Sharma and Kanneganti, 2021). Similarly,
studies with animal models showed inflammatory vesicles in
the aortic tract along with elevated serum levels of
inflammatory cytokines, accompanied by pathological findings
of immune infiltration, matrix degradation, and angiogenesis
(Del Porto et al., 2014; Chen et al., 2022). Several signaling
pathways have been implicated in the development of AD, in
addition to increased inflammatory vesicles. The VEGFR
signaling pathway plays an important role in aortic smooth
muscle cell proliferation and migration (Wang et al., 2021).
The use of VEGR tyrosine kinase inhibitors may be linked to
the development of acute AD (Oshima et al., 2017; Ting and Lo,
2021). Similarly, the Rap1 signaling pathway is associated with
cell migration, polarization, and proliferation (Cha et al., 2010).
All of these cellular processes are implicated in the development
of AD (Shah et al., 2019). Previous studies have also highlighted
p53 signaling pathway-dependent proliferation inhibition,
oxidative stress, and apoptosis among the potential
mechanisms of AD (Wang et al., 2019; Wu et al., 2019). In
addition, p53 plays a potential role in processes related to cell
turnover during aortic intima-media degeneration (Ihling et al.,
1999; Wang et al., 2019). The JAK-STAT pathway is extensively
involved in aortic vascular injury, regulating cytokine expression
and immune cell activation, and thus disease progression. This
pathway stimulates the effector function of macrophages,
promotes the differentiation of type 17 T helper lymphocytes,
and enhances the expression of matrix metalloproteinases,
ultimately leading to deterioration of the structural integrity of
the vessel wall. Wnt signaling is essential for cell proliferation,
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differentiation, and migration. Wnt pathway inhibition enhances
lipid and macrophage retention in the vessel wall as well as an
increase in leukocyte-driven systemic inflammation (Borrell-
pages et al., 2015). Molecules targeting the Wnt pathway
attenuate intimal changes in the aorta caused by mechanical
injury through the attenuation of Wnt signaling (Gay and
Towler, 2017). Therefore, modulation of this common
pathway might offer novel therapeutic interventions for
inflammation-driven vasodilation in advanced aortic disease
(Ijaz et al., 2016).

Among the multiple immune cells identified to be activated
and infiltrated in AD, the infiltration of macrophages into the
aortic wall is considered to be the main pathogenic mechanism of
aortic injury (Guido et al., 2022). Amorphous macrophages
(M0 macrophages) are driven to differentiate into a pro-
inflammatory (M1) or anti-inflammatory (M2) phenotype (also
known as macrophage polarization) (Xiao et al., 2020).
M1 macrophages could increase and sustain the inflammatory
response by secreting pro-inflammatory cytokines and promoting
vascular injury (Sun et al., 2021). In addition, M0 macrophages
play a key role in inflammation and immunity by recruiting more
neutrophils and monocytes/macrophages and initiating further
immune responses (Lian et al., 2019). The key PRGs identified in
our study, including BHLHE40, MMP1, ADORA3, CASP4, and
PECAM1, were closely associated with macrophage activation and
infiltration. The levels of infiltration of M0 macrophages and
neutrophil were considerably higher, whereas those of naïve
B cells and M1 macrophages M1 infiltration levels were
significantly lower in AD samples than in control samples,
suggesting that neutrophil infiltration may dominate the acute
phase of human AD. Consistent with this finding, previous studies
showed that AD occurs when the expression of the outer
membrane CXCL1/granulocyte colony-stimulating factor drives
local neutrophil recruitment, activation, and infiltration (Yoshida
et al., 2019), resulting in outer membrane inflammation, aortic
dilatation, and rupture via IL-6 production (Anzai et al., 2015). We
discovered a close correlation between the hub genes and immune
cell infiltration, suggesting that CD56dim natural killer cells, central
memory CD4+ T cells, activated B cells, type 1 T helper cells, and
natural killer T cell immunity may play an important role in the
development of AD.

However, this study has certain limitations to address. Despite
performing a multifaceted bioinformatics analysis, further
validation studies are needed to support the present findings,
including in vivo and ex vivo investigations and potential clinical
trials. In addition, we have not discovered the particular mechanism
of action by which pyroptosis and immune cell infiltration
contribute to AD; thus, more research is needed to understand
the detailed process.

In conclusion, we discovered that pyroptosis and immune cell
infiltration, along with their interactions, play crucial roles in the
development of AD. Changes in the expression of genes
associated with pyroptosis may encourage the infiltration of
immune cells in various stages of AD development, whereas
the pyroptosis of immune cells may result in the strong
release of inflammatory factors, thereby exacerbating the
damage in various regions of the aorta. MMP1, BHLHE40,
NEAT1, PPARG, ADORA3, CASP4, and VEGFA may be useful

diagnostic markers to distinguish AD from normal controls and
facilitate early detection and intervention. Among these key
genes, CASP4 and VEGFA could further distinguish between
the two subtypes of AD. Overall, we expect that further
research into the mechanisms of AD pyroptosis or immune
cell infiltration will open up new avenues for the development
of molecular targeted treatments for AD.

Impact statement

Aortic dissection (AD) is a life-threatening disorder that
frequently leads in mortality. Recent research suggests that
pyroptosis and immune cell infiltration play a role in the
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