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Metabolic homeostasis balances the production and consumption of energetic
molecules to maintain active, healthy cells. Cellular stress, which disrupts
metabolism and leads to the loss of cellular homeostasis, is important in age-
related diseases. We focus here on the role of organelle dysfunction in age-related
diseases, including the roles of energy deficiencies, mitochondrial dysfunction,
endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+

and nicotinamide adenine dinucleotide), and alterations in the endoplasmic
reticulum-mitochondria contact sites that regulate the trafficking of
metabolites. Tools for single-cell resolution of metabolite pools and metabolic
flux in animal models of aging and age-related diseases are urgently needed.
High-resolution mass spectrometry imaging (MSI) provides a revolutionary
approach for capturing the metabolic states of individual cells and cellular
interactions without the dissociation of tissues. mass spectrometry imaging can
be a powerful tool to elucidate the role of stress-induced cellular dysfunction in
aging.
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Introduction

Aging is the greatest risk factor for the most prevalent diseases in industrialized nations.
The coordinated action of energetic molecules ensures metabolic homeostasis, normal
cellular function, and increased healthspan. The cellular hallmarks of aging are
epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence,
and exhaustion of stem cells (Ziegler et al., 2021). However, dysfunctional organelles are
increasingly linked to diseases of aging such as chronic metabolic disorders,
neurodegenerative diseases, and shortened lifespan (Ziegler et al., 2021). Among
organelles ripe for interrogation in the aging process are the mitochondria, the
endoplasmic reticulum (ER), and the sites of inter-organelle communication called
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mitochondria-ER contact sites (MERCs). MERCs are enriched with
proteins essential for mitochondrial Ca2+ flux, lipid transfer,
autophagy, mitochondrial division, apoptosis, and morphology
(Giacomello and Pellegrini, 2016; Csordás et al., 2018), and these
contact sites may be important in understanding how metabolic
fluxes are altered during the aging process. However, studies to
define the role of MERCs in metabolic fluxes using single cell
techniques such as mass spectrometry imaging (MSI) are lacking.

In addition to well characterized calcium fluxes between the ER
and mitochondria, there are other metabolic exchanges including
those associated with nicotinamide adenine dinucleotide (NAD+)
and precursors to NAD+ synthesis that are strongly associated with
diseases of aging (McReynolds et al., 2020; McReynolds et al., 2021;
Zeidler et al., 2022). NAD+ is a cofactor for redox and non-redox
enzyme reactions that maintain metabolic pathways, DNA repair,
chromatin remodeling, immune cell function, and cellular
senescence (Hogan et al., 2019; Covarrubias et al., 2021). A
decline in cellular NAD+ levels is linked to several diseases of
aging in mice including neurodegeneration and cognitive decline,
cancer, metabolic disease, sarcopenia, frailty, hearing loss, stroke,
cataracts, and kidney and heart disease (Hogan et al., 2019;
Covarrubias et al., 2021). Senescent cells secrete pro-
inflammatory factors characteristic of the senescence-associated
secretory phenotype (SASP), resulting in the accumulation of
CD38+ inflammatory cells (Chini et al., 2020; Covarrubias et al.,
2020). As an NADase and nicotinamide mononucleotidase
(NMNase), CD38 decreases cellular NAD+ and extracellular
NMN, respectively, and contributes to low-grade inflammation
called inflammaging (Franceschi et al., 2018). The role of NAD+

metabolism in the regulation of SASP is not well understood, but
both de novo and salvage NAD+ synthesis pathways are implicated in
senescence. For example, the rate-limiting NAD+ synthesis salvage
pathway enzyme nicotinamide phosphoribosyltransferase
(NAMPT) promotes SASP through nuclear factor kappa B (NF-
κB) in IMR90 fibroblasts (Nacarelli et al., 2019). Additionally,
disruption of the de novo NAD+ synthesis pathway may lead to a
decline in NAD+ in macrophages and innate immune cell
dysfunction observed in aging and age-related diseases (Minhas
et al., 2019). Single-cell technologies that combine imaging and
metabolomics to interrogate inter-organellar trafficking of
molecules like NAD+ are potentially powerful tools for
understanding the aging process at the cellular and subcellular
levels. Defining the metabolic landscape and the variability
within cells and across cell types represents a new frontier in
metabolomics and an opportunity to re-envision our
understanding of cellular biology.

The emerging field of single-cell “spatial omics” resolves
genomics, proteomics, and transcriptomics associated with
intracellular structures in tissue sections without dissociating
tissues or disturbing cellular interactions (Blum et al., 2018;
Gilmore et al., 2019; Peng et al., 2020; Bai et al., 2021; Stein
et al., 2021; Taylor et al., 2021). However, resolving the spatial
omics for metabolites important in the pathophysiology of diseases
has been more challenging. For example, although lipids play a
central role in signaling, regulation, inflammation, and cancer,
preserving the spatiotemporal gradient of these dynamic and
transient small molecules is difficult. Here, we propose that
spatial omics can provide a better understanding of organellar

metabolism to identify the mechanisms of cellular decline during
aging. Although typical age-related processes such as autophagy and
apoptosis may be regulated through age-associated MERC
modifications, changes in the composition or number of MERCs
may also be pro-senescent (Ziegler et al., 2021). This review focuses
primarily on the structure, function, and role of mitochondria and
the ER in age-related diseases, with special emphasis on MERCs as
modifiers or targets of cellular aging (Janikiewicz et al., 2018;
Csordás et al., 2018; Moltedo et al., 2019; Ziegler et al., 2021).

Single-cell technologies that combine imaging and
metabolomics to interrogate inter-organellar trafficking of
molecules, like NAD+, are potentially powerful tools for
understanding the aging process at the cellular and subcellular
levels. Defining the metabolic landscape and the variability
within cells and across cell types represents a new frontier in
metabolomics and an opportunity to re-envision our
understanding of cellular biology. However, few studies have
defined the role of MERCs in metabolic fluxes using single-cell
techniques, such as mass spectrometry imaging (MSI). We also
describe the advantages and limitations of MSI, particularly as a tool
to interrogate age-related dysfunction at the single-cell level.

Spatial metabolomics/lipidomics as a
tool for interrogating diseases of aging

Cell-to-cell variation is intrinsic to cell populations, organs, and
tumors and includes differences in epigenetic, transcriptional,
translational, and metabolic regulation; therefore, understanding
these differences is important for defining age-related regulatory
changes across cell and tissue types. Identifying spatially resolved
age-related metabolic alterations will be key to elucidating the
impact of these changes on the aging trajectory and developing
effective metabolite-targeted treatments for age-related diseases.
Changes in metabolite levels triggered by fluctuations in the cellular
environment or altered intracellular signaling are reliable markers of
cellular status. Single-cell transcriptomics provides powerful insights
into differences observed in normal and pathological contexts. Likewise,
studies of the metabolome in single cells are also likely to provide a
comprehensive profile of individual cellular changes associated with
age. Spatial and temporal snapshots of nutrient gradients, and fluxes in
particular, may become the basis of discovery of new interventions for
aging-related diseases.

MSI is a tool that has the potential to visualize pro-senescent
MERCs because the technology has the capacity to simultaneously
detect proteins, lipids, and metabolites. To date, there are several
technical approaches and workflows for MSI including gas cluster
ion beam secondary ion mass spectrometry (GCIB-SIMS), matrix-
assisted laser desorption ionization (MALDI), desorption
electrospray ionization (DESI), and liquid extraction surface
analysis (LESA) (Figure 1). GCIB-SIMS is a particularly
promising approach to spatially mapping the age-related
metabolites in single cell or subcellular organelle level. With an
innovative new desorption source, high-energy CO2 or H2O cluster
ion beam, GCIB-SIMS resolves biomolecules at the lateral resolution
of 1 µm without comprising signal level of low concentration
biomolecules (e.g., transient metabolites). Among several
advantages of the GCIB source is enhanced ionization up to
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~200 fold to facilitate detection of biomolecules; reduced ionization
suppression to allow the imaging of diverse biomolecules; and
extension of mass detection ranges for spatial multiomics in a
single sample (Tian et al., 2014; Wucher et al., 2014; Tian et al.,
2016a; Tian et al., 2016b; Tian et al., 2016c; Tian et al., 2016d; Tian
et al., 2017a; Tian et al., 2019a; Tian et al., 2019b; Sheraz et al., 2019).
Coupled with a unique buncher-ToF SIMS instrument (J105 SIMS)
(Fletcher et al., 2008; Tian et al., 2016d), GCIB-SIMS achieves multi-
omics imaging at cellular/subcelluar resolution in biological samples
(Tian et al., 2019a; Tian et al., 2021a). Additionally, as one of very
fewMSIs capable of cryogenic analysis, GCIB-SIMS captures images
of frozen-hydrated single cells and preserves the chemical
microenvironments at near-nature state with minimal disruption
of the tissue and cellular structures, especially for the dynamic
metabolic gradients (Tian et al., 2014; Tian et al., 2016b; Tian
et al., 2019a; Tian et al., 2021a). Additionally, GCIB-SIMS
produces molecular species, (M + H)+ or (M-H)− for
biomolecules, as well as different forms of fragments. A caveat,
however, are incompatibilities in sample preparation that prevent
the GCIB-SIMS cryogenic workflow from being adapted for other
MSI tools, thus making them unsuitable for exploration of spatial
metabolomics (Robinson and Castner, 2013; Zhang et al., 2018). As
the first multiplexing pipeline to integrate multiomics in the same
cells, the GCIB-SIMS multimodal imaging platform simultaneously
detects metabolites and lipids with multiple protein expression
markers in frozen-hydrated breast cancer tissue and mouse liver
tissue at the single-cell level (Tian et al., 2021b). As shown in
Figure 2 (Tian et al., 2021b), untargeted metabolites/lipids and

multiple targeted proteins are imaged at 1 µm spatial resolution
in human breast cancer tissue, facilitating cell segmentation and
registration of multi-omics in individual cells by computational
processing and discriminant analysis. The workflow permits
visualization of multiple molecular coordination (>150 key
species) in different types of tumor microenvironment cells
including actively proliferating tumor cells and infiltrating
immune cells. For example, desaturated fatty acids,
phosphatidylethanolamine plasmalogen and glutathione are
observed in pan cytokeratin-expressing cells (i.e., epithelial cancer
cells), suggesting that cancer cells adopt antioxidant mechanism to
prevent lipids oxidation-induced ferroptopic cell death under
conditions of stress.

To this end, the GCIB-SIMS workflow integrates spatial omics at
the single-cell level, providing a new approach for visualizing individual
cells, cellular interactions, and chemical microenvironments in aging
tissues for deeper insights into the mechanisms of age-related diseases.
Spatially resolved approaches to elucidating metabolic activity will be
particularly important for highly age-sensitive epithelial, mesenchymal,
immune, senescent, and cancer cells, as well as for cells from relatively
short-lived gestational tissues at the maternal-fetal interface. As
demographics continue to shift toward an aging population and
diseases of aging grow more prevalent, tools to interrogate
compromised tissue microenvironments and disrupted cell-to-cell
communication are critical for identifying druggable targets in age-
related diseases. Metabolic shift in different types of cells within the
tissue is vital to understanding aging-prone cell types. With high
sensitivity for various biomolecules, GCIB offers a soft ionization for

FIGURE 1
A simplified workflow of MSI for spatial omics. The focused ion desorption source scans the tissue surface (or cells in culture) pixel by pixel. Both
mass spectra and x and y coordinates are generated from each pixel. With the single-cell resolution of the ion desorption source, omics information is
obtained from individual cells in the tissue or cell culture without tissue dissociation. Biomolecules or biomarkers are localized to cellular structures or
different cell populations. Technical approaches for MSI workflows include: SIMS, secondary ion mass spectrometry; GCIB, gas cluster ion beam;
MALDI, matrix-assisted laser desorption ionization; DESI, desorption electrospray ionization; LESA, liquid extraction surface analysis.
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imaging of pathways involving molecules like NAD+ with the potential
to ionize NADP+ from NADPH as distinct molecular ions. MSI,
especially high-resolution GCIB-SIMS, could transform current
understanding of aging tissues by: 1) mapping the variation of
metabolic flux resulting from NAD+ synthesis and degradation in
individual cells in tissues vulnerable to NAD+ decline; 2)
characterizing cellular heterogeneity within tissues to understand
mechanisms of inflammaging and the impacts of inflammation on
neighboring cell types; 3) identifying metabolic imbalances and
reprogramming in age-related diseases; and 4) resolving metabolic
gradients in subcellular organelles, including NAD(H) and
NADP(H) trafficking across MERCs.

Organelles targeted by age-associated
energy deficiencies

The aging mitochondria

Mitochondria govern cellular homeostasis by coordinating the
energetic needs of the cell. Mitochondrial dysfunction, a hallmark of

aging, underlies several neurological disorders and disorders of
metabolism such as obesity, aging, hypertension, and type
2 diabetes (Ihab Hajjar and Kotchen, 2006; Esther Phielix and
Roden., 2011; Rieusset, 2018). The pathophysiology resulting
from deterioration of mitochondrial function likely contributes to
the age-dependent decrease in organ function driven by loss of
energy production, lipid biogenesis, and activation of cell death
programs (Ian Lanza and Nair, 2010; Miriam Valera-Alberni and
Canto, 2018; Seungyoon Yu and Pekkurnaz, 2018). Signals necessary
for maintaining cellular homeostasis are exchanged continuously
between mitochondria and ER through organelle-linking contact
sights known as mitochondria-ER contact sites (Csordás et al., 2018)
or MERCs. Namely, the transfer of Ca2+ from ER to mitochondria is
vital for maintaining mitochondrial energy metabolism. MERC
distance or thickness is integral to normal Ca2+ signaling and
transport (Giacomello and Pellegrini, 2016; Csordás et al., 2018).
Contact sites outside of the 12–24 nm range appear to alter Ca2+

uptake and lipid dynamics, in this context (Giacomello and
Pellegrini, 2016), by creating steric hindrance that disrupts Ca2+

transport machinery within MERCs (Giacomello and Pellegrini,
2016). Mitochondrial Ca2+ is required for the activation of oxidative

FIGURE 2
Schematic of theworkflow for cell-type-specific profiling ofmulti-omics on IDC/DCIS tissue sections at the single-cell level with select overlays and
single-ion images using (H2O)n-GCIB-SIMS and C60-SIMS. (A)H&E staining image of a semi-serial section of invasive ductal carcinoma/ductal carcinoma
in situ (IDC/DCIS) tissue. The enlarged image from the region of interest highlighted in blue shows the tumor region in purple and the stromal region in
pink. (B) (H2O)n-GCIB-SIMS imaging of a fresh-frozen tissue section. The cryogenic analysis at 100 K was performed on frozen-hydrated tissue
sections for molecular imaging (e.g., lipids andmetabolites) at a beam spot size of 1.6 µm. (C) C60-SIMS imaging of the same tissue section stained with a
lanthanide-tagged cocktail of antibodies at a beam spot size of 1.0 µm. (D,E), (D) the image alignment and cell segmentation were used to integrate the
omics (E) metabolites, lipids, and proteins into different cell types at single-cell resolution.
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phosphorylation (Roberto Bravo et al., 2011; Brian Glancy and
Balaban, 2012; Rieusset, 2018) and dysregulation of
mitochondrial Ca2+ homeostasis may lead to higher amounts of
radical oxygen species (ROS) (Artyom Baev et al., 2022).

Mitochondrial ROS contributes to age-related loss of tissue
homeostasis (Shigenaga et al., 1994; Carlos López-Otín et al.,
2013) and changes to MERCs are likely to target the “redox
triangle” which includes the mitochondria, ER, and peroxisomes.
Mitochondrial ROS arises from the leakage of electrons from redox
centers of respiratory complexes and associated enzymes (Hoi-Shan
Wong et al., 2017). There are at least eleven sites of O2

•– and H2O2

generation in mitochondria. The rates of ROS generation and the
relative contribution of each site depends on substrate availability
and cellular metabolic context (Hoi-Shan Wong et al., 2017). What
specifically triggers increased mitochondrial ROS during aging is
still under debate, but roles for the initiation of senescence by
mitochondrial ROS have been established (Passos et al., 2010;
Clara Correia-Melo et al., 2016). For example, excessive
production of mitochondrial ROS can drive telomeric-induced
senescence (Passos et al., 2007) and oncogene-induced senescence
(Olga Moiseeva et al., 2009). ROS also contribute to cellular
senescence by promoting DNA damage (Passos et al., 2010),
which in turn activates stress-response pathways such as JNK1/2,
that ultimately leads to SASP formation (Maria Grazia Vizioli et al.,
2020), NLRP3 inflammasome activation (Rongbin Zhou et al.,
2011), in addition to changes in mitochondrial structure,
function, and dynamics (Hélène Martini and Passos, 2022). Thus,
mitochondria play essential roles in establishing and maintaining
the senescence phenotype with production of mitochondrial ROS as
a key component.

In addition to causing DNA damage, ROS also promote lipid
peroxidation, leading to decreased mitochondrial membrane
fluidity and dysregulated mitochondria function (Chen and
Yu, 1994; Shigenaga et al., 1994). Increased ROS can also lead
to protein oxidation. A quantitative “oxi-proteome” analysis has
identified oxidized proteins enriched in senescent fibroblasts by
measuring 4-hydroxy-2-nonenal (HNE)-, glycoxidation (AGE)-,
and carbonylation-modified proteins (Emad Ahmed et al., 2010).
Consistent with increased mitochondrial ROS in senescence, half
of these oxidized proteins were mitochondrial with most involved
in energy metabolism and protein quality control (Emad Ahmed
et al., 2010). Not surprisingly, proteins from the cytoplasm,
nucleus, and ER are also vulnerable to oxidation (Emad
Ahmed et al., 2010). By mapping oxidized biomolecules such
as lipids and proteins, MSI could be used to determine the extent
to which oxidative damage derived from mitochondrial ROS
spreads throughout cells and alters metabolism in surrounding
organelles or neighboring cells. This approach could help answer
foundational questions concerning the role of mitochondrial
ROS in aging and identify both sources and consequences of
ROS in aged tissues.

The tricarboxylic acid (TCA) cycle intermediates are another
link between mitochondrial metabolism and the senescence
phenotype. Some TCA cycle metabolites play pleiotropic roles
outside mitochondria to influence epigenetic modification,
immune regulation, and cell signaling. For instance, cytosolic
citrate is required to produce acetyl-CoA for histone acetylation
(Wellen et al., 2009) and can act as an inflammatory signal (Vittoria

Infantino et al., 2011). α-Ketoglutarate is a co-factor for 2-
oxoglutarate/Fe2+-dependent dioxygenases (OGDD). These
enzymes catalyze the hydroxylation of various substrates such as
nucleic acids, lipids, and proteins, including histone demethylases in
the nucleus (Inmaculada Martínez-Reyes and Chandel, 2020). Also,
succinate accumulation can inhibit the activity of OGDDs and HIF-
prolyl hydroxylases (HPH) and promote DNA hypermethylation
and pseudohypoxia, respectively (Elaine MacKenzie et al., 2007; Eric
Letouzé et al., 2013). Senescent cells display increased levels of TCA
cycle metabolites such as citrate, α-ketoglutarate, and malate likely
as a result of impaired mitochondrial function (Dörr et al., 2013;
Joanna Kaplon et al., 2013; Emma et al., 2015). In vivo, α-
ketoglutarate supplementation improves the lifespan and
healthspan of old mice, reduces systemic inflammation, increases
bone mass, and attenuates age-related bone loss (Inmaculada
Martínez-Reyes and Chandel, 2020; Yuan Wang et al., 2020). In
humans, citrate levels increase in the circulation during
chronological aging (Cristina Menni et al., 2013; Kirsi Auro
et al., 2014) and the potential implications of citrate in age-
related diseases are reviewed elsewhere (Mycielska et al., 2022).
Thus, the TCA cycle metabolome seems to be disrupted in cellular
senescence and aging, but the consequences at the molecular level
remain mostly elusive. MSI may resolve trace changes in the
subcellular localization of TCA cycle metabolites in tissues during
aging and provide clues to the functions those metabolites serve in
age-related tissue dysfunction.

What causes age-related defects in mitochondria is still under
intense investigation. Although multifactorial and context-
dependent, evidence points to disrupted NAD+ metabolism as
a player in mitochondrial decay. The primary cause of NAD+

decline in aging is increased NAD+ degradation without
compensatory upregulation of NAD+ synthesis pathways
(Camacho-Pereira et al., 2016; McReynolds et al., 2021).
Upregulation of expression and increased activity of the
NADase CD38 in old mice causes NAD+ levels to decline and
affects the activity of Sirt3 (Camacho-Pereira et al., 2016). This
mitochondria-localized sirtuin regulates mitochondrial
metabolism and oxidative homeostasis. Thus, the CD38-NAD-
Sirt3 axis leads to age-related mitochondrial dysfunction
(Camacho-Pereira et al., 2016). In addition, NAD+ precursor
supplementation improves mitochondrial function in aged mice
and C. elegans (Gomes et al., 2013; Mouchiroud et al., 2013;
Zhang et al., 2016), and overexpression of Nmnat3, an enzyme of
the NAD+ salvage pathway, restores TCA cycle capacity and
suppresses mitochondrial ROS generation in skeletal muscle of
aged mice (Maryam Gulshan et al., 2018). However, only
recently, SLC25A51 was identified as the mitochondrial NAD+

transporter (Girardi et al., 2020; Kory et al., 2020; Luongo et al.,
2020), but little is known about the kinetics and regulation of
NAD+ and NAD+ precursor influx into mitochondria in a
physiological context and during aging. Flux analysis reveals
incomplete equilibration of NAD+ between cytosol and
mitochondria (McReynolds et al., 2021), suggesting that this
organelle can be particularly sensitive to disturbances in
cellular NAD+ levels. To uncover the consequences of
disruptions in this dynamic during aging, MSI will likely be a
powerful approach to characterizing NAD+ metabolome fluxes in
and out of mitochondria.
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Endoplasmic reticulum (ER)

Communication between the ER and mitochondria is tightly
regulated by mitochondria associated membranes (Zhang et al.,
2021). ER homeostasis drives biosynthetic pathways including
lipogenesis and gluconeogenesis (Gansemer and Rutkowski,
2022). The ER is composed of a set of membranes or cisternae
that are held together by the cytoskeleton. The lumen of the ER
stores phospholipids which are trafficked to various organelles. The
volume of the rough or smooth ER lumens are dependent on the
metabolic activity of the cell. ER functions include folding and
transport of proteins to the Golgi apparatus, lipid biosynthesis, and
Ca2+ storage via Ca2+-dependent chaperones. In the aging cell, ER
chaperones are especially sensitive to oxidative damage and
vulnerable to reduced Ca2+ buffering capacity, resulting in the
deposition of insoluble fibrils or plaques as a consequence of
oxidative stress (Balchin et al., 2016). Deposits that collect in the
liver, brain, and spleen are pathognomonic for diseases associated
with aging including Alzheimer’s disease, Parkinson’s disease, and
Type 2 diabetes (Tian et al., 2019b; Sheraz et al., 2019).

In addition to oxidative stress, the ER responds to various
metabolic stressors by triggering the unfolded protein response
(UPR). Among UPR-inducing stressors, glucose deprivation leads
to ER stress which interferes with disulfide bond catalysis and
N-linked protein glycosylation with implications for caspase
activation (Xu et al., 2005). Additionally, aberrant Ca2+ signaling
in the ER causes improper protein folding, further contributing to
the UPR. The UPR is an adaptive response that permits the cell to
adjust to a challenging environment and maintain normal ER
function and homeostasis. Adaptation also involves
transcriptional modulation to enhance protein folding and
removal of misfolded proteins in the ER. The UPR is primarily a
cell-signaling system to maintain normal cellular function by
restoring protein homeostasis; however, chronic ER stress leads
to apoptosis. During ER stress, the UPR activates rescue pathways
that accelerate protein folding and upregulate molecular chaperones
and enzymes to facilitate the degradation of misfolded proteins
(Gorman et al., 2012; Hetz, 2012). The three branches of UPR
signaling pathways (i.e., IRE1α, PERK, and ATF6) directly or
indirectly influence transcriptional and translational responses to
the stressor, which either alleviate the source of stress or activate cell
death (Ashley Frakes and Dillin, 2017). However, when the UPR
declines with age, it is often a consequence of oxidative damage
sustained by UPR-regulated chaperone proteins responsible for
facilitating protein folding necessary to achieve proteostasis
(Rabek et al., 2003; Nuss et al., 2008). A link between protein
aggregation and aging is demonstrated by inhibiting protein
aggregation and extending lifespan in C. elegans suggesting an
association between proteostasis and longevity (Silvestre Alavez
et al., 2011). The chaperones that appear to be central players in
proteome maintenance include BiP, calnexin, and protein disulfide
isomerase (PDI), which are observed to decrease both centrally and
peripherally with age (Gavilán et al., 2006; Nirinjini Naidoo et al.,
2008; Nuss et al., 2008). UPR during senescence (Pluquet et al.,
2015) occurs in a wide range of cell types activated by oncogenic Ras
(Denoyelle et al., 2006; Dörr et al., 2013; Zhu et al., 2014),
xenobiotics (Dörr et al., 2013; Williams et al., 2013; Matos et al.,
2015), and DNA damage (Panganiban et al., 2013). It is unclear,

however, whether the UPR is a cause or an effect of senescence
(Pluquet et al., 2015). The role of the UPR in senescence, therefore,
remains controversial, and the mechanisms linking ER and
senescence are ripe for interrogation.

Mitochondria-endoplasmic reticulum
contacts (MERCs)

MERCs, the sites of interactions between mitochondria and the
ER, contain hundreds of proteins including enzymes, ion channels,
and tethering and transport binding proteins (Barazzuol et al.,
2021). Membrane fractionation and characterization of contact
zones have identified components of the ER that co-purify with
mitochondria (Wu et al., 2018) and comprise the biochemical
fraction of MERCs known as mitochondria associated
membranes (MAMs). MAMs are the sites of interaction between
organelles (Vance et al., 1997; Patergnani et al., 2011) and play a role
not only in metabolite trafficking and signal transduction but in
membrane fusion, mitophagy, and lipid metabolism (Janikiewicz
et al., 2018). MAM proteins are broadly classified as protein tethers,
ion channels, or enzymes (Wang et al., 2019) and are vulnerable to
age-related dysregulation that occurs as a consequence of loss or
disruption of critical metabolic fluxes (Janikiewicz et al., 2018;
Moltedo et al., 2019; Ziegler et al., 2021). It remains unclear
whether MAM composition is implicated in the aging process
(Janikiewicz et al., 2018).

Although mechanisms of MERC-mediated senescence have not
been fully elucidated, MERCs are implicated in dysregulation of Ca2+

exchange and flux (Giacomello and Pellegrini, 2016), which may
potentiate cellular senescence by increasing mitochondrial Ca2+

concentration. The loss of protein tethers that control Ca2+ and
phospholipid fluxes disrupts mitochondrial respiration and likely
contributes to the aging process (Patergnani et al., 2011). Among the
MAMs across MERC sites that regulate Ca2+ flux, the tethering
mitofusin proteins MFN1 and MFN2 act as conduits from the
mitochondria to the ER, where flux of Ca2+ into the
mitochondria is controlled by the IP3R-DJ-1-GRP75-VDAC
complex (Kaul et al., 2003; Son et al., 2017; Liu et al., 2019).

Ca2+ reservoirs, gradients, and flux in the
MERC space

Ca2+ is critical for mitochondrial function and energetics, and
the ER acts as a reservoir for Ca2+ by maintaining a high Ca2+

gradient with the aid of the ATPase SERCA (Wang et al., 2019). Ca2+

is not only a cofactor for enzymes in cellular respiration but is also
trafficked across MERCs (Szibor et al., 2020). The MERC space
accommodates Ca2+ signal transfer between the ER and
mitochondria via IP3 receptors (IP3R) permitting overall cell
survival (Bartok et al., 2019). Proteins in the MERC space (e.g.,
IP3R and VDAC1) control flux of Ca2+ into mitochondria (Sander
et al., 2021). In addition to Ca2+ trafficking, MERCs modulate: 1)
bidirectional lipid transfer that is critical to steroid synthesis and
membrane maintenance; 2) mitochondrial quality control, which
employs pro-fusion proteins (e.g., MFN1 and 2, and OPA1) to drive
mitophagy (e.g., PINK1 and parkin); and 3) the ER stress response
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and the UPR, involving PERK, among other stress-responsive
proteins (Janikiewicz et al., 2018; Veeresh et al., 2019; Picca
et al., 2020; Wilson and Metzakopian, 2021).

Ca2+ serves an especially important role as a first and second
messenger in signal transduction and as a cofactor of enzymes in
mitochondrial cellular respiration (Fink et al., 2017). Dysregulation of
inter-organellar Ca2+ homeostasis impacts metabolic fluxes, results in
apoptosis, and is likely a mechanism of action in diseases arising from
ER stress. Proteins that are important in Ca2+ shuffling include MFN2,
which is found on the outer membrane of the cell and aids in the
transport of Ca2+ from the mitochondria to the ER. MFN2 is a negative
regulator of MERCs; therefore, ablation of MFN2 leads to increased
Ca2+ shuttling from the ER to mitochondria (Leal et al., 2016). MFN2,
which is enriched in MAM fractions, regulates ER morphology by
tethering the ER and mitochondria. The movement of Ca2+ from a
storage organelle to an energy-producing organelle is critical to cellular
metabolic homeostasis, and interrogation of this process with MSI will
likely reveal mechanisms of aging and age-related diseases associated
with dysregulated Ca2+ fluxes. Understanding the molecular
mechanisms of diseases arising from ER stress may re-contextualize
the pathophysiology of diseases of aging, including cancers (Lin et al.,
2019), Parkinson’s disease (Surmeier et al., 2017), type 2 diabetes
(Burgos-Morón et al., 2019), Alzheimer’s disease (Uddin et al.,
2021), and muscle disorders (Gommans et al., 2002), among others.

Pyridine nucleotide fluxes

NAD(P)+/NAD(P)H and the pyridine nucleotide derivatives of
NAD(P)+ (e.g., NADP and ADPR) potentiate Ca2+ efflux from the
ER (Churchill and Galione, 2001; Mándi et al., 2006) and also serve as
redox cofactors in enzymatic reactions that produce ATP and synthesize
fatty acids, phospholipids, select amino acids, and steroids (Wang et al.,
2019). NADPH reduces oxidized precursors during the synthesis of
lipids, deoxyribonucleotides, and proline, and NAD+ removes electrons
during themetabolismof sugars and fats, producing theNADHrequired
to make ATP. Although the ratio of NADPH/NADP+ is high in all cell
types to accommodate biosynthesis and the oxidative stress response, the
NADH/NAD+ ratio depends on nutrient availability, differs across
organelles, and depends upon localization of metabolic enzymes in
cellular compartments (Hosios and Vander Heiden, 2018). Vesicles and
membrane contact sites are responsible for the trafficking of metabolites,
lipids, and proteins, thereby facilitating adaptation of cells to changing
extracellular conditions (Cohen et al., 2018). Cellular homeostasis,
however, requires sufficient levels of molecules such as NAD(P)+/
NAD(P)H, which declines with age (McReynolds et al., 2020). How
organelles affect the NAD+ levels in a cell and how aging alters this
process is an area that remains open to interrogation and MSI may be
useful for greater resolution of more nuanced roles of NAD+.

Visualizing cellular and subcellular
metabolism in age-related disease
models

Current methods for the visualization of interorganelle spaces
like MERCs include electron microscopy (EM), which provides a
high-resolution image of cellular or tissue ultrastructure that is ideal

for study of organelles, viruses, andmacromolecules. An array of EM
approaches offers detailed resolution of cellular architecture.
Scanning EM (SEM), for example, is a high-resolution imaging
technique using a focused beam of electrons to resolve surface
topography. Transmission electron microscopy (TEM) is
commonly used for high-resolution 2D micrographs (Garza-
Lopez et al., 2021; Lam et al., 2021); however, there are several
3D imaging approaches which permit visualization of organelles
including serial block-face scanning electron microscopy (SBF-
SEM), focused ion beam scanning electron microscopy (FIB-
SEM), and cryo-EM among others. The main difference between
SBF-SEM and FIB-SEM is that the former uses a beam of elections
and latter uses a beam of gallium ions, permitting the resolution of
mitochondria cristae structure or organelle-organelle interactions
such as MERCs. Electron tomography, an extension of TEM that
includes cryogenic electron microscopy (Cryo-EM) improves
visualization of organelles by avoiding crystallization (Xu Benjin
and Ling, 2020). Other techniques, including optical and
fluorescence microscopy, provide visualization of the contact sites
and Ca2+ signaling in MERCs using luminescent or fluorescent Ca2+

sensors. Compared to these other methods, MSI is unique in
capturing individual cells, cellular interactions, and the chemical
microenvironment without requiring the dissociation of tissues.

Previous techniques using 2D static images to visualize MERCs
have been described (Giacomello and Pellegrini, 2016). Whereas 2D
static images provide lower quality images of MERC interactions,
SBF-SEM provides 3D visualization of MERC interactions but not
live images of ER and mitochondrial dynamics. Similarly, whereas
immunogold labeling provides a snapshot of the location of a
protein in a specific area of the electron micrograph, live light
microscopy in contrast shows real-time changes in cristae and
MERC dynamics at high resolution. Live light microscopy,
however, requires fluorophores that often produce
photobleaching and poor image capture. The combination of
electron and light microscopy—also called correlative light and
electron microcopy (CLEM)—is powerful but is limited by the
number of fluorophores and a requirement of imaging at low
temperatures. The CLEM workflow for 3D reconstruction of
images provides insight into spatial relationships and specific
proteins. However, CLEM permits imaging of only a few proteins
at one time. Imaging technologies that can capture metabolic flux
across organelles are still lacking.

The tissue microenvironment comprises heterogeneous
populations of cells through which metabolites flow, interact, and
shape the cellular biochemical milieu, and tissue function depends
on nutrient supply and a sustained flux of metabolites. Mapping the
intra- and inter-cellular metabolic flux may be an approach for
elucidating the aging process in parenchymal cells as well as
determining how the chemical environment shapes the tissue
microenvironment. Such mapping will require the application of
single-cell omics to sample the spatial landscape of cells and
organelles to accurately describe metabolic heterogeneity.
Currently there is no in vivo method to visualize protein or
metabolite trafficking in real time. However, MSI images
addresses this deficit by simultaneously imaging multiple proteins
and metabolites and measuring the distribution of proteins by
quantifying peptide markers of the protein (Hale and Cooper,
2021). Although the complex data generated from MSI analysis
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of protein complexes typically requires computational information
processing, use of multiple labeled isotopes at once offers
improvements over traditional methods by imaging the spatial
distribution of the cell’s chemical microenvironment. Taken
together, whereas EM-based technologies provide insight into the
cellular landscape, structures, and connections between various
organelles, MSI-based technologies permit visualization of
biomolecules in the sampled pixel or voxel within the cell.

MSI-based single-cell omics have been used to elucidate the
biochemical variations among individual cells in the tissue
microenvironment or in cell culture in order to better
understand the cellular landscape of immunometabolism
(Jackson et al., 2020; Manzo et al., 2020; Rovira-Clave et al.,
2021) and cellular dysregulation in cancer (Zhang and Vertes,
2018; Tian et al., 2021b) and microbial resistance (Tian et al.,
2017b). However, there are few applications of MSI in research
on aging. Starr et al. (2016) report the use of SIMS (secondary ion
mass spectrometry) to assess physiological changes in the stratum
corneum of photo-aged human skin. In addition to an altered spatial
distribution of sterol cholesterol sulfate, there is more lignoceric acid
(C24:0) and hexacosanoic acid (C26:0) in photo-aged human skin,
which have not been linked previously to aging skin. These findings
provide insights not only into novel aging mechanisms, but also
could inform the design of both pharmaceutical and topical cosmetic
products to counter photoaging. Additionally, SIMS imaging
coupled with stable isotope labeling was used to trace DNA
synthesis and de novo lipogenesis to measure cell proliferation
and lipid turnover. Imaging data show an age-dependent decline
in new adipocyte generation and adipocyte lipid turnover likely
mediated by an age-related decline in insulin-like growth factor-1
(IGF-1) (Guillermier et al., 2017).

Although studies of aging using MSI demonstrate chemical
variations across individual cells, the integration of different
omics in single cells for a comprehensive multilevel
understanding of the molecular mechanism is challenging.
Recently, improved single cell resolution has been achieved by
improved MSI methods and workflows. For example, with
MALDI, improved laser focus, matrix application, and molecular
ionization have made the combination of metabolomics and
proteomics possible in single cells (Rubakhin et al., 2003; Zavalin
et al., 2015; Kompauer et al., 2017; Wang et al., 2022). Thus, MSI is
an analytical tool that can image multiple untagged biomolecules to
monitor metabolic pathways originating from cellular/subcellular
compartments. This technology not only improves upon existing
approaches but leverages substantial spatial resolution to interrogate
challenging questions in the field of aging, including: 1) the
intraorganellar locale of suppressed de novo lipogenesis observed
during ER stress in aging tissues (Ward et al., 2022); 2)
mitochondrial ATP dynamics in senescent cells (Depaoli et al.,
2018); 3) metabolic fluxes through multiple single-cell types in
tumor tissue (Jeong et al., 2017); and 4) the subcellular
localization of lipid storage in various metabolic diseases (Kim
et al., 2016). The value of MSI rests in the layers of biochemical
data that can be mined with precision from individual cells in tissue
without the need for tissue dissociation. MSI offers a comprehensive
view of aging on the cellular and subcellular level with the potential
to generate new hypotheses and identify novel therapeutic targets.
The failure to achieve sufficient molecular coverage, spatial

resolution, and non-cryogenic analysis has hindered the
application of spatial lipidomics/metabolomics at subcellular
resolution. Other challenges that all MSI tools face include
metabolic isomer separation, quantification within complex
biomatrices, protein imaging, low-concentration biomolecules.
The development in the technology and methodology have been
adapted to solve the issues, such as integration of ion mobility for
isomer imaging (McLean et al., 2007; Zandkarimi et al., 2019),
external standards for quantification calibration (Landgraf et al.,
2011), novel desorption sources (e.g., LESA and GCIB) for
visualization of protein and trace molecules (Sarsby et al., 2015;
Sheraz et al., 2019; Tian et al., 2021a). MSI can also be used to
understand general disease states in MERCs and how the complex
metabolomic and protein makeup of MERCs is altered during
pathogenesis.

In the following sections, we will consider the role of the
mitochondria, the ER, MERCs, and the metabolic changes that
occur in these structures in various diseases associated with
aging. We propose that MSI can provide lipidomics/
metabolomics information at a subcellular level to better
understand the role that metabolic changes in the
mitochondria, the ER, and MERCs play in the development of
these diseases.

Exploring diseases of aging at the
organellar level: Outstanding questions
and opportunities

Neurodegenerative disorders

Diseases of aging occur from oxidative stress, mitochondrial
mutations, misfolded proteins, or failure of defective organelles to
turn over (Moltedo et al., 2019); therefore, the ER and ER contact
sites are potentially important targets of aging. ER stress, leading to
the disruption of MERCs, is observed in models of Alzheimer’s
disease and Parkinson’s disease (Remondelli and Renna, 2017) and
is a hallmark of other neurodegenerative disorders, including
Huntington’s disease and amyotrophic lateral sclerosis (ALS).
Production of the β-amyloid peptide in Alzheimer’s disease,
which is processed to the amyloid precursor protein by γ-
secretase, increases the physical interactions of MERC sites and
augments Ca2+ shuttling between the ER and mitochondria
(Zampese et al., 2011). Likewise, mutant forms of α-synuclein
and parkin that are associated with the pathophysiology of
Parkinson’s disease compromise Ca2+ transport across MERCs
and lead to increased autophagy and diminished mitochondrial
dynamics, respectively (Calì et al., 2012; Calì et al., 2013). ROS and
apoptotic signals are regulated by the MERC tether PERK (Verfaillie
et al., 2012), which when upregulated in Alzheimer’s disease and
Parkinson’s disease likely results in increased cell death and is
correlated clinically with memory loss (Ma et al., 2013).
Interestingly, inhibition of PERK reduces MFN-2 contact with
the ER and alleviates ER stress (Muñoz et al., 2013; Celardo
et al., 2016). Visualizing the locale of proteins associated with ER
stress may provide insight into mechanisms of neurodegeneration
and inform therapeutic strategies for the treatment of
neurodegenerative disorders.
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Maintaining Ca2+ homeostasis is also a strategy to alleviate ER
stress in neurons. Despite limited in vivo studies in models of
neurodegenerative diseases, Drosophila studies show that
targeting pro-fusion MERC proteins critical to Ca2+ homeostasis
in mitochondria (e.g., PINK1) promotes the survival of neurons (Lee
et al., 2018). Recent studies in dopamine neurons, which are targeted
in Parkinson’s disease, suggest that ER increases its levels of NADH
and NADPH in response to metabolic stress in mitochondria. This
apparent crosstalk between stress-responsive organelles suggests a
coordinated response involving the sensing and shuttling of redox
molecules across MERCs (Tucker et al., 2016). An example of a
redox-sensitive response shared across MERCs is observed in
MERCs of fibroblasts derived from individuals with ALS with a
complex I deficiency. In these cells, increased NADH/NAD+ ratios
in mitochondria appear to activate the UPR in the ER, suggesting
that metabolic remodeling of redox-sensitive molecules triggers a
stress response across organelle contact sites (Straub et al., 2021).
Motor neurons affected by ALS, unlike fibroblasts, may be less
responsive to an adaptive stress response, given the differences in
nutrient uptake between fibroblasts and neurons. Metabolic
remodeling might be captured in real time through spatial
resolution by MSI and provide further elucidation of the ER
stress response across different cell types.

Astrocytes with a high metabolism react to the stress of
inflammation or neuronal injury by upregulating Ca2+ signaling,
which can be a predictor of disease severity (Shigetomi et al., 2019).
Ca2+ is mobilized by the activation of the ryanodine receptor in the
ER by cADPR produced by CD38-mediated breakdown of NAD+

(Yamasaki et al., 2005). Increased Ca2+ flux results in greater ATP
production and mitochondrial antioxidant potential (Park et al.,
2021). The role of NAD(H) and NADP(H) in MERCs is not well
understood; therefore, determining the location and trafficking of
these molecules across MERCs using a spatial omics approach may
clarify the role of redox sensitive pyridine nucleotides in homeostasis
and disease. The voltage-dependent anion channel (VDAC)
interaction with IP3R and deglycase (DJ-1), which is regulated by
glucose-related protein 75 (GRP-75) (Basso et al., 2020), is critical to
Ca2+ homeostasis in MERCs. While the importance of the tethering
of MERCs for Ca2+ homeostasis is known, the presence of DJ-1 has
only recently been discovered (Liu et al., 2019; Basso et al., 2020).
MSI could provide an estimation of the relative abundance of
specific proteins in diseases.

Chronic metabolic disorders

Metabolic syndrome is a constellation of cardiometabolic risk
factors that include obesity, insulin resistance, dyslipidemia, and
hypertension (Moltedo et al., 2019). During metabolic homeostasis,
the ER and mitochondria serve as nutrient sensors that modify the
distance of MERC sites to adapt to changes in nutrient type and
availability, also known as metabolic flexibility (Sood et al., 2014).
Loss of this adaptive capacity compromises metabolic homeostasis
leading to chronic metabolic diseases (Galgani et al., 2008).
Dysregulation of MERCs leads to inter-organellar
miscommunication resulting in mitochondrial Ca2+ overload,
impaired insulin signaling by ER stress, and lipid dysregulation
and may play a yet determined key role in metabolic homeostasis

(Morgado-Cáceres et al., 2022). Investigating the molecular
mechanisms of metabolic flexibility using a combination of
imaging and omics through MSI may improve upon approaches
that have been taken historically to measure physiological
adaptability (Bret Goodpaster and Sparks, 2017).

Insulin resistance (IR) is perhaps the best-characterized example
of miscommunication between the ER and mitochondria (Arruda
et al., 2014; Rieusset et al., 2015; Theurey et al., 2016; Rieusset, 2018;
Dia et al., 2022). IR or impaired insulin sensitivity results in
decreased glucose uptake by cells in type II diabetes and obesity
and can be attributed to mitochondrial dysfunction leading to the
release of Ca2+ from the ER and ER stress (Lim et al., 2009) and
dysregulation of MERCs in response to palmitate, high fat, or high
sucrose (Tubbs et al., 2014; Tubbs et al., 2018a; Tubbs et al., 2018b;
Beaulant et al., 2022) in the diet. Several proteins that reside in the
MERCs may be involved in obesity-induced IR including MFN2
(Sebastián et al., 2012; Gan et al., 2013), IP3R1 (Arruda et al., 2014),
PACS2 (Arruda et al., 2014), PDK4 (Thoudam et al., 2019) as well as
many other proteins. It has been proposed by Arruda et al. (2014),
that increased MAM formation drives several processes that lead to
impaired insulin action and aberrant glucose metabolism. Together
these finding suggest that disruption of MERCs and resident MAM
proteins, are important for understanding organelle dysfunction and
possibility that restoring MERCs proper function may be useful for
future therapeutics (Rieusset, 2018).

In addition to regulating insulin, MERCs affect enzymes that
regulate lipid metabolism (Cheng et al., 2020). Phospholipid
exchange between ER and mitochondria requires intact MERCs
and is required to synthesize phosphatidylserine (PS),
phosphatidylethanolamine (PE), and phosphatidylcholine (PC)
(Szymański et al., 2017). An increase in the ratio of PC:PE
inhibits ER Ca2+ transport and induces ER stress in a murine
obesity model (Fu et al., 2011). The localization of PS synthesis
at contact sites and the shuttling of PS from the ER to the
mitochondria by MFN2, which is the rate-limiting step in PE
synthesis, provides the optimum PC:PE ratio for cell function.
An altered ratio disrupts cell membrane integrity and potentiates
steatohepatitis (Li et al., 2006). In mice, the accumulation of fat in
the liver decreases NAD+, triggers mitochondrial dysfunction, and
curtails ATP production (Gariani et al., 2016). Supplementation
with the NAD+ precursor nicotinamide riboside (NR) reverses fatty
liver disease in mice through SIRT1-and SIRT3-dependent UPR in
mitochondria, suggesting that boosting NAD+ could reverse
mitochondrial dysfunction (Gariani et al., 2016). The ability to
simultaneously visualize MERC distance and measure flux of
phospholipids from ER to mitochondria using MSI may enhance
understanding of IR at an organellar level.

Muscle disorders

Skeletal muscle responds to a continuum of stressors that
challenge metabolic homeostasis and either forge an adaptive
change or result in pathogenesis. Evidence is mounting in
support of a role for contact sites between mitochondria and the
sarcoplasmic reticulum (SR), a specialized form of ER charged with
Ca2+ storage, Ca2+ mobilization, and signaling. Disrupted transport
of Ca2+ across MERCs has emerged as an important feature of
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muscle disorders. As a contractile tissue, skeletal muscle relies upon
availability of ATP, which requires local transport of Ca2+ between
SR and the mitochondria contacts. Ca2+ is required in oxidative
metabolism and acts as a cofactor of TCA enzymes (e.g., isocitrate
dehydrogenase, a-ketoglutarate dehydrogenase, pyruvate
dehydrogenase) and synthesis of reducing equivalents (e.g.,
NADH, FADH2). Whereas IP3R (IP3R1, IP3R2, IP3R3)
modulates release of Ca2+ stored in the ER/SR, VDACs mediates
the flux of Ca2+ into mitochondria (Mikoshiba, 2015; Bartok et al.,
2019; Fan et al., 2022; Schmitz et al., 2022). An additional MAM-
enriched protein called SEPN1 has been identified at the ER/SR
interface (Filipe et al., 2021). SEPN1 appears to enhance ER/
mitochondria contacts, calcium flux, and oxidative
phosphorylation and its dysregulation has been implicated in
severe muscle weakness. The movement of calcium from a
storage organelle to an energy producing organelle is critical to
cellular metabolic homeostasis and interrogation of this process is
likely to shed greater light on mechanisms of muscle disorders.

While Ca2+ flux into the mitochondria is essential for normal
metabolism, an overload of Ca2+ activates the mitochondrial
permeability transition pore, resulting in mitochondrial swelling
and the dissemination of apoptotic signals (Zhou et al., 2022). To
counter the problem of Ca2+ toxicity leading to cell death, the
tethering protein MFN2, which is localized to the outer
mitochondrial membrane and ER surface, protects mitochondria
by creating space within MERCs (Filadi et al., 2015). de Brito and
Scorrano (2008) demonstrated MFN2 to be a bonafide tether in
MERCs. Conversely, this discovery was challenged (Filadi et al.,
2015) by Filadi et al.; however, Naon et al. (2016), reconfirmed
MFN2 as a MERC tether by providing evidence that Mfn2 ablation
increasesMERC distance (Sebastián et al., 2012). Additionally, Naon
et al. (2016) showed that MFN2 ablation causes reduction of
mitochondrial Ca2+ uptake but doesn’t affect mitochondrial Ca2+

uniporter complex, further confirming MFN2 as a critical tether
important for MERC distance. Moreover, MFN2 has a critical role in
glucose homeostasis and insulin signaling in skeletal muscle
(Sebastián et al., 2012). This suggests that MFN2 in skeletal
muscle is an important regulator of mitochondrial dynamics and
MERCs. MFN2 dimerizes with itself on the outer mitochondrial
membrane but also interacts with MFN1 on the inner mitochondria
membrane allowing for interaction with inner membrane fusion
proteins such as OPA1. OPA1 functionally requires MFN1 further
confirming the distinct roles between the two proteins (Sood et al.,
2014). Interestingly, ablation of OPA1 induces ER stress, which in
turn upregulates MFN2, as a key MERC tethering protein (Pereira
et al., 2017). This suggests that as a possible compensatory
mechanism for MFN2 upregulation during loss of OPA1 in
skeletal muscle. MERC ultrastructure may also contribute to the
pathophysiology of certain muscle disorders. For example, MERCs
decrease after endurance exercise (Merle et al., 2019) but increase in
aging (Marzetti et al., 2016; Sebastián et al., 2016; Picca et al., 2017),
suggesting that the ultrastructure of MERCs in muscle may respond
differentially to stressors.

Although MERCs play a role in some muscle myopathies, their
function is less clear in sarcopenia, a myopathy in the elderly that is
accompanied by a progressive increase in body fat (Hsu et al., 2019) and
risk of metabolic syndrome (Umegaki, 2015). Several muscle disorders
have been linked to a failure of Ca2+ regulation by MERCs, including

Duchenne muscular dystrophy (DMD) and sarcopenia. DMD results
from the defective cytoskeletal protein dystrophin. In dystrophin-
deficient muscle, Ca2+ homeostasis is dysregulated, which results in
aberrant Ca2+ signaling and increased ROS production (Cully and
Rodney, 2020). Similarly, mutations in ryanodine receptor (RyR1) lead
to severe muscle myopathies, decreasing SR Ca2+ amplitudes (Lee et al.,
2017). Such ryanodine receptors are important for Ca2+ leakage and
mishandling, playing a major role in diseases such as DMD (Meyer
et al., 2021). Ca2+ levels in dystrophin-deficient skeletal muscle are
regulated by the SR membrane-bound ryanodine receptor, which
promotes Ca2+ release (Meyer et al., 2021), and the SR membrane-
bound Ca2+ salvaging proteins SERCA1 and SERCA2a, which in
dystrophin deficiency fail to scavenge excess Ca2+ (Schneider et al.,
2013; Voit et al., 2017).

Ca2+ dysregulation can lead to oxidative stress and ROS production.
To counter ROS, antioxidant enzymes rely on NADPH as a source of
reducing equivalents. Inmuscle SR, hexose-6-phosphate dehydrogenase
(H6PD) reduces NADP+ to produce the NADPH needed for
steroidogenesis, and H6PD-deficient skeletal muscle exhibits a
myopathy characterized by abnormal SR structure (Lavery et al.,
2006; Rogoff et al., 2010), activation of stress-induced UPR (Bujalska
IJ et al., 2008), and dysregulation of Ca2+ metabolism (Ying, 2006).
Therefore, H6PD is important not only for steroidogenesis but also for
normal ER/SR redox balance. H6PD knockout mice upregulate NRK2-
mediated biosynthesis of NAD+ from NR in response to dysregulated
NADPH homeostasis in muscle SR and impaired metabolism in
mitochondria (Doig et al., 2020). Curiously, NR supplementation of
H6PD knockout mice fails to reverse the muscle myopathy phenotype,
despite improvement following NR supplementation in a mouse model
of mitochondrial myopathy (Khan et al., 2014). The role of H6PD
modulation of NADPH in whole-cell redox andmetabolism remains to
be elucidated and may be visualized and quantified by MSI.

The changes in insulin signaling, loss of proteostasis, and
inflammation characteristic of sarcopenia are likely mediated by
mitochondrial dysfunction (Coen PM et al., 2019; Ferri et al., 2020).
Mitochondrial dysfunction leads to: 1) loss of mitochondrial quality
control (Joseph et al., 2013); 2) increased activity of the ryanodine
Ca2+ channel receptor, resulting in Ca2+ overload and mitochondria
permeability transition pore activation (Andersson et al., 2011); 3)
Ca2+-induced decreased proteolysis and the formation of toxic
proteins (Baehr et al., 2016); and 4) ROS leakage due to
mitochondrial dysfunction (Shally and McDonagh, 2020). These
findings support a role for MERCs in the pathogenesis of sarcopenia
(Sebastián et al., 2016; Wiedmer et al., 2021). However, we have a
very limited understanding of sarcopenia development, due to lack
of appropriate animal models and the difficulty in separating “pure
sarcopenia” from other age-related comorbidities (Christian CJ and
Benian, 2020).

Atherosclerosis

The pathogenesis of the age-related development of
atherosclerosis (Finney et al., 2017), an inflammatory disease of
the arteries leading to fibrosis, clotting, and increased cardiovascular
risk, can be tied to dysfunction of mitochondria-associated ER
membrane formation in smooth muscle (Bennett et al., 2016;
Perrotta, 2020; Wang et al., 2021) and endothelial cells (Nguyen
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et al., 2012). One mechanism of MERC-mediated atherosclerosis
depends on the tethering protein PACS2 to transfer Ca2+ from the
ER to mitochondria, resulting in Ca2+ overload, loss of
mitochondrial membrane potential, increased production of ROS,
the release of cytochrome c, and, eventually, apoptosis (Moulis et al.,
2019; Yu et al., 2019). Oxidized low-density lipoprotein also induces
inflammation in endothelial cells, thereby recruiting the
NLRP3 inflammasome to contact sites with the activation of
vascular remodeling (Zeisbrich et al., 2018). The
NLRP3 inflammasome is also activated by ATP, ROS, ER stress,
Ca2+ signaling, and mitochondrial dysfunction (Strowig et al., 2012;
Chen and Chen, 2018). Ca2+ mobilization via the cell-surface type II
transmembrane glycoprotein CD38 is critical for the activation of
the NLRP3 inflammasome (Li et al., 2020). CD38 is a NADase that
metabolizes nicotinamide nucleotides (NAD+ and NMN) to ADPR
and cADPR (Hogan et al., 2019). cADPR mobilizes Ca2+ by
activating the ryanodine receptor in SR (Venturi et al., 2012).
Recent data in a diabetic mouse model demonstrate that CD38-
mediated Ca2+ signaling leads to mitochondrial damage, the release
of mitochondrial DNA, and activation of NLRP3 inflammasome in
vascular smooth muscle (Li et al., 2020). The tissue specific locale of
CD38-mediated ADPR and cADPR production and subsequent
Ca2+ mobilization are likely candidates for spatially resolved
omics available through MSI. To this end, the NAD+ consumer
CD38 has potential as a therapeutic target in atherosclerosis.

Perspectives

MSI is an analytical tool that has the capability to image multiple
untagged biomolecules for the purpose of monitoring metabolic
processes originating from cellular/subcellular compartments. This
technology not only improves upon existing approaches, but
leverages its substantial spatial resolution to interrogate
challenging questions in the field of aging including: the
intraorganellar locale of suppressed de novo lipogenesis observed
during ER stress in aging tissues (Ward et al., 2022); mitochondrial
ATP dynamics in senescent cells (Depaoli et al., 2018); metabolic
fluxes throughmultiple single cell types found in tumor tissue (Jeong
et al., 2017); and the subcellular localization of lipid storage in
various metabolic diseases (Kim et al., 2016). Themerit ofMSI lies in
the layered biochemical data that can be mined with precision from
individual cells in tissue without the need for tissue dissociation. MSI
offers a comprehensive view of aging on the cellular and sub-cellular
level with the potential to generate new hypotheses and identify
novel therapeutic targets.
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