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While the carbonic anhydrase (CA, EC 4.2.1.1) superfamily of enzymes has been
described primarily as involved only in pH regulation for decades, it also has many
other important functions. CO2, bicarbonate, and protons, the physiological
substrates of CA, are indeed the main buffering system in organisms belonging
to all life kingdoms; however, in the last period, relevant progress has beenmade in
the direction of elucidating the involvement of the eight genetically distinct CA
families in chemical sensing, metabolism, and several other crucial physiological
processes. Interference with CA activity, both by inhibiting and activating these
enzymes, has thus led to novel applications for CA inhibitors and activators in the
field of innovative biomedicine and environment and health. In this perspective
article, I will discuss the recent advances which have allowed for a deeper
understanding of the biochemistry of these versatile enzymes and various
applications of their modulators of activity.
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1 Introduction

Discovered 90 years ago in the human blood (Meldrum and Roughton, 1933), during
experiments aimed to understand the transport of gases in the vertebrates’ blood, the enzyme
carbonic anhydrase (CA, EC 4.2.1.1) was considered for decades the quintessential
metalloenzyme and a relevant tool for studying the physiology and biochemistry of the
crucial molecules/ions acting as its substrates or reaction products (Krebs and Roughton,
1948; Supuran, 2023a). CA catalyzes the reversible interconversion between CO2 and
bicarbonate, effectively hydrating this metabolic gas, generated in oxidative processes in
all organisms, to soluble products: bicarbonate and protons (Lindskog, 1997; Supuran, 2008).
The vertebrate enzymes, which all belong to the α-CA family, indeed use a zinc hydroxide
mechanism for achieving this reaction at a physiological pH, with a huge efficacy, some of
them being amongst the best catalysts known in nature, with kcat/KM values >108 M−1 s−1 and
kcat values >106 s−1 (Lindskog, 1997; Supuran, 2016). During the years, novel CA genetic
families have been discovered in organisms all over the phylogenetic tree, and currently,
eight of them are known: α-, β-, γ-, δ-, ζ-, η-, θ-, and ι-CAs (Alber and Ferry, 1994; Cox et al.,
2000; Xu et al., 2008; Del Prete et al., 2014; Capasso and Supuran, 2015; Kikutani et al., 2016;
Jensen et al., 2019; Jin et al., 2020; Hirakawa et al., 2021). There are in fact very few organisms
in which these enzymes were absent: few bacteria and one archaeon (Smith et al., 1999; Ueda
et al., 2012). All of them, except ι-CAs, are metalloenzymes, and in addition to Zn(II), Cd(II),
Fe(II), and Co(II) ions are found in their active sites, with the corresponding apo-enzymes
being catalytically totally inactive (Lindskog, 1997; Ferry, 2010; Supuran, 2016) and the
active-site metal hydroxide playing a crucial catalytic role (Lindskog, 1997). In fact, a water
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molecule coordinated at the metal ion is activated upon nucleophilic
attack on the CO2 molecule bound in a hydrophobic pocket nearby,
at the bottom of the active site cavity (Domsic et al., 2008; Aggarwal
et al., 2015). This water molecule coordinated to the metal ion within
the enzyme cavity has a pKa value of approximately 7, thus being
orders of magnitude more nucleophilic than bulk water (Lindskog,
1997; Supuran, 2008; 2016). The rate-determining step of the entire
catalytic cycle is, on the other hand, a proton transfer reaction from
the metal-coordinated water molecule to the environment, which is
assisted by an active-site amino acid residue with the appropriate
pKa value, a His in most α-CAs (Steiner et al., 1975; Tu et al., 1989).
However, Hirakawa et al. (2021) recently characterized ι-CAs from
two different organisms, the cyanobacterium, Anabaena sp. PCC
7120, and the chlorarachniophyte alga, Bigelowiella natans,
demonstrating that no metal ions are present in these CAs. As
for the remaining seven CA genetic families, CO2 hydration is
achieved by an active site-activated water molecule; however, as
shown in Figure 1, the activation is performed without metal ions by
three amino acid residues conserved in all ι-CAs investigated so far:
Thr106, Ser199, and Tyr124 (Nocentini et al., 2021).

2 CAs and pH regulation

The CA-catalyzed reaction generates from two neutral
molecules, CO2 and water, a weak base (bicarbonate) and a
strong acid (H+ ions). This system is universally used for
pH regulation for at least two reasons: 1) the facile and general
availability of CO2, which as a metabolic gas is also possible to
eliminate from the system rather easily, and 2) the widespread
presence of CAs in most cells, tissues, and organisms and their huge
catalytic activity with CO2 as a substrate (Supuran, 2023a). Thus,
under both physiological conditions, in normal cells (Occhipinti and
Boron, 2019) or in pathologic states, e.g., tumors (Neri and Supuran,
2011), CAs promote rapid buffering and the tight control/stability of

pH-sensitive processes. In teleost fish, CA activity in muscle
capillaries short-circuits pH regulation in red blood cells,
acidifying the erythrocytes, which unloads O2 from hemoglobin,
providing elevated tissue oxygenation, a phenomenon known as the
Root effect (Rummer et al., 2013).

3 CO2/bicarbonate sensing

CO2 is a primary product of respiration, possibly playing other
physiological roles, some of which are poorly understood, whereas its
conversion to bicarbonate under the action of CAs triggers significant
responses in most organisms that sense these two molecules in different
ways (Cummins et al., 2014; Strowitzki et al., 2022). Altered levels of
either CO2 or bicarbonate elicit the activation of multiple adaptive
pathways both in prokaryotes and eukaryotes. Thus, in bacterial and
fungal pathogens, CO2/bicarbonate sensing is correlated with increased
virulence and/or pathogenicity (Bahn et al., 2005; Abuaita and Withey,
2009; Cottier et al., 2013). In insects, this chemosensing process is
involved in prey-seeking behavior (Cummins et al., 2014), whereas in
vertebrates, it is involved in taste perception (Chandrashekar et al., 2009),
lung function (Kunert et al., 2022), and the control of immunity
(Strowitzki et al., 2022). In algae, aquatic plants, diatoms, and
cyanobacteria, CO2/bicarbonate sensing is highly relevant in order to
supply sufficient CO2 for photosynthesis, and hence, sophisticated
carbon-concentrating mechanisms have independently evolved in
many such organisms (Momayyezi et al., 2020; Santhanagopalan
et al., 2021; Zhang et al., 2022; Liao et al., 2023; Shimakawa et al., 2023).

4 Metabolism

In recent years, the involvement of CAs in metabolism has been
considered and investigated in detail (Supuran, 2018). Several
biosynthetic processes, which involve CO2/bicarbonate as

FIGURE 1
Proposed catalytic mechanism of ι-CAs: the water molecule is activated upon nucleophilic attack on the CO2 molecule bound in a hydrophobic
pocket, through H-bond formation with T106, S199, and Y124. Proton transfer is presumably achieved by H197.
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substrates, including various carboxylation reactions and
gluconeogenesis, are assisted by different CA isoforms, leading to
the production of metabolic intermediates such as pyruvate,
succinate, and fatty acids (Supuran, 2022). By using
mitochondrial CA-selective inhibitors, it has been demonstrated
that pyruvate metabolism was the most dramatically affected,
followed by fatty acid metabolism and succinate metabolism
(Arechederra et al., 2013). Santi et al. (2013) also showed that in
tumors, bicarbonate formed from CO2 by hydration in the presence
of CA IX or XII supplies cancer cells with intermediates utilized for
sustaining their high proliferation rate through transformations in
metabolic intermediates, as those described previously. The
involvement of CAs in the metabolism of pathogenic bacteria,
fungi, and protozoans was less investigated, but it seems to be as
relevant as for mammalian cells (Supuran and Capasso, 2021;
Supuran, 2023b).

5 Discussion and conclusion

In this section, I will discuss several applications of these enzymes
and their modulation of activity in the field of biomedicine and
environment and health. Its application in crop engineering,
i.e., integrating CAs involved in C4 or crassulacean acid metabolism
or algal carbon-concentrating mechanisms (in which various CAs are
also involved) into cultivars for boosting agricultural yields has been
recently demonstrated to be feasible (Findinier and Grossman AR, 2023;
Förster et al., 2023) and might be of crucial relevance in a planet
with >8 billion inhabitants. The field is in its infancy, but the recent
breakthrough mentioned previously as well as other similar research
studies (He et al., 2023) showed that both α- and β-CAs of rice (Oryza
sativa) are essential for photosynthesis, providing the possibility for
engineering plants for high-yielding crops.

In the era of global warming, CO2 capture has been seriously
considered a possibility to relieve the long-term consequences of
anthropic hot greenhouse gas emissions (Migliardini et al., 2014; Del
Prete et al., 2016; Del Prete et al., 2019; Talekar et al., 2022; Huili
et al., 2023; Villa et al., 2023). Various enzymes, many derived from
extremophilic organisms, which provided highly thermostable CAs,
have been proposed for such a purpose, either for transforming CO2

into bicarbonate used for algal growth, precipitating it as CaCO3, or
transforming it into organic compounds, such as oxaloacetate (Del
Prete et al., 2016).

Inhibiting human CAs has been clinically used for several
decades, with many available drugs acting as diuretic,
antiglaucoma, antiepileptic, antiobesity, and antitumor agents or
as drugs for acute mountain sickness and idiopathic intracranial
hypertension (Supuran, 2021). Other novel applications are also
intensely studied and may soon lead to relevant developments for
inflammation, cerebral ischemia, and cognition disturbances,
among others.
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