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Introduction: Rheumatoid arthritis (RA) is a common chronic autoimmune
disease with high incidence rate and high disability rate. One of the top
complications is cancer, especially lung adenocarcinoma (LUAD). However,
the molecular mechanisms linking RA and LUAD are still not clear. Therefore,
in this study, we tried to identify the shared genetic signatures and local immune
microenvironment between RA and LUAD and construct a clinical model for
survival prediction.

Methods: We obtained gene expression profiles and clinical information of
patients with RA and LUAD from GEO and TCGA datasets. We performed
differential analysis and Weighted Gene Co-expression Network Analysis
(WGCNA) to discover the shared genes between RA and LUAD. Then, COX
regression and LASSO analysis were employed to figure out genes significantly
associated with survival. qRT-PCR and Western blot were utilized to validate the
expression level of candidate genes. For clinical application, we constructed a
nomogram, and also explored the value of RALUADS in characterizing immune
infiltration features by CIBERSORT and xCell. Finally, responses to different drug
therapy were predicted according to different RALUADS.

Results:Our analysis identified two gene sets from differentially expressed genes
and WGCNA gene modules of RA and LUAD. Filtered by survival analysis, three
most significant shared genes were selected, CCN6, CDCA4 and ERLIN1, which
were all upregulated in tumors and associated with poor prognosis. The three
genes constituted RA and LUAD score (RALUADS). Our results demonstrated that
RALUADS was higher in tumor patients and predicted poor prognosis in LUAD
patients. Clinical nomogram combining RALUADS and other clinicopathological
parameters had superior performance in survival prediction (AUC = 0.722). We
further explored tumor immune microenvironment (TME) affected by RALUADS
and observed RALUADS was closely related to the sensitivity of multiple immune
blockades, chemotherapy and targeted drugs.
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Conclusion: Our findings suggest that there are shared physiopathologic
processes and molecular profiles between RA and LUAD. RALUADS represents
an excellent prognosis predictor and immune-related biomarker, which can be
applied to select potential effective drugs and for LUAD patients with RA.
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1 Introduction

Rheumatoid arthritis (RA) is one type of chronic
autoimmune diseases (AIDs) characterized by progressive
joint degeneration and extra-auricular inflammation, leading
to systemic destruction, decreased quality of life and even
permanent disability (Smolen et al., 2016). According to
epidemiological data, the global age-standardized prevalence
rate of RA is 224.25, ranking the first in the major AIDs and
demonstrated a significantly increasing trend from 1990 to 2019
(Cao et al., 2023). Although the etiology of this common AID is
still uncertain, increased antibodies and immune-related
substances such as rheumatoid factor and TNFα, is considered
one of the most important features of RA. Therefore, drugs
targeting the immune system, mainly disease-modifying
antirheumatic drugs (DMARDs) is the standard treatment for
RA with nanocarriers containing targeted drugs being
investigated vigorously (Lin et al., 2020; Zhang et al., 2021;
Smolen et al., 2023). However, in spite of the significantly
improved response rate with the progression of RA treatment,
increasing incidence of comorbidity and related mortality have
been reported, including cardiovascular diseases (CVDs),
infections, cancers etc. (England et al., 2018; Lortholary et al.,
2020; Ytterberg et al., 2022; Chen et al., 2023). The underlying
reasons may be systemic and chronic inflammation, genetic
factors, immunosuppressant drugs and conventional risk
factors such as high blood lipids level and other imbalance
caused by disturbed metabolism (Szekanecz et al., 2011;
Ytterberg et al., 2022).

Recent epidemiological surveys showed that the standardized
incidence ratios of RA to develop cancer is 3.99 (95%CI = 3.40–4.65)
(Zhou et al., 2022), with cancer types ranging from different
hematological malignancies which rank the first, to other various
solid tumors, such as lung cancer, melanoma, cervical cancer etc.
(Zhang et al., 2022). Of note, lung adenocarcinoma (LUAD) was
shown to be the most common lung cancers in AIDs (Jacob et al.,
2020) and pulmonary involvement is a common extraarticular
manifestation of RA (Sparks, 2019). Immune dysregulation is
considered as a crucial contributor to the development of LUAD
of RA patients. A bioinformatic study suggested that CD8A, GZMA,
and PRF1 were related to CD8+ T cell in RA and positively associated
with 33 tumors (Zhao et al., 2022). What’s more, MAP4K3 which
interacts with and activates PKC, resulted in the activation of IKK/
NF-kB in human T cells (Chuang et al., 2016). Except for T cells,
Zhang etc. showed that extracellular ADP disrupted tissue
homeostasis and function to trigger RA by recruiting neutrophils
(Zhang et al., 2022). Nonetheless, the mechanisms under the
association between RA and LUAD are still unclear yet.

Hence, in this study, we employed bioinformatic tools to
demonstrate the shared mechanisms of RA and LUAD from the
perspective of gene expression and clinical profiles, and immune
infiltration characteristics. In order to apply to the clinical settings,
we constructed a nomogram model and predict potential
therapeutic drugs for LUAD, which we hope may help improve
the early and effective management and treatment of LUAD.

2 Methods

2.1 Data download and processing

In order to obtain RA expression data, we applied the
keyword “rheumatoid arthritis” in the Gene Expression
Omnibus (GEO) dataset (GEO, https://www.ncbi.nlm.nih.gov/
geo/). We search according to the following criteria: (Smolen
et al., 2016): the dataset must be complete and correct, (Cao et al.,
2023) samples contained in the dataset must be enough; (Lin et al.
, 2020) samples were collected from joint lesions rather than
blood etc. Finally, we chose GSE236924, an expression profiling
by array, which is normalized using RMA and contains 36 RA
samples and 7 normal samples in total. The mRNA expression
data of LUAD patients with corresponding clinical information
were downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) database with 541 cancer
patients and 59 normal patients contained. During analysis,
patients with missing information were excluded. In addition
to the above two discovery cohorts, we selected another LUAD
dataset, GSE229705, from GEO with complete gene expression
profile data and clinical information as validation cohort, which
contained paired tumor tissues and adjacent normal tissues from
123 patients. Detailed clinical information of two LUAD cohorts
are shown in Supplementary Tables S1, S2.

2.2 Bulk gene expression data analysis

After importing the datasets and group information, we first
conducted principal component analysis (PCA) of all samples in
each dataset to ascertain that samples with different phenotypes
demonstrate different genotypes. Then, after quality control, we
used R package “Limma” and “DESeq2” to perform differential
analyses for RA array dataset and LUAD RAN-seq dataset
respectively. Differentially expressed genes (DEGs) were
computed by setting the parameters of (|log2FC| > 1, adjusted
P-value <0.05). DEG results were demonstrated as volcano plots.
Further, enrichment analyses, including Kyoto Encyclopedia of
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Genes and Genomes (KEGG), gene ontology (GO) and Gene Set
Enrichment Analysis (GSEA) were performed based on
“clusterProfiler”, “org.Hs.eg.db”, “enrichplot” packages” to
examine the significant pathways involved in DEGs. Finally, we
identified the shared differentially expressed gene signatures
via Venn gram.

2.3 WGCNA analysis

We used the Weighted Gene Co-Expression Network Analysis
(WGCNA) tool to evaluate gene expression profiles in RA and
LUAD with “WGCNA” package (Langfelder and Horvath, 2008).
After removing the missing values and outliers, we constructed the
co-expression networks related with clinical traits according to the
best soft threshold, and chose the core modules with the highest
Pearson coefficients. Hub genes in both RA and LUAD core modules
were then identified and the shared gene signatures were discovered
via Venn gram.

2.4 Construction and validation of RALUADS

For the 22 shared DEGs, we performed univariate Cox
regression analysis and identified one gene with P-value <0.05.
For the 62 shared WGCNA genes, we first applied the least
absolute shrinkage and selection operator (LASSO) analysis for
dimension reduction. After model fitting and cross validation,
29 candidate genes were finally selected according to lamda.1se.
Then, we successively performed univariate and multivariate Cox
regression analysis to screen out two potential genes most related
with overall survival (OS). Based on the above results, we established
a three-gene prognostic signature termed RA and LUAD signature
(RALUADS). RALUADS for each LUAD patient is calculated by the
following formula:

RALUADS � ∑
n

i�1Expression i( )*Coefficient i( )

Expression refers to the expression level of the selected gene, and
Coefficient is the coefficient of the selected gene in the univariate
Cox regression model. LUAD patients were divided into two groups
according to the median RALUADS. Kaplan–Meier curves were
drawn to assess the OS differences between different RALUADS
groups. COX regression was analyzed with “survival” package and
visualized with “forestplot” package. LASSO regression was
performed via “glmnet” package.

2.5 Construction and evaluation of
clinical model

We established a practical clinical model using “nomogram”

package after screening out the meaningful clinical features via
multivariate COX regression analysis. Then, we compared the
prognostic performances of the model with other variables and
in different survival time using receiver operating characteristic
curve (ROC) with “timeROC” package. Additionally, calibration
curve was drawn with “rms” package.

2.6 Pan-cancer analysis of three
RALUADS genes

We used the online analysis tool TIMER 2.0 (http://timer.
cistrome.org/) to systemically evaluate the differential expression
level of a given gene in normal and tumor tissues across diverse
cancer types in the “Diff Exp” module. The results were
automatically created by the website.

2.7 Analysis of immune infiltration features

We used CIBERSORT (Chen et al., 2018) and xCell (Aran et al.,
2017) to estimate the immune infiltration properties of TME
associated with RA and LUAD. CIBERSORT is a professional
analytical tool for evaluation of the abundance of different
immune cells according to the reference data and gene
expression profile. xCell is a novel gene signature-based in silico
method for cell immunophenotyping with a total of sixty-four
immune cells and three kinds of immune scoring systems.

2.8 Analysis of common drug sensitivity

The R package “oncoPredict” is specialized to predict drug
sensitivity value according to the gene expression data. By
calculating IC50 values, we make linear regression model to
indicate the drug response efficacy to chemotherapy
corresponding to different RALUADS. In order to examine the
relationship between RALUADS and immunotherapy response,
immunophenoscore (IPS) based on the expression of MHC
molecules, markers of immunomodulators, effector cells and
suppressor cells was obtained from The Cancer Immunome Atlas
(https://tcia.at/) (Charoentong et al., 2017). Four types of IPS,
including IPS, IPS-CTLA4 blocker, IPS-PD-1/PD-L1/PD-
L2 blocker, IPS-CTLA4 & PD-1/PD-L1/PD-L2 blocker, were
calculated from the TCGA-LUAD cohort.

2.9 Cell culture and clinical samples

Human bronchial epithelium cell line (BEAS-2B) and human
lung adenocarcinoma cell lines (A549, H1975 and PC9) were
purchased from Procell (Procell Life Science&Technology Co.,
Ltd.). All cells were cultured under standard conditions (37°C,
5% CO2). All cell lines were authenticated by the short tandem
repeat DNA profiling test and checked for absence of mycoplasma
contamination.

2.10 RNA isolation and quantitative real-time
PCR (qRT-PCR)

Total RNA was extracted using TRIzol Reagent (Invitrogen,
United States) according to the manufacturer’s instructions.
NanoDrop was used to detect RNA concentration by A260/
A280 ratio. We performed cDNA synthesis and conducted qRT-
PCR with PrimeScript RT reagent kit (EZBioscience, China), and
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SYBR Green PCR reagent (EZBioscience, China). The reaction was
incubated at 95°C for 10 min followed by 40 cycles of 95°C for 15 s
and 60°C for 1 min. ACTB was used as an internal control. The
primer sequences were exhibited in Supplementary Table S4. Data
were analyzed using the 2−ΔΔCT relative quantification method.

2.11 Western blot (WB) and
immunohistochemistry (IHC)

To conduct WB, all cells were lysed with RIPA lysis buffer
(ThermoFisher, United States) incubated on ice for 15 min. Then,
the mixture was centrifuged for 2 min (12,000 × g, 4°C). The protein
concentration of collected supernatants was measured with a BCA
protein assay kit (ThermoFisher, United States). Equivalent protein
was then separated by 10% Tris-Tricine SDS-PAGE and transferred
onto polyvinylidene fluoride (PVDF) membranes. After being
blocked in skim milk, the PVDF membranes were incubated with
primary antibodies overnight at 4°C. Primary antibodies were
GAPDH (Proteintech, #60004-1-Ig, RRID:AB_2107436), CCN6
(Proteintech, #21259-1-AP, RRID:AB_2918070), CDCA4
(Proteintech, #11625-1-AP, RRID: RRID:AB_2260414),
ERLIN1(Proteintech, #17311-1-AP, RRID:AB_2098590). Then
membranes were incubated with secondary antibody (HRP-
conjugated anti-rabbit IgG, Abcam) at room temperature for 1 h.
Finally, the bands on the membranes were observed with a Eestern
blot substrate kit (Tanon, Shanghai, China). For IHC, we carefully
searched The Human Protein Atlas, an online web tool (https://
www.proteinatlas.org/), to evaluate levels of ERLIN1 in normal and
tumor tissues by pathological slides.

2.12 Statistical analysis

All bioinformatics analyses were conducted on R software
(version 4.3.1) and GraphPad Prism (Version 7.0.0). Independent
sample t-tests were employed for normally distributed continuous
variables to compare variables between two groups. Continuous
variables that were not normally distributed were tested with
Wilcoxon test. Correlation analysis between BMRGI and drug
IC50 was performed with Spearman method. Statistical
significance was defined with p < 0.05.

3 Results

3.1 Unveiling unique features of RA

First, in order to identify genes involved in the onset and
development of RA, we examined microarray profiles from
36 RA joint tissues and 7 non-RA joint tissues as control.
Principle component analysis (PCA) showed distinct gene
expression patterns of RA joint tissues compared with the
normal ones (Figure 1A). For differential analysis (|log2FC| > 1,
FDR <0.05), we identified 610 differentially expressed genes (DEGs)
between RA and normal tissues (Figure 1B). Of note, CYP4B1,
DEPP1, HILPDA, GADD45A and other ten genes were significantly
upregulated in RA, while SEC61A1 were significantly

downregulated. To reveal the functions of DEGs, KEGG analysis
showed that DEGs were mainly enriched in “cytokine-cytokine
receptor interaction”, “chemokine signaling pathway”, “NF-kappa
B signaling pathway” and etc. Enrichment of “Rheumatoid arthritis
pathway” supported that DEGs truly represented the genetic
characteristics of RA (Figure 1C). The result of GO analysis
showed that, in terms of Biological Process, DEGs were enriched
in “muscle system process”, “muscle tissue development”, “muscle
cell differentiation”, “muscle organ development”, “muscle
contraction” and etc. in terms of cellular component, DEGs were
enriched in “contractile fiber”, “myofibril”, “sarcomere”, “actin
cytoskeleton”, “collagen-containing extracellular matrix” and etc.
and in terms of molecular function, DEGs were enriched in “actin
binding”, “receptor ligand activity”, “actin filament binding”,
“glycosaminoglycan binding”, “sulfur compound binding” and
etc., the above of which were all related to muscle and skeletal
function (Figure 1D). We further conducted GSEA analysis and
selected some of the most significant changed pathways to make
plots. The upregulated pathway “MTORC1 SIGNALING” was
reported to be associated with cell growth and further promote
lung tumor progression. The downregulated pathways, “apoptosis”
and “Glycolysis” might be related with cell proliferation and altered
metabolism (Figures 1E–G).

3.2 Identification of genetic patterns
of LUAD

Then, we sought to explore the gene expression profiles of
LUAD. Also, PCA analysis evidently revealed the differential
genetic patterns of LUAD versus normal tissue (Figure 2A).
Based on differential analysis (|log2FC| > 1, FDR < 0.05), we
identified 1977 DEGs (Figure 2B). Significantly upregulated
DEGs in LUAD included SCARNA5, SNORA12, RNU4-2,
SNORA73B, RNY1, many of which were small nuclear RNA and
may be associated with post-transcriptomic splicing and
modification in tumors. HPD, SERPINC1, PKLR, PTGR1, KLB,
AGXT, PCSK2 were significantly downregulated. We then carried
out enrichment analysis. In KEGG analysis, DEGs were mainly
enriched in “neuroactive ligand-receptor interaction”, “chemical
carcinogenesis-DNA adducts”, “metabolism of xenobiotics by
cytochrome P450”, “cAMP signaling pathway” and etc.
(Figure 2C). GO analysis demonstrated that, in terms of
Biological Process, DEGs were enriched in “response to
xenobiotic stimulus”, “hormone metabolic process”, “response to
nutrient levels”, “gland development”, “humoral immune process”
and etc. In terms of cellular component, DEGs were enriched in
“neuronal cell body”, “GABA-ergic synapse”, “cornified envelope”,
“perikaryon”, “neuron projection terminus” and etc. and in terms of
molecular function, DEGs were enriched in “receptor ligand
activity”, “carbohydrate binding”, “glycosyltransferase activity”,
“hexosyltransferase binding”, “serine hydrolase activity” and etc.
(Figure 2D). In addition, according to GSEA analysis, “PI3K AKT
MTOR Signaling”, “NFκB-TNFα Signaling” and “Inflammatory
Response” pathways were significantly upregulated (Figures
2E–G). These inflammation related pathways indicated the
possible link with RA and the inflammatory tumor immune
microenvironment of LUAD.
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3.3 Analysis of shared expression networks
of RA and LUAD

In order to explore sharedmolecularmechanisms of RA and LUAD
more deeply, we conducted Weighted Gene Co-Expression Network
Analysis (WGCNA) for the two datasets respectively according to the
Section 2. For RA, by setting the soft threshold as 8 and dividing the
patients into disease and normal groups (Supplementary Figures S1A),
we obtained 27 modules of genes significantly related to the
characteristics of RA (Figures 3A, B), of which the green module
showed the highest correlation with RA (R = 0.78, P-value <0.001).
Genes in the greenmodule were highly correlated with gene significance
of RA status (R = 0.75, P-value <0.001) (Figure 3C). For LUAD, the soft
threshold was set as 7 and patients were divided into tumor and control
groups (Supplementary Figures S1B). WGCNA results revealed that
there were 22 modules significantly associated with LUAD (Figures 3C,
D), and the brown module was the most significant one (R = 0.54,
P-value <0.001). Also, genes in the brown module were highly
correlated with gene significance of LUAD (R = 0.71,
P-value <0.001) (Figure 3F).

3.4 Construction of the common gene
signature of RA and LUAD

Based on the findings of differential analysis and WGCNA, we
tried to build a signature shared by RA and LUAD. Using Venn tool,
we first showed 22 shared DEGs between RA and LUAD
(Figure 4A), including ACTC1, ANKRD1, C10orf71, CCN6,
CSF3, and FABP4 etc. Then, we performed univariate Cox
analysis (Figure 4B) and found that only one gene, CCN6, was
the candidate gene to affect overall survival (OS). For genes in two
WGCNA modules, Venn plot showed 62 common genes shared by
both the characteristics of RA and LUAD (Figure 4C). To select the

most significant genes, we first carried out LASSO analysis for
dimension reduction (Figure 4D; Supplementary Figures S1C)
and found 29 genes. Then, univariate Cox analysis was
performed on these genes (Supplementary Figures S1D) and
12 of them were showed to be significantly associated with
survival (P-value <0.05). Further, we built multivariate Cox
regression model (Figure 4E; Supplementary Table S4) and finally
identified two genes, CDCA4 and ERLIN1, to be risk factors
affecting OS (CDCA4: HR (95%CI) 1.0104 (1.0004–1.0205),
P-value 0.042; ERLIN1: HR (95%CI) 1.0069 (1.0013–1.0125),
P-value 0.015). Therefore, we concluded that CCN6, CDCA4,
ERLIN1 were three candidate genes with prognostic value in
LUAD patients affected by RA at the same time. The three genes
all showed significantly higher expression level in tumor tissues
compared with the paired normal ones in TCGA dataset
(Supplementary Figures S2A–C) and demonstrated strong
prognostic value that increased expression is associated with poor
overall survival (Supplementary Figures S2D–F). We validated the
expression level of the three genes in one normal bronchial
epithelium cell line (BEAS-2B) and three human LUAD cell lines
(A549, H1975 and PC9). qRT-PCR and Western blot showed that
CCN6, CDCA4 and ERLIN1 were significantly upregulated in
LUAD cells in terms of mRNA (Figures 4F–H) and protein
(Figure 4I) levels. Pathological slides also revealed higher
expression of ERLIN1 in LUAD tissues compared with normal
lung tissues (Supplementary Figures S2G). Additionally, we
conducted pan-cancer analysis and found that these genes had
differential expression levels in various tumors compared with
the normal ones (Supplementary Figures S2H–J), implying that
they might play different roles in different cancers. By combining the
expression value and coefficients of the selected genes according to
Methods Part, we constructed RA and LUAD prognostic score,
which we termed as RALUADS. RALUADS was significantly higher
in patients with tumor than in normal people (Figure 4J). According

FIGURE 1
Unveiling unique features of RA. (A) PCA of 36 RA and 7 normal samples in GSE236924 datasets (B) Volcano plot of DEGs between RA and NC. (C)
KEGG enrichment analysis of DEGs in RA compared with NC. (D) GO enrichment analysis of DEGs in RA compared with NC. (E–G) GSEA analysis of RA
compared with NC. RA, rheumatoid arthritis; PCA, principal component analysis; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GO, gene ontology. Note: NC, normal tissues.
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to the median of RALUADS, we divided tumor patients into high
RALUADS group and low RALUADS group. The kaplan-meier
analysis showed that OS of high RALUADS group was significantly
lower than that of low RALUADS group (Figure 4K). Another
LUAD cohort from GSE229705 validated the prognostic value of
RALUADS. Apart from the higher level of RALUADS in tumor
tissues (Figure 4L), we conducted logistic regression and found that
higher RALUADS predicted LUAD progression (OR (95%CI) 1.232
(1.0115–1.4528), P-value 0.06) and recurrence (OR (95%CI) 1.3500
(1.0882–1.6115), P-value 0.02). We further explored characteristics
of patients in high RALUADS group compared with those in low
RALUADS group. After differential expression analysis (|log2FC| >
1), we obtained 5389 upregulated genes and 1658 downregulated
genes. KEGG analysis revealed that high RALUADS was positively
related to pathways including “Systemic lupus erythematous”,
“Neutrophil extracellular trap formation”, “Spliceosome”, “cAMP
signaling pathway” and “MicroRNAs in Cancer” (Supplementary
Figures S3). Neutrophil extracellular traps have been reported to be a

bidirectional mediator of tumor progression (Adrover et al., 2023)
and microRNA is a group of small non-coding RNAs which
function as sponges and might exert pro-tumor effects (Alahdal
and Elkord, 2023). On the other hand, high RALUADS was
negatively associated with “Cellular senescence”, “p53 signaling
pathway” and “Transcriptional misregulation in cancer”
(Supplementary Figures S3B). Besides, GSEA analysis
demonstrated multiple pathways enriched in high RALUADS
group, one of which is KRAS signaling pathway, a crucial
“switch” regulating cell proliferation (Supplementary Figures S3C).

3.5 Evaluation of the clinical value
of RALUADS

In order to apply RALUADS into the clinical settings, we
incorporated clinicopathological parameters, including gender,
tumor stage, age and smoking amount and performed

FIGURE 2
Identification of genetic patterns of LUAD. (A) PCA of 549 LUAD and 41 normal samples in TCGA-LUAD datasets (B) Volcano plot of DEGs between
LUAD andNC. (C) KEGG enrichment analysis of DEGs in LUAD comparedwith NC. (D)GOenrichment analysis of DEGs in LUAD comparedwith NC. (E–G)
GSEA analysis of LUAD compared with NC. LUAD, lung adenocarcinoma; PCA, principal component analysis; DEGs, differentially expressed genes; KEGG,
Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology. Note: NC, normal tissues.
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multivariate COX regression analysis. The results demonstrated that
RALUADS and tumor stage were two risk factors with significant
prognostic values (RALUADS: HR (95%CI) 2.3235 (1.6552–3.2616),
P-value <0.001; Stage: HR (95%CI) 1.5587 (1.3509–1.7984),
P-value <0.001) (Figure 5A). Although gender and age were not
significant in the COX model, they were commonly considered as
crucial in the development and progression in RA and LUADS.
Therefore, we combined RALUADS, stage, gender and age to
establish a new nomogram model to visualize the contribution of
these clinicopathological parameters to OS in different years
(Figure 5B). In order to evaluate the accuracy and robustness of
the model, we performed ROC curve analysis and the results showed
that area under the curve (AUC) of 1-year, 2-year and 3-year were
respectively 0.722, 0.710 and 0.711 (Figure 5C). The prognostic
performance of various clinical indices in predicting OS of LUAD
was also assessed. The ROC curve revealed that compared with other
traditional indicator, our nomogram model had the best
performance in survival prediction (Figure 5D). In addition, we
quantified the performance in terms of calibration, which showed
the agreement between predictions and observations (Figure 5E).

3.6 Integrated analysis of correlation
between RALUADS and tumor immune
microenvironment in LUAD

Tumor immune microenvironment (TME) plays a crucial role
in shaping the behavior of tumor cells and interaction between

tumor and stroma. Hence, we employed two analytical tools,
CIBERSORT and xCell to illustrate cellular components of TME
respectively. On the one hand, in the analysis of CIBERSORT,
compared with low RALUADS group, the levels of M0, M1,
activated memory CD4 T cells were significantly higher in high
RALUADS group, while naïve B cells, plasma cells, Tregs, resting
mast cells, resting dendritic cells (DCs) and activated NK cells were
significantly decreased, indicating an activated TME in LUAD
(Figure 6A). On the other hand, in the analysis of xCell, the
levels of Th1, Th2 and M1 were significantly higher in high
RALUADS group compared with the low one, while NKT cells,
DCs, CD8+ Tcm cells, M2, plasma cells, CD8+ cells, CD4+ memory
T cells, CD4+ Tcm cells and CD4+ naïve T cells were significantly
decreased (Figure 6B). The two methods showed similar results in
the changes of various immune cell proportions between high and
low RALUADS groups. For example, the elevated level of M1 in the
high RALUADS group revealed its pro-inflammatory environment
and the descended level of plasma cells indicated that decreased
antibody production might impair the anti-tumor ability of NK cells
via antibody dependent cellular cytotoxicity. Additionally, results of
xCell showed decease of a group of memory cells, implying that
rapid anti-tumor response might be dampened in the lung tissue
(Gebhardt et al., 2023). Then, we analyzed the levels of immune
activation related molecules and immune checkpoint molecules in
the TME. The radar plot showed that multiple TNF family
molecules, IL family molecules and chemokines were significantly
positively correlated with RALUADS (Figure 6C). What’s more, the
expression level of several immune checkpoints including LAG3,

FIGURE 3
Shared expression networks of RA and LUAD. (A,D) Gene clustering dendrogram. (B,E) Correlation heatmap between modules and clinical traits.
(C,F) Linear correlation between module membership and gene significance.
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HAVCR2 and PDL1 (CD274) were upregulated in high RALUADS
group while BTLA, CD40LG etc. were downregulated (Figure 6D).

3.7 Identification of sensitive drugs in LUAD
patients with RA

We finally evaluated the correlation with RALUADS and response
to different therapies. Given the fact that expression level of immune
checkpoints has been reported to be correlated with benefit of
checkpoint blockade, we compared the immunophenoscore (IPS)
and immunotherapy responses in high and low RALUADS groups.
IPS was significantly higher in low RALUADS group (Figure 7A).
Patients with low RALUADS could have better therapeutic effects
from anti-CTLA4 (P-value <0.01), anti-PD1/PDL1/PDL2 (P-value =
0.0039) or anti-CTLA4 & PD1/PDL1/PDL2 (P-value = 0.0023)
(Figures 7B–D). We next explored responses to chemotherapy
drugs and targeted drugs in different RALUADS groups. A great
many drugs were negatively correlated with RALUADS, indicating
that patients with high RALUADSwould possibly bemore sensitive to
Cisplatin (R2 = −0.26, P-value < 0.001), Crizotinib (R2 = −0.20,
P-value < 0.001), Docetaxel (R2 = −0.20, P-value < 0.001), Gefitinib
(R2 = −0.08, P-value = 0.08), Osimertinib (R2 = −0.10, P-value =
0.02), Paclitaxel (R2 = −0.22, P-value < 0.001), Rapamycin

(R2 = −0.18, P-value < 0.001) (Figures 7E–K). In contrast,
IC50 value of Doramapimod was positively correlated with
RALUADS (R2 = 0.51, P-value < 0.001) (Figure 7L).

4 Discussion

AIDs are a group of diseases that usually involve the whole body
with insidious clinical manifestations. RA is one of the most common
chronic AIDs that presents as joint damage and extra-auricular
lesions, causing heavy global burden, such as movement disability
andmulti-organ dysfunction. Moreover, there are studies showing the
linkage between RA and different types of cancers (Szekanecz et al.,
2006; Mao et al., 2020), especially lung adenocarcinoma. In recent
years, the prevalence of LUAD has grown rapidly, becoming the main
pathological entity in lung cancer and still presenting the low survival
rate (Barta et al., 2019; Van Hal and Diab Garcia, 2021). Although
there are several investigations revealing the possible mechanisms
between RA and LUAD, the most distinct one is immune
dysregulation. Given the fact that RA is a systemic inflammatory
disease and LUAD has also its unique and heterogenous TME, we
sought to explore more deeply into the shared immune mechanism
between RA and LUAD. To address this issue, we first conducted
differential analysis and WGCNA in RA and LUAD datasets

FIGURE 4
Construction of the common gene signature of RA and LUAD. (A) Venn plot of shared DEGs between RA and LUAD. (B) Forest plot showing the
univariate Cox regression analysis of sharedDEGs. (C) Venn plot of shared significantmodule genes between RA and LUAD. (D) LASSO coefficient profiles.
(E) Forest plot showing the multivariate Cox regression analysis of selected shared significant module genes. (F–H)mRNA expression of CCN6, CDCA4,
ERLIN1 in different cell lines by qRT-PCR. (I) Protein expression of CCN6, CDCA4, ERLIN1 in different cell lines byWestern blot. (J) Expression level of
RALUADS in LUAD and normal tissues in TCGA-LUAD cohort. (K) Kaplan-Meier survival curves stratified by RALUADS. (L) Expression level of RALUADS in
LUAD and normal tissues in validation cohort.
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respectively. Enrichment analysis showed that DEGs in RA
participated in several tumor related pathways, such as metabolism
and proliferation, while DEGs in LUAD participated in various
immune processes, indicating the interaction between the
microenvironment of RA and LUAD. WGCNA identified two
modules significantly related to RA and LUAD. Furthermore, we
subjected the overlapping genes of differential analysis and WGCNA
to LASSO analysis and COX regression analysis to screen out genes
that most represent prognostic value. Finally, three genes were
identified as shared genes of RA and LUAD, CCN6, CDCA4 and
ERLIN1, whose higher expression level in LUAD cells compared with
normal epithelial cells were confirmed by qRT-PCR, WB and IHC.
CCN6, CDCA4 and ERLIN1 were used to establish RALUADS. The
score was significantly higher in tumor patients and correlated with
poor prognosis in both the discovery cohort and validation cohort.

CCN6, orWISP3, orWnt1-inducible signaling pathway protein 3,
belongs to CCN family and is structurally characterized by a
glycosylated part and four conserved cysteine-rich domains
(Holbourn et al., 2008). Members of CCN family, including
CCN1-6, are evolutionarily conserved and participate in regulating
different pathophysiological processes, including cell proliferation,
adhesion, angiogenesis, ECM modeling, migration, tumor growth
(Jun and Lau, 2011). Studies have highlighted that expression of
CCN6 is higher in RA synovium and fibroblast-like synoviocytes
compared with osteoarthritis and normal synovial tissue (Cheon et al.,
2004). What’s more, a recent study found that gender related lncRNA
XIST could bind to GATA1, leading to CCN6 upregulation and
driving RA pathogenesis by promoting SF proliferation and
angiogenic activity (Yu et al., 2023). Although there is still no

evidence that relates CCN6 to LUAD, CCN6 have been shown to
play a crucial role in gastrointestinal cancers (Thorstensen et al.,
2003), breast cancers (Djomehri et al., 2020) and chondrosarcoma
metastasis to lung (Tzeng et al., 2018). CDCA4, Cell Division Cycle-
Associated Protein 4, is a member of E2F family of transcription
factors having a role cell cycle regulation. Pan cancer analysis revealed
that a great number of tumors highly expressed CDCA4, which was
associated with poor survival and different immune infiltration
characteristics (Fang et al., 2022). In particular, CDCA4 was found
to be a marker for poor OS in patients with LUAD (Tan et al., 2022).
Although there are not evidences showing direct association between
CDCA4 and RA, previous studies have shown that transcription
factors in E2F family were enriched in RA (Takeshita et al., 2019).
ERLIN1, also named for ER Lipid Raft Associated 1, is a part of a
protein complex which mediates degradation of inositol 1,4,5-
trisphosphate receptors in the endoplasmic reticulum, important
for cellular cholesterol homeostasis. However, ERLIN1 functions
beyond lipids metabolism. In breast cancers, ERLIN1 was
discovered to be targeted by estrogen/MYC/miR-26 axis and
promote cell growth (Tan et al., 2014). Moreover, in pancreatic
adenocarcinoma, higher expression of ERLIN1 was correlated with
poor survival and lower CD8+T cell infiltration (Chen et al., 2022).
Taken together, the three genes in RALUADS were closely related to
poor cancer survival. As some of them have not been reported to
participate in the pathogenesis of RA or LUAD, we are the first to
reveal the possible novel roles of these genes in LUAD with RA.

Based on RALUADS, we constructed a nomogram model with
three other clinicopathological parameters and demonstrated that it
had accurate and robust performance in predicting OS of LUAD.

FIGURE 5
Evaluation of the clinical value of RALUADS. (A) Forest plot showingmultivariate Cox regression analysis of common clinicopathological parameters
and RALUADS. (B) Nomogram integrating significant clinicopathological parameters and RALUADS. (C) ROC curves of nomograms predicting 1-year, 2-
year and 3-year survival rates. (D) ROC curves for clinicopathological parameters, RALUADS and nomogram. (E) Calibration curves for nomograms
predicting 1-year, 2-year and 3-year survival rates.
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Furthermore, we investigated TME affected by RALUADS and found
that immune infiltration was characterized by increased level of
M1 and decreased levels of plasma cells in high RALUADS
group. Also, immune chemotaxis and stimulation were significant
in high RALUADS group while various immune checkpoints were
positively or negatively correlated with RALUADS. Given the
abundant and complex immune components in LUAD TME, we
found that RALUADS could be a potential biomarker to predict
immune infiltration and immunotherapy response. IPS tended to be
higher in low RALUADS group and consistently, patients with lower
RALUADS would be expected to benefit more from anti-CTLA4 and
anti-PD1/PDL1/PDL2 immunotherapy. In contrast, by examining the
differences in the therapeutic effects of chemotherapy and targeted
medications in LUAD patients, IC50 of anticancer drugs was lower in
the higher RALUADS group, including Cisplatin, Docetaxel and
Gefitinib etc., indicating that patients with higher RALUADS
might be more sensitive to chemotherapy and targeted drugs.
Previous studies have put forward various models regarding the
features and prognosis of LUAD. As extracellular matrix plays a
crucial role in tumor progression and invasion, Wang et al. (2021)
constructed a score with three integrin genes and metastasis-related
microenvironmental pathways were enriched in high score
group. What’s more, Zhang et al. (2023) established a signature
with seventeen basement membrane related genes and patients
with high risk had higher tumor mutation burden, lower immune
score and poorer prognosis, which was consistent with our results that
high RALUADS was associated with low IPS. Another study revealed

the relationship of immune cell death and TME of LUAD and defined
nine damage-associated molecular pattern related genes to be related
to active immune activity and response to immunotherapy (Wu et al.,
2023). However, a majority of these researches, focusing on LUAD,
explored only one type of molecules, which might be inadequate to
depict the panorama of LUAD. In comparison, we investigated the
complex environment of LUAD affected by RA and screened out
three genes from different gene family with diverse functions via
differential gene analysis, WGCNA and survival analysis. This
contributed to demonstrate the comprehensive profile of LUAD,
including immune characteristics, cell death and cell metabolism etc.

In our research, we employed comprehensive analysis tools to
identify the genes with the highest relationship in RA and LUAD. Three
genes, CCN6, CDCA4 and ERLIN1, exhibited significant correlation
and constituted RALUADS. Notably, patients with higher RALUADS
showed poor prognosis, suggesting that the signature could be a
promising biomarker in mortality prediction of NSCLC in MS
patients. Our investigation further demonstrated the regulatory
effects of RALUADS on immune infiltration and expression of
immune activation molecules and immune checkpoints. In
additional, RALUADS was significantly related to the effects and
sensitivity of multiple therapeutic drugs. Our findings suggested that
RALUADS could be applied in the clinical settings to help stratify
LUAD patients and further guide the treatment strategies (Figure 8).

Our study has some limitations. First, the expression of CCN6,
CDCA4 and ERLIN1 have not been validated by in vivo
experiments. Additionally, multi-omics data may be needed to

FIGURE 6
Integrated analysis of correlation between RALUADS and tumor immunemicroenvironment in LUAD. (A,B) Differences in infiltration level of various
types of immune cells between high and low RALUADS groups by analysis of CIBERSORT and xCell. (C) Correlation between RALUADS and immune
activation related molecules. (D) Correlation between RALUADS and immune checkpoint molecules. Note: Treg, regulatory T cell; Th1, type 1 helper
T cell; DC, dendritic cell; Tcm, central memory T cell; Tem, effector memory T cell.

Frontiers in Molecular Biosciences frontiersin.org10

Shi et al. 10.3389/fmolb.2023.1314753

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1314753


further reveal the shared characteristics of RA and LUAD.
Nonetheless, our study identified RALUADS as the shared
signature of RA and LUAD and provided insights of immune
environment features and effective treatment therapies into the
comorbidity of LUAD with RA.
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nlm.nih.gov/geo/) through GSE236924 and The Cancer Genome

FIGURE 7
Identification of sensitive drugs in LUAD patients with RA. (A–D) Correlation analysis between RALUADS and response to immunotherapy. (E–L)
Correlation analysis between IC50 value of chemotherapy or targeted drugs and RALUADS.

FIGURE 8
Schematic diagram of the shared signature of RA and LUAD.
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