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Introduction: The pursuit of effective therapeutic solutions for SARS-CoV-2
infections and COVID-19 necessitates the repurposing of existing compounds.
This study focuses on the detailed examination of the central protease, 3-
chymotrypsin-like protease (3CLpro), a pivotal player in virus replication. The
combined approach of molecular dynamics simulations and virtual screening is
employed to identify potential inhibitors targeting 3CLpro.

Methods: A comprehensive virtual screening of 7120 compounds sourced from
diverse databases was conducted. Four promising inhibitors, namely EN1036,
F6548-4084, F6548-1613, and PUBT44123754, were identified. These
compounds exhibited notable attributes, including high binding affinity (ranging
from −5.003 to −5.772 Kcal/mol) and superior Induced Fit Docking scores (ranging
from −671.66 to −675.26 Kcal/mol) compared to co-crystallized ligands.

Results: In-depth analysis revealed that F6548-1613 stood out, demonstrating
stable hydrogen bonds with amino acids His41 and Thr62. Notably, F6548-1613
recorded a binding energy of −65.72 kcal/mol in Molecular Mechanics
Generalized Born Surface Area (MMGBSA) simulations. These findings were
supported by Molecular Dynamics simulations, highlighting the compound’s
efficacy in inhibiting 3CLpro.

Discussion: The identified compounds, in compliance with Lipinski’s rule of five
and exhibiting functional molecular interactions with 3CLpro, present promising
therapeutic prospects. The integration of in silico methodologies significantly
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expedites drug discovery, laying the foundation for subsequent experimental
validation and optimization. This approach holds the potential to develop
effective therapeutics for SARS-CoV-2.
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1 Introduction

A new virus known as SARS-CoV-2 emerged and was
responsible for the global COVID-19 pandemic, prompting
unprecedented scientific efforts to discover possible therapeutic
substances and develop innovative interventions to combat this
virus (Zhu et al., 2020). SARS-CoV-2’s replication and
transcription cycle are influenced significantly by the 3C-like
protease (3CLpro), also called the main protease (Mpro).
Following the entry of viral RNA into the host cell, this protease
participates in the proteolytic processing of viral polyproteins and
initially produces two large precursor polyproteins, pp1a and pp1ab
(Jin et al., 2020; Manaithiya et al., 2023).

For the polyproteins PP1a and PP1ab to perform different
functions in the replication and transcription of the virus, they
need to be cleaved into individual functional proteins. This is where
3CLpro comes in - its central part is to cleave these polyproteins at
specific sites. Through the cleavage of 3CLpro, nonstructural
proteins (nsps) are formed, essential in developing the viral
replication-transcription complex. It plays a critical role in the
replication and transcription of the virus’ RNA within the host
cell (V’kovski et al., 2021; Narwal et al., 2023; Ziebuhr, 2005). For
this reason, 3CLpro has been identified as a prime drug target. As a
result of the inhibition of 3CLpro, viral polyproteins are prevented
from being cleaved into non-structural proteins, effectively
inhibiting viral replication and transcription (Mengist et al.,
2021). Several efforts are being made to identify and develop
inhibitors of 3CLpro, given its importance. Binding to the
enzyme’s active site prevents virus replication and transcription,
thereby blocking its proteolytic activity.

This study examines the structure of 3CLpro (PDB ID: 7TIA)
(Zhang et al., 2020; Forouhar et al., 2022) to outline a comprehensive
workflow for identifying potential inhibitors by combining virtual
screening, pharmacoinformatics profiling, and molecular dynamics.
The crystallographic study of 3CLpro deposited under PDB ID 7TIA
facilitated the elucidation of its 3D structure, providing a framework
for in silico drug discovery (V’kovski et al., 2021). Virtual screening
has been widely applied as a cost-effective and efficient strategy to
identify potential lead compounds from extensive compound
databases (Liu et al., 2022). It has been demonstrated that
pharmacoinformatic profiling improves the screening process by
prioritizing compounds based on their pharmacokinetic properties,
toxicity, and drug likeness, thus facilitating the selection of potential
lead compounds (Legare et al., 2022). Molecular dynamics
simulations are conducted to gain a deeper understanding of the
dynamics of interactions between potential inhibitors and 3CLpro.
As a result of these simulations, a greater understanding is gained
regarding the stability and flexibility of enzyme-inhibitor complexes,
allowing more accurate assessment of the efficacy of inhibitors

(Amadei et al., 1993; Alamri et al., 2021; Mody et al., 2021; Khan
et al., 2022).

Combining these techniques provides an efficient,
comprehensive strategy for identifying potential therapeutic
agents, although these techniques contribute independently to
drug discovery. As a result of this integrated workflow, promising
inhibitors were placed against the 3CLpro of SARS-CoV-2 (PDB ID:
7TIA) in this paper. The findings contribute to the ongoing efforts in
combating the COVID-19 pandemic and hold significant potential
for advancing therapeutic interventions against SARS-CoV-2. This
study aimed to identify potential inhibitors of the enzyme 3CLpro
necessary to replicate SARS-CoV-2. The screening of thousands of
compounds in various databases was conducted using target-based
virtual screening techniques. We will further test these lead
compounds in vitro and in vivo. If successful, they may be
developed into a new class of drugs that can combat SARS-CoV-
2 and potentially other Coronaviruses in the future.

2 Methods and materials

2.1 Preparation of ligand library and protein
receptor

A total of 7120 compounds were extracted from different
databases during the research. OTVA Chemicals (https://www.
otavachemicals.com/) provided 862 antiviral compounds, while the
Enamine database provided 4201 compounds (https://enamine.net/
compound-collections/real-compounds/real-database). Based on
PubChem trials, 350 compounds were obtained, 21 compounds
were obtained from PubChem records (https://pubchem.ncbi.nlm.
nih.gov/docs/covid-19), and 1686 compounds were obtained from
Life Chemicals (http://lifechemicals.com/). Using LigPrep
(Schrödinger Release 2018), all ligand structures were optimized
using the OPLS3e force field, maintaining the specified 3D
structure and stereochemistry of the ionization states.

From the RCSB Protein Data Bank, a crystallographic construct
of SARS-CoV-2 3CL was obtained with the inhibitor NK01-14,
recognizable by the PDB ID 7TIA (Forouhar et al., 2022). Once
acquired, this was incorporated into the Maestro suite’s Protein
Preparation Wizard (Madhavi Sastry et al., 2013; Schrödinger
Release, 2018). A hydrogen atom addition was performed, and
adjustments were made to histidine residue protonation states.
Additionally, hydrogen bonding patterns were analyzed to
determine how water molecules should be removed. An OPLS3e
force field was then used to conduct a restrained minimization
procedure (Harder et al., 2016). Following the preparation of the
protein, the co-crystallized ligand was positioned centrally in a grid
box that was created using the grid generation wizard.
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2.2 Virtual screening and molecular docking

Once prepared, the assembled array of ligands was docked
against the designed protein using Glide (Friesner et al., 2006).
HTVS mode of Glide facilitates the virtual screening process. An
initial procedure was conducted in which compounds were sorted
according to the projected binding pocket and ranked based on
Glide Scores (GScores). To enhance the precision of the screening,
both Standard Precision (SP) and Extra Precision (XP) docking
modes were implemented (Friesner et al., 2006).

2.3 ADMET and screening analysis

The selected top 22 compounds from XP glide were evaluated
and analyzed for their physicochemical and ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) characteristics.
The SMILES notations of the significant hits were entered into the
ProTox-II server (https://tox-new.charite.de/protox_II/) (Banerjee
et al., 2018) to forecast toxicological properties. Furthermore,
pharmacokinetic aspects such as absorption, distribution,
metabolism, and excretion were evaluated through the
SwissADME server (http://www.swissadme.ch/) (Daina et al.,
2017). Additionally, BOILED Egg analysis was carried out using
the SwissADME web-based tool.

2.4 IFD and MMGBSA

Four leading molecules were selected for further analysis based
on their Extra Precision (XP) docking scores, molecular interactions
with the target protein, and ADMET parameters. When flexible
ligand docking is implemented, protein structure can be anticipated
using the induced fit docking (IFD) procedure. Compared to rigid
ligand-receptor docking commonly encountered in structure-based
virtual screening (Sherman et al., 2006a), this method provides a
more detailed approach. In addition to the docking evaluation by
Glide XP, free binding energy calculations, and ADMET analysis,
IFD was performed on the chosen molecules. The process was
executed in contrast to the standard protein SARS-CoV-2-3CL,
adjusting the van der Waals energy to 0.50 and allowing Prime
to generate and refine maximum poses within a radius of five
degrees. Induced Fit Docking (IFD) relied on Glide for docking
and Prime for refining binding poses following the standard
parameters for these modules. A total of 20 poses were generated
for each compound (Sherman et al., 2006b). Although this approach
does not perfectly mimic biological conditions, it provides valuable
insight into the molecule’s stability within a specific binding pocket
when presented with various poses and frames.

The Molecular Mechanics Generalized Born Surface Area
(MMGBSA) technique was used to compute the relative binding
free energy (ΔG bind) for each ligand molecule (Jacobson et al.,
2004). This evaluation aimed to determine the binding affinity of the
ligand with the receptor, achieved through the Prime module. Using
the VSGB 2.0 solvation model and the OPLS3e force field without
modification (Brunt et al., 2022), the free binding energy of the top
four molecules (hits) has been calculated. Binding affinity is a free
energy that includes entropy and enthalpy components. Due to the

generalized Born approximation, conformational entropy upon
ligand binding was excluded from the MM/GBSA calculations.
This provides a quicker but more approximate resolution to the
Poisson–Boltzmann equation (Genheden and Ryde, 2015; Wang
et al., 2018).

2.5 Molecular dynamics simulations

Following the MMGBSA analysis, molecular dynamics
simulations were performed on the most promising molecule in
order to gain further insight into their stability under biological
conditions. Molecular Dynamics (MD) studies can provide insight
into the stability of complexes within a solvent system (Bowers et al.,
2006). The system was set up in an orthorhombic box with
dimensions of 10 Å × 10 Å x 10 Å, derived using the buffer size
approach, which also aids in minimizing the box’s volume. The
Desmond system builder was used to establish a TIP3P solvent
model. In these MD simulation studies, proteins and ions were
modeled using the latest OPLS3e force field developed by
Schrodinger Inc. (Mark and Nilsson, 2001; Shivakumar et al.,
2010; Padhi et al., 2022). Sodium chloride, with Na + as the
cation and Cl-as the anion, was incorporated at a concentration
of 0.15 M.

A Desmond Molecular Dynamics module was used to operate
the system for a runtime of 100 nanoseconds, producing
approximately 1000 frames. A molecular dynamic simulation
occurred at a stable temperature of 300 K and a pressure of
1 bar, using the NPT ensemble class. The simulation process
began after the system model reached a state of relaxation. The
molecules were analyzed using MMGBSA (Molecular Mechanics
Generalized Born Surface Area) after the molecular dynamic studies
had been concluded, and binding free energies were calculated every
10th frame throughout the entire 1000 frames of the simulation
(Chaudhary and Dikshit, 2023).

3 Results and discussions

3.1 Virtual screening and molecular docking

As part of the High-Throughput Virtual Screening (HTVS)
analysis, 5962 compounds from combined libraries were selected.
The docking parameters of all molecules can be found in the
Supplementary Table S1. As well as docking the selected
compounds with the receptor, the native ligand of the receptor
was docked separately, allowing for a comparison of the binding
affinity between the compounds and the receptor. The initially
anticipated binding site was utilized for high-throughput virtual
screening (HTVS). In the end, 202 compounds were docked with
Standard Precision (SP), and 22 compounds with Extra Precision
(XP) docking were docked with SP (Figure 1). The dock cutoff score
for SP docking by XP was set at −5.0 kcal/mol based on XP docking
outcomes. The glide scores for HTVS and SP ranged from −7.492 to
1.148 Kcal/mol and −5.854 to −2.680 Kcal/mol, respectively, while
those for XP ranged from −6.081 to −1.933 Kcal/mol. Most
compounds from the Life Chemical library demonstrated better
binding affinity than others. The compounds EN1036, F6548-4084,
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F6548-1613, and PUBT44123754 demonstrated high binding
affinity, exceeding the standard ligand. Based on Glide XP scores,
16 molecules showed a better binding affinity than their native
ligand (Table 1). The XP glide score for the native ligand
was −3.275 kJ/mol, lower than the top four selected compounds.
The compounds F6548-4084, F6548-1613, EN1036, and
PUBT44123754 recorded docking scores of −5.772, −5.71, −5.78,
and −5.003 Kcal/mol, respectively. Among these, compound F6548-
1613 formed a hydrogen bond with Gln189 via the oxygen atom of a
carboxamide attached to a furan ring. Distinct hydrophobic
interactions are observed with amino acids such as Leu27, Met49,
Leu50, Cys145, Met165, Leu167, Pro168, Val186 and Ala191. Polar
interactions are also noted with Thr25, Thr26, Hie41, Ser46, Asn142,
Gln189, Thr190, and Gln192 (refer to Figure 2). Furthermore,
charge interactions, both positive and negative, are identifiable
(Table 2). Alongside these, non-bonded interactions with amino
acids Hie45, Asn142, Gly143, Cys145, Met165, Glu166, Val186,
Arg188, and Gln189 are evident in both the native ligand and
compound F6548-1613 (refer to Figure 2). The same applies to
all the selected compounds, F6548-4084, F6548-1613, EN1036, and
PUBT44123754, which showed common interactions with Leu27,
Hie41, Met49, Gly143, Asn142, Cys145, Met165 Glu166, Arg188,
and Gln189 residues (See Supplementary Figure S1). Induced fit
docking (IFD) and MMGBSA calculations were performed
alongside the native drug to examine how the selected
compounds interact and conform within the protein target’s
binding pose.

3.1.1 ADMET analysis
A rigorous process was applied to determine potential

inhibitors of the SARS-CoV-2 3CLPRO protease. Based on glide
docking scores, 22 prominent molecules were identified for further
investigation (ADME parameters for all molecules can be found in
the Supplementary Table S2). In order to predict the drug-likeness
and ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) properties of these ligand molecules, SwissADME
and ProTox-II web servers were utilized. Our screening process

included applying Lipinski’s Rule of Five to ensure that the
screened ligand molecules were suitable for further
investigation. Molecules that violated more than one rule were
considered unsuitable and therefore excluded. All ligand molecules
were evaluated based on their physicochemical properties and
drug-like characteristics.

To provide insight into the potential toxicity of the top four
compounds, the ProTox-II webserver was used. The MMGBSA and
Induced Fit Docking (IFD) studies were used to determine their
ligand-receptor interactions and binding scores. Additionally, we
determined the synthetic accessibility (SA) of these compounds, a
crucial determinant of drug design since it reflects the ease with
which they can be synthesized in the laboratory. It was determined
that the SA score ranged from 1 (extremely easy to synthesize) to 10
(very difficult to synthesize). Moreover, we considered the
interference of Pan Assay Interference Compounds (PAINS).
These molecular structures exhibit promiscuous behavior by
reacting in a multitude of assays, often resulting in false-positive
results (Table 2). Among the top four compounds, F6548-1613, as it
is also known, displayed promising results, exhibiting inactivity
across multiple parameters, including hepatotoxicity,
carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity.
In terms of interactions with various receptors such as AhR, AR,
AR-LBD, Aromatase, ER, ER-LBD, PPAR-Gamma, nrf2/ARE, HSE,
MMP, p53, ATAD5, compound 2585 is also predicted to be inactive.
Notably, the compound demonstrates a high probability of being
inactive for interactions with AR-LBD (0.97), AR (0.96), Aromatase
(0.96), ER-LBD (0.92), PPAR-Gamma (0.91), HSE (0.88), nrf2/ARE
(0.88), and ATAD5 (0.93). Compound F6548-1613 also
demonstrated a high probability of inactivity in interactions with
various receptors (Table 2). While all four of the selected
compounds displayed more favorable toxicity profiles than
standard drugs, compound PUBT44123754 was noted to exhibit
carcinogenicity (Table 3). The compound F6548-1613 emerged as
the most promising candidate, demonstrating excellent toxicity,
high inactivity across multiple receptors, and favorable ADMET
results. The BOILED-Egg technique assesses the potential of specific

TABLE 1 The Xp glide docking and glide energy scores 22 top molecules.

Compound ID XP GScore Glide energy Compound ID XP GScore Glide energy

F6548-4084 −5.772 −54.015 F6548-1618 −3.859 −51.188

EN1036 −5.78 −57.266 F6754-7010 −3.749 −31.828

F6548-1613 −5.71 −59.074 EN627 −3.513 −37.012

PUBT44123754 −5.003 −55.66 F0507-1953 −3.45 −46.265

ENV55 −4.799 −35.654 F0514-0252 −3.446 −42.699

F6548-1638 −4.51 −50.156 co-crystal Ligand −3.275 −42.6

ENV2649 −4.38 −27.063 F6548-1642 −3.045 −50.945

OTV986 −4.332 −44.094 F0514-4047 −2.726 −50.677

ENV2444 −4.197 −27.86 OTV453 −2.536 −36.798

F6541-4704 −4.129 −18.74 F0514-5375 −2.419 −47.332

PUBT492405 −4.087 −25.072 F3406-5757 −1.933 −47.886
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phytochemicals to cross the blood-brain barrier and their absorption
rates in the gastrointestinal tract. In the BOILED-Egg plot analysis,
compounds in the yellow section are more likely to penetrate the
blood-brain barrier, while those in the white section are more prone
to absorption in the gastrointestinal tract. The white region

represents the physicochemical space where molecules have the
highest probability of being absorbed by the gastrointestinal tract,
and the yellow region (yolk) represents the physicochemical space
where molecules have the highest probability of permeating to the
brain (Figure 3). It’s important to note that the yolk and white areas

FIGURE 1
Top 22 molecules received from XP glide docking for further evaluation.
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are not mutually exclusive (Supplementary Figure S2). Molecule 3
(F6548-1613) is situated near the white region. This analysis was
conducted using the SwissADME web-based tool. These findings
suggest compound F6548-1613 as a potential therapeutic candidate
targeting the SARS-CoV-2 3CLPRO protease.

3.2 IFD and MMGBSA

It was determined that the protein exhibits substantial
conformational variation, which was analyzed through the Induced
Fit Docking (IFD) strategy, utilizing GLIDE-XP results. To understand
the potential binding conformational attributes of the top four
inhibitors, EN1036, F6548-4084, F6548-1613, and PUBT44123754,
IFD computations were performed (see Table 4; Figure 4 and See
Supplementary Figure S4). Figure 4 illustrates how the inhibitor docks
within the catalytic pockets of the 7TIA enzyme. Compound F6548-
1613 displayed the most potent binding affinity from the shortlisted
compounds, predicting 16 different poses with 3CLpro. The primary
pose had the highest IFD score of −675.26 Kcal/mol, as indicated in
Table 4. According to the investigation, pose 13, with an Induced Fit

Docking (IFD) score of −668.47 Kcal/mol, exhibits the highest number
of advantageous bondings and non-bondings with the primary
protease. F6548-1613 established four hydrogen bonds with the
protein. These included interactions with the 4th oxygen group of
the benzene ring by Gly143, the NH group of the carboxamide
substituted benzene ring by Gln189 with two groups, the NH group
of the carboxamide substituted benzene ring, and the oxygen atom of
the carboxamide linked with the furan ring, and the 3rd oxygen atom of
the furan ringwith the Thr190 residue. These interactions are illustrated
in both 2D and 3D diagrams (refer to Figure 4). The IFD scores and 3D
interactions can be found in Table 4 and Figure 4. Compound F6548-
1613 was observed to interact with the same amino acid residue loops
as the native ligand (co-crystal ligand), comprising residues like
Met165, Glu166, Leu167, Pro168, Val186, Asp187, Arg188, Gln189,
Thr190, Ala191, and Gln192. Furthermore, specific amino acid residues
like Hie41, Met49, and Tyr210 showed common interaction in
Compound F6548-1613 and standard drugs.

Compound F6548-1613, one of the top hits, displayed superior
binding free energies compared to standard compounds, exhibiting
the highest binding energy of −65.72 kcal/mol when interacting with
7TIA. A native ligand, on the other hand, showed ΔG binding

FIGURE 2
2D and 3D structure of glide docking of compound F6548-1613 and co-crystal ligand.
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TABLE 2 SWISSADME parameters of selected four compounds.

Molecule name F6548-4084 EN1036 F6548-1613 PUBT44123754 Co-Crystal Ligand

Formula C29H27N5O4S C24H20F3N3O7S C27H24ClN5O5S C22H21N4O6P C21H29N3O5

MW 541.62 551.49 566.03 468.4 403.47

#H-bond acceptors 6 11 7 8 29

#H-bond donors 2 3 2 2 6

MR 152.82 127.88 150.09 118.7 110.03

TPSA 139.98 162.27 153.12 157.45 116.76

iLOGP 3.11 2.24 3.58 −1.73 2.56

XLOGP3 3.59 3 3.22 1.68 1.44

WLOGP 2.88 5.02 3.32 2.99 0.49

MLOGP 2.83 1.71 2.16 1.1 0.76

Silicos-IT Log P 4.5 2.42 4.52 1.75 2.12

Consensus Log P 3.38 2.88 3.36 1.16 1.47

ESOL Log S −5.09 −4.64 −4.98 −3.72 −2.54

ESOL Solubility (mg/mL) 4.45E-03 1.26E-02 5.87E-03 8.84E-02 1.15E+00

ESOL Solubility (mol/L) 8.22E-06 2.28E-05 1.04E-05 1.89E-04 2.86E-03

ESOL Class Moderately soluble Moderately soluble Moderately soluble Soluble Soluble

Ali Log S −6.22 −6.07 −6.11 −4.6 −3.5

Ali Solubility (mg/mL) 3.29E-04 4.67E-04 4.41E-04 1.17E-02 1.28E-01

Ali Solubility (mol/L) 6.08E-07 8.47E-07 7.80E-07 2.51E-05 3.18E-04

Ali Class Poorly soluble Poorly soluble Poorly soluble Moderately soluble Soluble

Silicos-IT LogSw −9.43 −7.88 −9.23 −6.28 −4.62

Silicos-IT Solubility (mg/mL) 2.02E-07 7.19E-06 3.35E-07 2.44E-04 9.75E-03

Silicos-IT Solubility (mol/L) 3.72E-10 1.30E-08 5.92E-10 5.21E-07 2.42E-05

Silicos-IT class Poorly soluble Poorly soluble Poorly soluble Poorly soluble Moderately soluble

GI absorption Low Low Low Low High

BBB permeant No No No No No

Pgp substrate Yes No Yes Yes Yes

CYP1A2 inhibitor Yes No Yes No No

CYP2C19 inhibitor Yes Yes Yes Yes No

CYP2C9 inhibitor Yes Yes Yes No No

CYP2D6 inhibitor Yes Yes Yes No No

CYP3A4 inhibitor Yes No Yes Yes No

log Kp (cm/s) −7.05 −7.53 −7.47 −7.96 −7.74

Lipinski #violations 1 1 1 0 0

Ghose #violations 2 1 2 0 1

Veber #violations 1 2 2 1 1

Egan #violations 1 1 1 1 1

Muegge #violations 0 2 1 1 1

(Continued on following page)
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energies of −58.59, −63.29, and −38.26 kcal/mol. The binding
energies of GbindHbond, GbindvdW, GbindLipo, and
GbindCoulomb were significant (see Supplementary Table S4).
Due to its optimal balance of several types of interactions,
F6548-1613 emerges as the most effective candidate for targeting
SARS-CoV-2 3CLPRO protease. This compound’s MMGBSA dG
Bind vdW score is the lowest (−54.55), indicating robust van der
Waals interactions, contributing significantly to its high binding
affinity. Despite Compound EN1036 having the lowest
GbindCoulomb score, which suggests potent Coulombic or
electrostatic interactions, Compound F6548-1613 still
demonstrated the highest overall binding affinity based on a
summation of its various interactions.

Furthermore, Compound F6548-1613 displayed the lowest
GbindLipo score, indicating the presence of lipophilic or
hydrophobic interactions that enhance protein-ligand binding
and complex stability. Again, its GbindPacking score was among
the lowest, indicating superior packing interactions and a well-fitted
ligand within the protein’s binding pocket. However, despite F6548-
1613 and PUBT44123754 showing relatively less negative
GbindHbond scores, suggesting fewer or weaker hydrogen bonds,
F6548-1613’s binding affinity remained superior. This dominance
can be attributed to the combination of all its interaction types.
GbindSolvGB (Solvation Energy) score, a measure of the free energy
of solvation, indicates how favorably a ligand is solvated before
entering the binding pocket. In this regard, F6548-1613
demonstrated a highly positive score (28.92), denoting a
favorable solvation energy. All compounds, including F6548-
1613, displayed positive GbindCovalent scores, a trait often
associated with the absence of covalent bonds or the presence of
destabilizing covalent interactions.

Nevertheless, F6548-1613 had the lowest positive value,
suggesting the least destabilizing influence from potential
covalent interactions. Molecular Dynamics (MD) was performed
to analyze the stability of F6548-1613 within the protein target’s
binding pose, providing insight into the molecule’s stability in the
binding pocket against 3CL protease. This additional layer of
analysis further substantiates F6548-1613’s potential as an
effective inhibitor of the SARS-CoV-2 3CLPRO protease.

3.3 Molecular dynamics

The presented graph (Figure 5A) depicts Root Mean Square
Deviation (RMSD), a commonly employed statistic for evaluating
disparities in atomic positions across various time points. The x-axis

corresponds to the time in picoseconds (ps), while the y-axis displays
RMSD values in nanometers (nm). The graph exhibits three
distinctive simulation runs—Run-1 in black, Run-2 in red, and
Run-3 in green. Observations from the graph indicate that RMSD
readings peak during the initial 20,000 picoseconds (or
20 nanoseconds) for all three runs, suggesting potential initial
fitting adjustments. Following this phase, each run’s RMSD tends
to stabilize, fluctuating around specific values. This stabilization
implies that the ligand’s positioning relative to the protein reaches a
relatively constant state, with occasional deviations possibly arising
from interactions within the simulation environment or
conformational changes. Notably, Run-3 (green) displays the
lowest average RMSD, indicating that, in contrast to the
preceding runs, the ligand in this simulation maintains a more
consistent position or conformation throughout. In comparison,
runs 1 (black) and 2 (red) exhibit similar patterns with slightly
higher RMSD values, implying increased conformational flexibility.
This flexibility may be attributed to the ligand’s free end, lacking
hydrogen bond formation with amino acid residues. Despite the
initial instability observed in all three simulation runs, they
eventually establish a dynamic equilibrium, where the ligand’s
position fluctuates around a relatively constant value, as
illustrated in the RMSD plot.

Graph (Figure 5B) visually represents the Root Mean Square
Deviation (RMSD) of C-alpha atoms over time, obtained through
least squares fitting to a protein in a molecular dynamics simulation.
The y-axis reflects RMSD in nanometers (nm), while the x-axis
corresponds to time in picoseconds (ps). The graph encompasses
four distinct traces: the Apo form in black, the control run without
any ligand; Run-1 in red; Run-2 in green; and Run-3 in blue,
representing three simulation runs for the protein-ligand
complex. Examining the graph, it is evident that the RMSD
values for each run commence at relatively low levels, indicating
minimal initial deviation of the protein’s C-alpha atoms from the
reference structure, which is the starting point of the simulation. As
time progresses, the RMSD values undergo shifts yet consistently
maintain within a narrow range (approximately 0.1–0.4 nm). This
suggests a lack of significant conformational changes in the protein
structures throughout these simulation runs. Notably, the black
trace representing the Apo form exhibits the least fluctuation,
implying that the protein remains relatively stable in its original
state or when devoid of any ligand.

In contrast, Runs 1, 2, and 3 display more significant fluctuations
attributed to the presence of the ligand. Despite this increased
movement, the variations observed in these runs remain confined
within a limited range, suggesting the absence of substantial

TABLE 2 (Continued) SWISSADME parameters of selected four compounds.

Molecule name F6548-4084 EN1036 F6548-1613 PUBT44123754 Co-Crystal Ligand

Bioavailability Score 0.55 0.55 0.55 0.11 0.55

PAINS #alerts 0 0 0 0 0

Brenk #alerts 0 0 0 2 0

Leadlikeness #violations 3 2 2 2 2

Synthetic Accessibility 4.77 3.36 4.58 4.45 4.1
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TABLE 3 Toxicity parameters of selected four compounds.

Target Compound ID

F6548-4084 EN1036 F6548-1613 PUBT44123754 Co-Crystal ligand

Prediction Probability Prediction Probability Prediction Probability Prediction Probability Prediction Probability

Hepatotoxicity Inactive 0.72 Inactive 0.57 Inactive 0.61 Inactive 0.55 Inactive 0.86

Carcinogenicity Inactive 0.54 Inactive 0.6 Inactive 0.56 Active 0.52 Inactive 0.68

Immunotoxicity Inactive 0.98 Inactive 0.92 Inactive 0.98 Inactive 0.98 Inactive 0.99

Mutagenicity Inactive 0.55 Inactive 0.74 Inactive 0.55 Inactive 0.53 Inactive 0.63

Cytotoxicity Inactive 0.62 Inactive 0.69 Inactive 0.58 Inactive 0.58 Inactive 0.65

Aryl hydrocarbon Receptor (AhR) Inactive 0.86 Inactive 0.92 Inactive 0.84 Inactive 0.75 Inactive 0.97

Androgen Receptor (AR) Inactive 0.94 Inactive 0.94 Inactive 0.96 Inactive 0.95 Inactive 0.97

Androgen Receptor Ligand Binding Domain (AR-LBD) Inactive 0.96 Inactive 0.96 Inactive 0.97 Inactive 0.98 Inactive 0.99

Aromatase Inactive 0.93 Inactive 0.96 Inactive 0.96 Inactive 0.89 Inactive 0.98

Estrogen Receptor Alpha (ER) Inactive 0.87 Inactive 0.94 Inactive 0.86 Inactive 0.87 Inactive 0.9

Estrogen Receptor Ligand Binding Domain (ER-LBD) Inactive 0.94 Inactive 0.99 Inactive 0.92 Inactive 0.96 Inactive 0.96

Peroxisome Proliferator Activated Receptor Gamma (PPAR-
Gamma)

Inactive 0.87 Inactive 0.92 Inactive 0.91 Inactive 0.95 Inactive 0.98

Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive
element (nrf2/ARE)

Inactive 0.91 Inactive 0.98 Inactive 0.88 Inactive 0.91 Inactive 0.97

Heat shock factor response element (HSE) Inactive 0.91 Inactive 0.98 Inactive 0.88 Inactive 0.91 Inactive 0.97

Mitochondrial Membrane Potential (MMP) Inactive 0.77 Inactive 0.82 Inactive 0.78 Inactive 0.79 Inactive 0.95

Phosphoprotein (Tumor Supressor) p53 Inactive 0.83 Inactive 0.93 Inactive 0.82 Inactive 0.87 Inactive 0.92

ATPase family AAA domain-containing protein 5 (ATAD5) Inactive 0.91 Inactive 0.98 Inactive 0.93 Inactive 0.93 Inactive 0.95
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structural alterations. In summary, the RMSD graph provides
insights into the stability of the protein’s secondary structure
during the simulation. The Apo run demonstrates minimal
deviation, while the other runs, influenced by interactions with
the ligand, exhibit increased movement within a constrained range.
This overall pattern indicates that the protein maintains structural
stability throughout the simulation, even in the presence of a ligand.

The provided graph (Figure 5C) illustrates a protein’s Root
Mean Square Fluctuation (RMSF), portraying the flexibility of
specific residues during a simulation. Higher RMSF values
indicate increased flexibility or mobility of these residues within
the protein structure. The y-axis represents RMSF values in
nanometers (nm), showing the extent of fluctuation for each
residue. At the same time, the x-axis lists the residues of the
protein sequence from the N-terminus to the C-terminus. The
data from four distinct runs are depicted in the plot: Run-1
(red), Run-2 (green), Run-3 (blue), and Apo (black), with the

Apo run representing the unbound or native state of the protein
without a ligand. Notably, the Apo run serves as a baseline,
displaying consistent fluctuation across residues. Across all runs,
a similar fluctuation pattern is observed, suggesting that the overall
flexibility of the protein remains relatively constant throughout the
simulation runs. Peaks in the graph represent residues that exhibit
higher flexibility, and these peaks are consistent across all runs,
indicating inherent flexibility in specific regions of the protein. Most
residues demonstrate moderate fluctuations ranging between
0.1 and 0.3 nm, with fluctuations typically staying below 0.4 nm.
Towards the end of the residue sequence, prominent peaks emerge
where RMSF values are notably higher. This is attributed to
relatively lesser interaction in the terminal residues. Notably,
residues such as Tyr154 and Arg222 consistently show maximum
fluctuation across all three runs. Additionally, a peak at Leu50 in the
Apo form, which is not as pronounced in the other runs, suggests
that this residue is stabilized by adding the ligand in the binding

TABLE 4 The docking scores, IFD, and MM-GBSA of top 4 molecules.

Compound ID XP GScore Glide energy IFD MMGBSA Prime energy

F6548-4084 −5.772 −54.015 −672.51 −46.88 −12557.54

EN1036 −5.78 −57.266 −671.66 −64.68 −12545.35

F6548-1613 −5.71 −59.074 −673.34 −65.72 −12556.57

PUBT44123754 −5.003 −55.66 −675.26 −59.18 −12582.05

co-crystal Ligand −3.275 −42.6 −669.98 −38.26 −12512.93

FIGURE 3
An image from the BOILED-Egg analysis of 22 molecules obtained from the XP Glide procedure.
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pocket. While small differences exist between runs, the overall
patterns are similar, indicating that the ligand or the conditions
tested do not significantly alter the protein’s flexibility at the residue
level. This suggests that the protein maintains a consistent level of
flexibility across various simulation conditions.

Graph (Figure 5D) illustrates the radius of gyration for a protein,
indicating how its mass is distributed from its center of mass and
reflecting the molecule’s compactness. The x-axis represents time in
picoseconds (ps), while the y-axis displays the radius of gyration in
nanometers (nm). The four simulation runs represented by lines are
Apo (black), Run-1 (red), Run-2 (green), and Run-3 (blue). Throughout
all simulation runs, the radius of gyration exhibits variations within a
relatively confined range, approximately 2.15 nm–2.35 nm. These
variations suggest changes in the protein structure’s compactness
over time, albeit within a relatively short range. Notably, the average
radius of gyration for the Apo form appears to be the lowest, indicating
that the protein is more compact in its unbound or reference state. Runs
1, 2, and 3 show comparable trends as the gyration radius gradually
increases. This suggests that these proteins experience a loss of
compactness, potentially due to unfolding or conformational changes
induced by the interacting ligand. The overall plot indicates that the
protein structures in simulation undergo some conformational change,
although this change is not notably high. In summary, the radius of the
gyration graph provides insights into the dynamic changes in the
protein’s compactness over time in different simulation conditions.
While there is observable variation, the alterations remain within a
limited range, and the protein structures experience some degree of
conformational change, particularly when interacting with the ligand.

Graph (Figure 5E) illustrates the Solvent Accessible Surface Area
(SASA) of the protein, a metric measured in square angstroms (Å2)

that reflects the surface area accessible to a solvent, typically water in
biological systems. The y-axis represents SASA values, while the
x-axis depicts time in picoseconds (ps). The graph encompasses four
traces corresponding to different simulation runs: Apo (black), Run-
1 (red), Run-2 (green), and Run-3 (blue). The dynamic nature of the
protein’s conformational changes is evident as SASA varies over
time for each run, reflecting alterations in the solvent-exposed area
of the molecule. The Apo form (black) notably exhibits the highest
average SASA, indicating a greater average exposed surface area
when the protein is unbound.

In contrast, the Runs 1, 2, and 3 SASA values consistently appear
somewhat lower than the Apo form, suggesting a more compact or
less exposed structure in these scenarios. The similar fluctuation
patterns across these runs imply a comparable behavior in terms of
solvent accessibility. Despite dynamic fluctuations, the SASA plot
reveals no sharp rises or falls for any of the runs, indicating that
significant unfolding or refolding does not occur during the
simulation period.

Furthermore, the SASA for each run consistently remains lower
than that of the Apo form, implying an increase in the folding of the
protein upon interaction with the ligand. In summary, the SASA graph
provides a comprehensive view of the protein’s dynamic behavior,
suggesting that while there are variations in solvent accessibility over
time, the protein’s overall structure remains stable. The protein
undergoes conformational fluctuations without experiencing
substantial unfolding or refolding during the simulated conditions.

Graph (Figure 5F) illustrates the dynamic evolution of
hydrogen bond formation over time in picoseconds (ps) across
three distinct runs (Run-1, Run-2, and Run-3) involving
compound F6548-1613 complexed with the target protein

FIGURE 4
Images of molecules derived from Induced Fit Docking (IFD) in both 2D and 3D forms: (A, B) Depict the compound F6548-1613 and its surface
structure. (C, D) Show the Co-Crystal Ligand and its surface structure.
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3CLpro. The y-axis quantifies the number of hydrogen bonds
formed between the protein and ligand, while the x-axis
represents the temporal progression in picoseconds. Each run
is differentiated by black, red, and green bars, corresponding to
Run-1, Run-2, and Run-3. Examining the graph, it is evident that
the total count of hydrogen bonds for each run exhibits notable
variability over time, showcasing irregular fluctuations in bond
numbers. The data portray a seemingly erratic pattern with no
discernible trend or pattern across the simulation duration for
any run. This suggests a certain degree of randomness in both the
creation and disruption of hydrogen bonds, indicating
continuous and variable occurrences of bond formation and
breaking.

Moreover, the absence of a clear distinction between the runs
implies that the conditions or factors influencing hydrogen bond
formation were likely consistent across all three experimental runs.
Exploring potential reasons for the absence of significant differences

between each run could provide valuable insights into the intrinsic
variability of the observed events. This detailed analysis could contribute
to a deeper understanding of hydrogen bond dynamics’ continuous and
dynamic nature under the specified experimental conditions.

4 Conclusion

This study aimed to identify effective inhibitors against the
SARS-CoV-2 3CL protease through an in-depth virtual screening
process. A collection of 5962 compounds underwent rigorous
evaluations, including standard and extra precision docking,
high-throughput virtual screening (HTVS), and hit-to-lead
optimization. The compounds were compared to the co-crystal
ligand NK01-14 inhibitor. Among the four selected compounds,
namely EN1036, F6548-4084, F6548-1613, and PUBT44123754,
they all demonstrated solid binding affinities ranging

FIGURE 5
Molecular Dynamic simulation of hit compound F6548-1613 as triplicate. (A) The root mean square deviation (RMSD) variation for proteins and
ligands over time. (B) The root mean square deviation (RMSD) variation for APO proteins. (C) Protein fluctuations and a ligand were analyzed via Root
Mean Square Fluctuation (RMSF) for each residue. (D) Graph illustrates the radius of gyration for a protein. (E) Graph illustrates the Solvent Accessible
Surface Area (SASA) of the protein, ametricmeasured in square angstroms (Å2) that reflects the surface area accessible to a solvent, typically water in
biological systems. (F) A histogram that shows No. of Hydrohen bonding.
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from −5.003 to −5.772 kcal/mol and exhibited superior IFD scores
ranging from −671.66 to −675.26 kcal/mol. Remarkably, these
results surpassed the performance of the co-crystallized ligand.
Notably, compound F6548-1613 exhibited superior interactions
and binding poses, showcasing its potential as a lead compound.
Molecular dynamics simulations confirmed the stability of
compound F6548-1613, with consistent positioning observed in
Run-3. The compound F6548-1613 displayed notable interactions
with key amino acid residues, particularly Thr26 and His41,
surpassing the reference inhibitor NK01-14. Additionally,
compound F6548-1613 demonstrated excellent toxicity profiles,
inactivity across multiple receptors, and favorable ADMET
results, making it a promising candidate for further
development. The BOILED-Egg technique supported its
synthetic accessibility. In conclusion, this study provides
comprehensive insights into the selection and optimization of
potential inhibitors for the SARS-CoV-2 3CL protease, with
compound F6548-1613 emerging as a standout candidate.
Molecular dynamics simulations reinforced its stability and
interactions, emphasizing its potential as an effective inhibitor.
Further experimental validation through in vitro and in vivo
studies is recommended to confirm its antiviral efficacy.
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