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Background: Identifying germlinemutations in BRCA1 and BRCA2 genes (BRCAs)
would benefit the carriers in multiple aspects. In addition to single-nucleotide
variations and small indels, copy number variations (CNVs) is also an indispensable
component of identifiablemutations in BRCAs. A sensitive, rapid and throughput-
flexible method to detect CNVs would be preferred to meet the rising clinical
requirements for BRCAs testing.

Methods: We developed a MALDI-TOF-MS-based method (MS assay) which
included three steps: first, multiplex end-point PCR followed by a single base
extension reaction; second, automated analyte transfer and data acquisition;
third, data analysis. We applied MS assay to detect CNVs in BRCAs in 293 Chinese
patients with ovarian or pancreatic cancer. All the samples were examined by
targeted next-generation sequencing (TS) simultaneously. Samples were further
cross-validated bymultiplex ligation-dependent probe amplification (MLPA) if the
results fromMS assay and TSwere inconsistent. Long range PCRwas then applied
to identify the exact breakpoints in BRCAs.

Results:MS assay introduced highly multiplexed panels to detect CNVs of BRCAs
semi-quantitatively. Simplified on-board data analysis was available for MS assay
and no complex bioinformatics was needed. The turnaround time of MS assay
was less than 8 hours with a hands-on time of only 40 min. Compared to TS, MS
assay exhibited higher sensitivity (100% vs. 75%) and was more flexible in
throughput, with the reagent cost per sample remaining constant no matter
howmany sampleswere examined per assay. A total of eight CNVs in BRCAswere
detected from the 293 samples, and themolecular breakpoints were successfully
identified in five samples through long-range PCR followed by Sanger
sequencing.

Conclusion:Our results suggested that MS assay might be an effective method in
primary screening for CNVs in genes such as BRCAs, especially when short
turnaround time and/or high sensitivity is a top priority.
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Background

BRCA1 and BRCA2 genes are recognized as the primary
inherited causes of breast and ovarian cancer since they were
discovered in 1990s (Miki et al., 1994; Wooster et al., 1995).
Germline mutations in BRCA1 and BRCA2 genes not only
increase the risk of breast and ovarian cancer, but also
contribute to the susceptibility of pancreatic and prostate
cancer (Breast Cancer Linkage Consortium, 1999; Thompson
et al., 2002). For carriers of BRCA1 mutations, the risk of
developing breast and ovarian cancer by age of 80 years is
estimated to be 72% and 44% respectively, while it is 69% and
17% respectively for BRCA2 carriers (Kuchenbaecker et al.,
2017). Mutations in BRCA2 also cause a 5–10% lifetime risk
for pancreatic cancer, while BRCA1 carriers might have two to
four times risks compared to non-carriers (van Asperen et al.,
2005; Ferrone et al., 2009; Mocci et al., 2013; Zhen et al., 2015;
Roberts et al., 2016). In the case of prostate cancer, BRCA1 and
BRCA2 mutations would lead to 8.6% and 15% cumulative risks
respectively by age of 65 years (Thompson et al., 2002;
Venkitaraman, 2002; Kote-Jarai et al., 2011; Leongamornlert
et al., 2012). Identifying germline mutations in BRCA1 and
BRCA2 genes would benefit the carriers by taking risk-
reducing interventions before they get a cancer, as well as
providing valuable information on the therapeutic application
of Poly (ADP-ribose) polymerase inhibitors after a cancer occurs
(Fong et al., 2009; Domchek et al., 2010).

Genetic testing for BRCA1 and BRCA2 mutation has now
become a useful tool for both clinical and healthcare
management. Multiple guidelines on genetic testing have been
published emphasizing the necessity of identifying BRCA carriers
for preventive and therapeutic purposes (US Preventive Services
Task Force et al., 2019; Daly et al., 2020; Pujol et al., 2021).
Although the majority of pathogenic variants identified in
BRCA1 and BRCA2 are single-nucleotide variations (SNVs)
and small insertions/deletions (indels), large genomic
rearrangements (LGRs) accounts for up to 21% of all
pathogenic variants, indicating that LGRs is an indispensable
component of identifiable mutations (Judkins et al., 2012). The
NCCN Guidelines also emphasized the need for comprehensive
testing of all types of mutations including LGRs based on full
length sequencing of BRCA1 and BRCA2 genes (Daly et al.,
2021a). However, LGRs could not be detected by conventional
PCR-based methods, and alternative methods such as long-range
PCR, fluorescent in situ hybridization, comparative genomic
hybridization, multiplex ligation-dependent probe
amplification (MLPA) and targeted next-generation
sequencing (TS) have been developed (Lambros et al., 2007;
Walsh et al., 2010; Hernan et al., 2012; Stuppia et al., 2012;
Biesma et al., 2015; Kwong et al., 2015). These approaches have
contributed a lot in identifying LGRs, but they are either
complicated, time-consuming or expensive, which hinders
their applications in large scale screening. A simple, time-
saving and throughput-flexible method to detect LGRs would
be preferred to meet the rising clinical requirements for
BRCA testing.

Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF-MS) is an outstanding platform for

single nucleotide polymorphisms (SNPs) detection, featured by
simple assay design, high throughput, high accuracy, excellent
resolution, and short analysis times (Storm et al., 2003). In this
study, we developed a MALDI-TOF-MS-based method (MS assay)
for rapid detection of copy number variations (CNVs), which are
due to LGRs, in BRCA1 and BRCA2 genes. The major advantage of
this method is introducing highly multiplexed panels to detect
CNVs of targeted genes semi-quantitatively, characterized by
short turnaround time, flexible throughput and simplified on-
board data analysis. Using this method, we examined CNVs in
BRCA1 and BRCA2 in 293 Chinese patients with ovarian or
pancreatic cancer. MS assay exhibited higher sensitivity
compared to TS, suggesting that it might be an effective method
in primary screening for CNVs, especially when shorter turnaround
time and/or high sensitivity is a top priority.

Materials and methods

Samples

Leftover peripheral blood samples after routine clinical tests
were collected from patients with ovarian cancer (n = 289) or
pancreatic cancer (n = 4) in Shanghai General Hospital. Genomic
DNA (gDNA) was extracted from blood using the QIAamp Blood
Kit (Qiagen, Hilden, Germany) following the manufacturer’s
instructions. The concentration of genomic DNA was measured
by Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA)
using dsDNA HS assay (Q32854). The study was performed in
accordance with the Declaration of Helsinki and approved by the
Ethics Committee of Shanghai General Hospital (No. 2022KY019).
Requirement for informed consent was waived by the
ethics committee.

MS assay for CNVs detection

Three steps were included in MS assay: first, multiplex end-
point PCR followed by a single base extension reaction, which
took about 5.5 h with a hands-on time of 25 min; second,
automated analyte transfer and data acquisition, which took
about 100 min with a hands-on time of only 5 min; third, data
analysis which took a hands-on time of 5–10 min. More
specifically, each exon of BRCA1 (NM_007294) and BRCA2
(NM_000059) genes, as well as fragments of internal reference
genes including RNaseP, EIF2C1 and ALB genes, were amplified
following by single base extension in multiplexed panels. Both
primers for amplification and unextended primers (UEP) were
designed using Assay Design Suite (version 2.2, Agena
Bioscience). To be noted, primer sequences should not contain
any SNPs with minor allele frequency >0.5%. Oligonucleotides
that were only one base different from the corresponding gDNA
fragments, namely competitors, were amplified and extended in
parallel with gDNA using the same primers (Figure 1A). The
sequences of primers for multi-plex PCR and UEP were listed in
Supplementary Table S1.

All the exons of BRCA1 and BRCA2 were examined in a total
of four multiplex PCR amplification and extension reactions
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which were carried out using iPLEX Pro Reagents Kit (Agena
Bioscience) according to the manufacturer’s instructions. Briefly,
equal copies of gDNA and competitors were inputted into one
tube and PCR amplification was performed as followings: 30°C
for 10 min followed by 96°C for 2 min, then 5 cycles of 96°C 45 s,
65°C 30 s and 72°C 1 min, 40 cycles of 96°C 45 s, 60°C 30 s and
72°C 1 min, with a final step of 72°C 5 min. PCR products were
then treated with shrimp alkaline phosphatase, followed by a
single-base extension which was performed as followings: 97°C
45 s, 97°C 5 s plus 5 repetitions of 52°C 5 s and 80°C 5 s for
40 cycles, and then 72°C 3 min. After extension, the products
were desalted and spotted onto a SpectroCHIP (Agena
Bioscience) using the MassARRAY Chip Prep Module (Agena
Bioscience). SpectroCHIPs were scanned using the
MassARRAY™ Analyzer 4 (Agena Bioscience) and the spectra
were processed using the TYPER™ (Agena Bioscience) software
to get the peak intensity for each allele. Target ratio (TR) value
deriving from peak intensity of each fragment was applied to
evaluate CNVs (Figure 1B). The algorithm for TR calculation was
shown in Figure 1C. The cut-off of TR value was established using
both CNV-positive standard samples purchased from the Coriell
Institute (Camden, NJ) (Supplementary Table S2) and negative
control samples which was proved to have diploid gene copy of
BRCA1 and BRCA2 by MLPA. Fragments with TR ≤ 0.65 were

considered to have deletions, while those with TR ≥ 1.30 were
considered to have duplications. Batch calculation of TR value for
multiple samples was performed in RStudio. The R code is
available upon reasonable request.

Hybrid capture-based targeted next-
generation sequencing

The gDNA was fragmented and ligated to adaptors according to
the protocol of NanoPrep™ DNA Library Preparation Kit
(Nanodigmbio, Nanjing, China). Targeted fragments were
captured by xGen® Predesigned Gene Capture Pools (IDT, IA,
United States) which covered all coding exons and flanking
noncoding regions of BRCA1 and BRCA2 genes, and
hybridization was carried out using xGen® Hybridizaiton and
Wash Kit and Universal Blockers (IDT, IA, United States). Then
the DNA library was sequenced on MGISEQ-2000 instrument using
MGISEQ-2000RS High-throughput Sequencing Kit (PE 150) (MGI,
Shenzhen, China). Sequencing data was processed by GATK
(https://gatk.broadinstitute.org/). Briefly, adaptor sequences in
raw sequencing data were marked using MarkIlluminaAdapters,
then aligned to human reference genome (version hg19) using
BWA-MEM. Duplicated reads were identified using

FIGURE 1
Workflow of MALDI-TOF-MS-based assay for CNV detection. (A) Experimental workflow of MALDI-TOF-MS-based assay. Multiplex PCR
amplification and single base extension reactions were carried out with equal copies of gDNA and competitors inputted. The products were examined by
MALDI-TOF-MS platform from which peak intensity was obtained. Target ratio (TR) value deriving from peak intensity of each fragment was then applied
to evaluate CNVs. Fragments with TR ≤ 0.65 were considered to have deletions, while those with TR ≥ 1.30 were considered to have duplications. (B)
Representative results of peak intensities of BRCA2 exon 11 fragments. The upper panel showed a CNV-positive sample with deletion in BRCA2 exon11,
and the lower panel showed a wild type sample. (C) The algorithm for TR calculation. T, targeted gene fragments; Ri, reference gene fragments (i = 1, 2,
3 which represent ALB, EIF2C1 and RNaseP respectively); Intensity Temp, peak intensity of template gDNA; Intensity Comp, peak intensity of competitor.
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MarkDuplicates and base quality score recalibration was performed
using BaseRecalibrator. Germline variants including point mutation
and small indels were called by HaplotypeCaller, while germline
CNVs was called by GermlineCNVCaller.

MLPA assay for CNVs detection

CNVs in BRCA1 and BRCA2 genes were also examined using
SALSA MLPA Probemix P002-D1 BRCA1 and P090-C1 BRCA2
(MRC-Holland, Amsterdam, Netherlands) respectively according to
the manufacturer’s instructions. Genomic DNA was denatured at
98°C for 5 min, then the hybridization of probes to genomic DNA
was performed at 95°C 1 min and 60°C 16 h. Hybridized probes were
then ligated with a Ligase-65 master mix at 54°C 15 min and 98°C
5 min. PCR amplification of ligated probes was performed as
followings: 35 cycles of 95°C 30 s, 60°C 30 s and 72°C 60 s, and
then 72°C 20 min. Electrophoresis was performed on ABI 3500
(Thermo Fisher Scientific, Waltham, MA), and data analysis was
done by Coffalyser.NET software (MRC-Holland, Amsterdam,
Netherlands).

Identification of breakpoints by long
range PCR

Long range PCR was applied to explore and identify the exact
breakpoints for samples with CNVs in BRCA1 or BRCA2 genes
detected by MS-based assay. PCR was performed with TaKaRa
LA Taq (Takara Bio, Otsu, Japan) in a final volume of 50 μL as
followings: 94°C 1 min, 30 cycles of 98°C 10 s and 68°C 15 min,
and then 72°C 10 min. PCR products were purified with the
DiaSpin DNA Gel Extraction Kit (Diamond, Shanghai, China)
and subjected to Sanger sequencing. Data analysis were
performed by Sequencing Analysis v5.2 software (Thermo
Fisher Scientific, Waltham, MA). Repetitive elements, such as
LTR, LINE, Alu and MIR were identified by RepeatMasker and
annotated through searching UCSC Genome Browser (http://
genome.ucsc.edu).

Results

MS assay for detection of CNVs in BRCA1
and BRCA2 genes

A MS assay was developed for detection of CNVs in BRCA1
(NG_005905.2) and BRCA2 (NG_012772.3) genes, of which the
turnaround time costed less than 8 hours, with a hands-on time of
only 40 min. The throughput of MS assay was quite flexible, varying
from one to more than a thousand samples per day, while the
reagent cost per sample remained constant no matter how many
samples were examined per assay. Besides, simplified on-board data
analysis was available for MS assay and no complex bioinformatics
was needed, which would greatly facilitate its application in clinical
labs. More details of MS assay were described in Methods.

Blood samples from 289 patients with ovarian cancer and four
patients with pancreatic cancer were collected and subjected to CNVs
detection throughMS assay. The characteristics of enrolled patients were
shown in Supplementary Table S3A. A total of 281 samples were found
to be CNV-negative, while 11 patients with ovarian cancer (No. 1–5,
7–12) and one patient with pancreatic cancer (No. 6) were identified to
carry CNVs in BRCA1 or BRCA2 genes by MS assay (Figure 2).

Detection of CNVs in BRCA1 and BRCA2
genes by TS and MLPA

All the 293 samples mention above were examined by TS
simultaneously. Through TS, a total of 47 unique pathogenic SNVs
were identified in 56 individuals (Supplementary Table S3B). CNVs
analysis showed that 287 samples (including No. 7–12) were CNV-
negative, while five patients with ovarian cancer (No. 1–5) and one
patient (No. 6) with pancreatic cancer were identified to carry CNVs in
BRCA1 or BRCA2 genes (Figure 2). Thus, the results of six samples (No.
7–12) were inconsistent between TS and MS assay.

We then performedMLPA to validate whether there were CNVs or
not in sample No. 7–12. Two samples (No. 11-12) were validated by
MLPA as CNV-positive, while the other four (No. 7–10) were CNV-
negative. Further analysis of the TS results indicated that in the cases of

FIGURE 2
Summary of CNVs detected in 293 samples. Consistent results were obtained by MS assay and TS in 287 samples (No.1-6 and No.13-293), with six
(No.1-6) being CNV-positive and 281 being CNV-negative (No.13-293). Sample No.7-10 were validated as CNV-negative, while sample No.11-12 were
validated as CNV- positive by MLPA. Sample No. in red (No.7-10) indicated there were SNVs in the primer sequences of MS assay. “*” represented samples
from patients with pancreatic cancer, while all the other samples were from patients with ovarian cancer. MS, MALDI-TOF-MS-based assay; TS,
targeted sequencing; MLPA, multiplex ligation-dependent probe amplification.
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sample No. 7–10, there were SNVs in the amplification primer binding
sites of MS assay (Figure 2; Supplementary Table S4), which might lead
to false positive results in MS assay. Meanwhile, sample No. 11-12 that
were CNV-positive identified by both MS assay and MLPA was
recognized as CNV-negative in the TS sequencing results, indicating
the results of TS were false negative.

Characterization of CNVs in BRCA1 and
BRCA2 genes

Totally, we detected CNVs in BRCA1 and BRCA2 genes in eight
(2.7%) out of 293 samples. Consistent with previous reports (Sluiter
and van Rensburg, 2011; Su et al., 2018), there were more deletions

than duplications among the eight CNVs we identified. As shown in
Figure 3 and Table 1, seven out of the eight CNVs were deletions
(four in BRCA1 and three in BRCA2), while only one CNV was
duplication in BRCA1. Recurrent CNVs included deletions in exon
1-2 of BRCA1 and in exon 11 of BRCA2. In fact, three samples were
found to harbor CNVs in exon 1-2 of BRCA1, including two samples
with deletions and one sample with duplication, suggesting that
exon 1-2 of BRCA1 might be a potential hotspot for CNV
occurrence.

Moreover, we successfully identified the molecular breakpoints
in five out of the eight CNV-positive samples by applying long-range
PCR followed by Sanger sequencing, among which deletions of
BRCA1 exons 1-2 including g.61,242_98,355del and g.61,101_
98,034del have been identified as recurrent CNVs in Chinese

FIGURE 3
Schematic of the detected large genomic rearrangements in BRCA1 and BRCA2 genes. A total of eight CNVs were detected, among which seven
were deletions (four in BRCA1 and three in BRCA2), while only onewas duplication in BRCA1. Deletionswith identified breakpoints were depicted with red
boxes, while deletions or duplicationswith unrecognized breakpoints were depictedwith red or blue striped boxes respectively. The length of exons (grey
bars) and introns (black lines) were not exactly to scale.

TABLE 1 The breakpoints and mechanisms of CNVs detected in this study.

Sample no. CNVs Size (bp) Breakpoints Mechanisms

BRCA1(NG_005905.2)

1 exon 1-2 deletion 36934 g.61,101_98,034del NAHR (ΨBRCA1/BRCA1)

2 exon 1 deletion 19857 g.73,379_93,235del NHEJ (Non-Alu/AluSx)

3 exon 1-2 deletion 36934 g.61,422_98,355del NAHR (ΨBRCA1/BRCA1)

5 exon 1-2 duplication NA NA Unknown

6 exon 5-10 deletion 12117 g.110,371_122,487del NAHR (AluSz6/AluJb)

BRCA2(NG_012772.3)

4 exon 17-18 deletion 7892 g.48,409_56,300del NAHR (AluSx/AluSz)

11 part of exon 11 deletion NA NA Unknown

12 part of exon 11 deletion NA NA Unknown

NA, not available; NAHR, non-allelic homologous recombination; NHEJ, non-homologous end-joining.
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patients with breast cancer (Su et al., 2018). As shown in Table 1,
four CNVs were caused by Alu-mediated or ΨBRCA1-mediated
non-allelic homologous recombination (NAHR), while another one
was caused by non-homologous end-joining (NHEJ).

Sensitivity and specificity of MS assay

To sum up, consistent results were obtained from 287 samples
(No. 1–6 and No. 13–293) by both MS assay and TS, with six being
CNV-positive and 281 being CNV-negative. Another six samples
(No. 7–12) turned out to be CNV-negative in the result of TS, but
CNV-positive in that of MS assay. Further validation by MLPA
indicated that sample No. 11-12 were CNV-positive while sample
No. 7–10 were CNV-negative. Thus, the sensitivity for MS assay and
TS was 100% and 75%, while the specificity was 98.6% and 100%
respectively (Table 2). MS assay showed higher sensitivity while the
specificity was slightly lower when compared to that of TS.

Discussion

It was suggested that unselected BRCAs genetic testing should be
carried out in both ovarian and breast cancer patients regardless of
family history and histopathology (Wu et al., 2017; Sun et al., 2022).
Improvement in progression-free survival as well as in overall survival
withmaintenance Olaparib (a Poly (ADP-ribose) polymerase inhibitor)
have been observed in patients with newly diagnosed advanced ovarian
cancer and a BRCA variant (Moore et al., 2018; DiSilvestro et al., 2023).
Furthermore, patients with HER2-negative early breast cancer and
germline BRCA1 or BRCA2 variants could also benefit from
adjuvant Olaparib treatment (Tutt et al., 2021). For non-cancer
individuals, carriers of a BRCA1 or BRCA2 pathogenic variants was
recommended to take more intensive screening and preventive
strategies for breast, ovarian, prostate and pancreatic cancer (Elezaby
et al., 2019; Daly et al., 2021b). The clinical demand for BRCAs testing
keeps increasing, which calls for fast, throughput-flexible and cost-
effective technologies to detect SNVs as well as CNVs. In this study, we
developed the MS assay, which was featured by sensitive, time-saving
and throughput-flexible, for CNV detection of BRCA1 and BRCA2.

MALDI-TOF MS technology has been utilized for single
nucleotide polymorphisms (SNPs) genotyping for two decades
(Tost and Gut, 2002). In a recent study, the MS assay was also
applied in CNV detection of SMN1 and SMN2 genes for spinal
muscular atrophy genetic testing, showing highly concordant results
with MLPA (Jin et al., 2022). In this study, we developed a MS assay
for CNV detection of BRCA1 and BRCA2 genes. MLPA has also
been widely applied in clinical labs for CNV detection of BRCAs
(Lim et al., 2007; Lips et al., 2011). However, the experimental
procedure of MLPA usually takes 2 days and the throughput is

relatively low (45 testing samples plus three reference samples per
batch), which might hinder its wide application in clinical practice.
Although the throughput of TS is much higher, it is also time-
consuming when compared to MS assay. The highly-automatized
procedure of MS assay only takes less than 8 hours to generate
results for 96 testing samples per batch, with a hands-on time of only
40 min. Besides, our results indicated that the sensitivity of MS assay
is higher than TS (100% vs. 75%), implying that MS assay might be
more effective in primary screening for CNV-carriers.

Among the 293 patients involved in this study, we identified a
total of 64 carriers (21.8%) of pathogenic variants of BRCA1 and
BRCA2 genes, including 56 patients (19.1%) carrying pathogenic
SNVs/small indels, and eight patients (2.7%) carrying CNVs
through TS and MS assay. Our results indicated that CNVs
accounted for 12.5% (eight out of 64) of all pathogenic mutations
in BRCA1 and BRCA2 genes, suggesting that examination of CNVs
should also be carried out to comprehensively identify pathogenic
mutation carriers of BRCAs in clinical practice. To be noted,
mismatches in the primer binding sites of MS assay may lead to
a false-positive result of deletion. In fact, we found four false-positive
samples (sample No. 7–10) from the results of MS assay which were
caused by SNVs in the primer binding sites as revealed by TS.
Similarly, SNVs located on the MLPA probe binding sites have been
observed to cause false positive results (Agaoglu et al., 2022).
Another independent approach, such as TS, long-range PCR or
fluorescent in situ hybridization is recommended to further validate
the CNV-positive results derived from MS assay or MLPA.

It was reported more than 40% of the intronic sequences of
BRCA1 consist of Alu elements which were responsible for
recombinational “hot spots”. Meanwhile, there were only 17%
Alu sequences in BRCA2, which might explain why the incidence
of rearrangements was lower in BRCA2 than in BRCA1 (Ewald et al.,
2009). In addition, rearrangement involving ΨBRCA1 might also
constitute a “hot spot” for recombination (Puget et al., 2002).
Consistently, we observed Alu-mediated genomic rearrangements
in both BRCA1 and BRCA2 in two out of the eight CNV-positive
samples, and ΨBRCA1-mediated rearrangement in another two
samples. Two CNV-positive samples harbored BRCA1 exon 1-
2 deletion, which has been reported to be recurrent in Chinese
patients with breast cancer (Su et al., 2018). Our results further
suggested BRCA1 exon 1-2 deletion might be a “hot spot” for
recombination mediated by either Alu element or ΨBRCA1.

The MS assay has several limitations. First, although three
internal reference genes (RNaseP, EIF2C1 and ALB) as well as a
highly homologous competitor were included for double calibration
of gene dosage in the MS assay, the quality of mass spectrometric
signal might impact its accuracy for dosage quantification. Thus, the
MS assay is recommended for detection of germline CNVs in high-
quality samples, while it is not suitable for low-quality samples or
samples with low tumor purity. Another limitation of MS assay is its

TABLE 2 Sensitivity and specificity of MS assay and TS.

Methods False positive False negative True positive True negative Sensitivity (%) Specificity (%)

MS n = 4 n = 0 n = 8 n = 281 100 98.6

TS n = 0 n = 2 n = 6 n = 285 75 100

MS, MALDI-TOF-MS-based assay; TS, targeted sequencing.
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lower specificity than TS, which is caused by mismatches in the
primer binding sites and could not be completely avoided. In order
to minimize potential mismatches, we excluded any SNPs with
minor allele frequency >0.5% from primer sequences. However, as
BRCA1 and BRCA2 variation is ethnic-specific, the minor allele
frequency data are mainly derived from Caucasian populations of
Europe and North America and might not be accurate in the case of
Chinese population (Bhaskaran et al., 2019). Further improvement
in primer design might be made by drawing information from
Chinese-specific reference database such as dbBRCA-Chinese
(https://genemutation.fhs.um.edu.mo/dbbrca-chinese/). Besides,
the specificity of MS assay would also be improved by
simultaneously applying another primer set avoiding mismatches
in the current set, which is now under development.

In summary, we developed a MALDI-TOF MS-based assay for
CNV detection of BRCA1 and BRCA2 genes, which was
characterized by high sensitivity, time-saving, and flexible
throughput. Our results indicated that MS assay might be an
effective method in primary screening for CNV-carriers,
especially when short turnaround time and/or high sensitivity is
a top priority. Application of MS assay is expected to satisfy the
requirements of increasing demand for genetic testing of BRCAs,
and could be easily expanded to the detection of CNVs in other
genes in clinical practice and population screening.
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